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Abstract

An important problem of actuarial risk management is the calculation of the
probability of ruin. Using probability theory and the definition of the Laplace
transform one obtains expressions, in the classical risk model, for survival
probabilities in a finite time horizon. Then explicit solutions are found with
the inversion of the double Laplace transform; using algebra, the Laplace
complex inversion formula and Matlab, for the exponential claim amount
distribution.
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1. Introduction

This paper seeks to derive Laplace transforms of common distributions used in
counting processes analysis. In mathematics and with many applications in
physics and engineering and throughout the sciences, the Laplace transform is a
widely used integral transform. Denoted by L{ f (t)} , it is a linear operator of a
function f(t) with a real argument ¢ (t>0) that transforms it to a function
F(s) with a complex argument s. This transformation is essentially bijective
for the majority of practical uses; the respective pairs of f(t) and F(s) are
matched in tables. The Laplace transform has the useful property that many re-
lationships and operations over the originals f (t) correspond to simpler rela-

tionships and operations over the images F (S) .
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The Laplace transform is related to the Fourier transform, but whereas the
Fourier transform expresses a function or signal as a series of modes of vibration
(frequencies), the Laplace transform resolves a function into its moments. Like
the Fourier transform, the Laplace transform is used for solving differential and
integral equations. In physics and engineering it is used for analysis of linear
time-invariant systems such as electrical circuits, harmonic oscillators, optical
devices, and mechanical systems. In general, the Laplace transform is often in-
terpreted as a transformation from the time-domain, in which inputs and out-
puts are functions of time, to the frequency-domain, where the same inputs and
outputs are functions of complex angular frequency, in radians per unit time.
Given a simple mathematical or functional description of an input or output to a
system, the Laplace transform provides an alternative functional description that
often simplifies the process of analyzing the behavior of the system, or in syn-
thesizing a new system based on a set of specifications.

This paper is concerned with finding formulae for finite time survival proba-
bilities, by the complex inversion of the corresponding Laplace transforms, fol-
lowing and expanding [1] [2] [3] [4] and [5].

By definition the Laplace transform of a distribution of density function fde-
fined on R or on a part of R is the function defined on the set C of com-

plex numbers by (e.g. see [4] [5] [6] and [7]),
F(2)= [ f(t)e "t 1)
0

The rest of the paper proceeds as follows: Section 2 is related to the main re-

sults derived in the paper. Section 3 concludes the paper.

2. Main Results

Positive distributions are considered (e.g. see [6]-[11]).

2.1. Exponential Distribution and Its Laplace Transform
Proposition 1. The Laplace transform of the exponential distribution,
f(x)=2e",is
A
F(z):—}L , Vzlz#-24 )

Proof of Proposition 1:

The Laplace transform of the law of Xis defined as,

F(z)=[Aee™dt. Hence, F(z)=[2e"*dt :ﬁ,with 2#-A.m
0 0

2.2. Weibull Distribution and Its Laplace Transform

Proposition 2. The Laplace transform of the Weibull distribution with parame-
ters A,a and density function f, (X)=aAx* " exp(-Axa) is
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alfr (a) 3)

(2)- 2212

(Aa+ Z)a
with z#-1a and T is defined as, F(a) = I X% te™*dx .
0

Proof of Proposition 2:

The Laplace transform is by definition, F(z)= J f (t)e™dt . Since,
0
F(z)= jaﬁt"’le"“’e’“dt = alj‘t“’lef(’m”)tdt . Replacing zby z+ A« , one gets,
0 0

o0 r o0
It"’le’(““ﬁ)ldt = & .Thus, F(z)= a/ljt""le_(m“)tdt , that is
0

0 (ad+1)
F(Z):ali)a‘l—[ence, F(Z):M,With Z#—Aa.m
(Aa+12) (Aa+12)

2.3. Normal Distribution and Its Laplace Transform

Proposition 3. The Laplace transform of the normal distribution with known
parameters u and o, and with a density function given by

2
x—
1 e
= e <7 ,1s

f(x)_a\/ﬂ

o

s 2
F(z)=e 2 (1—(1)[_”_—‘”} vzeC (4)

where @ is the cumulative distribution of the standard normal distribution.

Proof of Proposition 3:
The Laplace transform is by definition,

= 1 (=) = q (t-n)" = (t-p)*+20%2t
F(z)=] e 2 etdt=] e 2 dt=| e @ dt

0 O-\/E 0 G‘\/ﬁ 0 O‘\/ﬂ

” 1 t272(ufo'22)t+‘u2
F(z)=] e 2 dt.Thus,

0 O-\/E

- 1 (t—y+022)2—(/21+a'22)2 +y2 (/H—o'zz): —,uz » 1 7(t—,u—ojz)2
F(z)= e 20 dt=e 2% e 2 dt

S e [

Using the change of variable, y = trp-oz , one gets
oy

uralz 2*/12 2
,7) +0 1 oy
F(z)=e 20 I ———¢ 2dy. Therefore,

2,21

-pu-01
o

2
—U—0"1
et 2

_ S g ¥y
F(z)=e > |1- | ! . 2dy |.

% N2n
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(;Ho’zz)z—yz
\reE) e -0’2
Hence, F(z):e 20 [1—@(”—}} , Vz complex, and where
o

@ is the cumulative density function of the standard normal distribution. =

2.4. Inverse Gaussian and Its Laplace Transform

Proposition 4. The Laplace transform of the Inverse Gaussian distribution with
parameters A, x and with a density function defined by

1 2
A2 AX=u) | .
f(x)= (mj exp[—%} , is given by,

5 1 2/1;142
A+20°2)% (G020
F(o)- L ot )
22
where zis a complex number such that: A+24°z is a real positive number (e.g.
see [7] [8] [9] and [10]).
Proof of Proposition 4:

By definition, F(z)= T f(t)e™dt.
" 01 Alt 2

Since, F(z)= j( 2 Jz exp(—(;z'u)]e‘“dt , one gets,
0 2ut

F(z) :I(Ziﬁ jz exp(—%— thdt

1 2 2.2
A(t— —2uzt
2r—zxp[— ( #) 5 i jdt
2ut

3 2 (A+24°2) - 23pt + 2
j exp| — 5 dt
2ut

2
1 (/1+2,u22) t? - Zﬂ’uz t+ A 5
A+2u°z  A+2u°z it

© l 2
F(z)=||—= -
(Z) '!IZntaj X 2%

(o Au ) A% u’
(A+24°2) (t /1+2/fz] (/1+2ﬂ22)2+/1+2ﬂ22

0 )p >
F(z)= exp| —
(Z) ![275’[3) xP 2,uzt

dt
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2
4, A
(liﬂzz)“ AV <l+2”22)(t_/1+2#2z]
e I(ﬁ) exp| — e a dt
n 7

T
—~
N
~—
Il

0

omts . 75 (t_ A T
R = 2 2
F(Z)ze(ﬂ 2u%2) I( A jzexp _A+2uz A+2u°z dt

0

2nt® 2u% 77 t
(/1+2yzz)2
Therefore,
F(z)=
2242 A° 2 A2 [t— Au ?
v2u22) 1 < 2 A+2 2Z A+2 2Z
AN YN ! | /1+2éf2 exp| -2 H 22+'u dt
22 So| 2t 2u°A t
—_— 2
A+2u°1 (/1+2/1 Z)
Considering the complex number z such that, 1+2x°z is a real positive
224tz
(ﬂ.+2,uzz)2 ! 1
number, one gets the above equality, F(z)=e XA X
A
A+2u°1
1 2
R 75 (t_ Au
= 2 A+2u’z\ 0 A+2u7
Since IL'L;Z exp| — oK 5 2+ # dt=1 (it is the
ol 2mt 2u°A
2 2
(ﬂ+2y z)

integral on the domain of the density function of a law with parameters

1 224z
A+21%2)2 (40u2a)
A+2u%z, A—ﬂz). Hence, F(z):#e(i 24f) , VZ a complex
A+2u°2 =
22
number such that: A+24%z is a real positive number (e.g. see [11] [12] [13]
and [14]). =

2.5. Gamma Distribution and Its Laplace Transform

Proposition 5. The Laplace transform of a Gamma distribution with parameters

. : Co ABXI e
A, and with a density function given by, f(x)="———;i
r(p)
F(z)= AP , Vzlz#-2 (6)

(/1+z)ﬁ

where T is defined as before, that is F(a) = J X% te*dx.
0

Proof of Proposition 5:
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As F( ff (t)e "dt ; one can write

0
0 p- 1 —At 0 p-1 —(/I+Z)t ©
J'ﬂ'ﬂt e dt = J' ﬂ'ﬁt € dt = ﬂ’ﬁ J't/;'fle—(ﬂu)tdt )
> I(B > T(8) T(8)q

Set G, the function defined by G(z)= J t“e *dt . Using the change of variable
0

© a

u=zt; G(Z) becomes, G(Z):j Li+1
YA

0

e 'du ; and this gives,

G(z)= Zal+1 fu“e’“du.
0

Therefore, G(z)= It“e’“dt = F(O::Il) . Replacing @ by (f-1) and z by
0 z

r(4) B T(B)
(2+2)° r(B) (a+z)

Vz#-A.Hence, F(z) :L)ﬂ, Vz#-A (e.g see[13]and [14]).=
z

(A+

2.6. Generalized Gamma Distribution and Its Laplace Transform

(z+2), one gets, Ttﬂ’le’(”ﬂ)‘dt: . Thus, F(z)=
0

Proposition 6. The Laplace transform for a generalized distribution with para-
QAfX P e
r(s)

alfr (af) )
r(p)(ra+z)’

meters A,f,a and density function f(x)= is

F(z)=
with z=-Aa.
Proof of Proposition 6:
Again the Laplace is defined as, F(z)= J f (t)e™dt . It comes that,
0

Olﬂvﬁt a/;'—le—lal

]
I

e ?dt which can be rewritten as

aApt L el 2V

e (**2) gt Replacing o
o T by

(aB-1) and zby (z+ak), one gets, Tt"ﬂ’le_(“mtdt=—F(aﬂ)aﬂ . Therefore,
0 (ar+12)
F(z)= aib [(af) if z#-Aa. Hence, F(z):—aﬂﬂr(aﬂ) ,
T(B) (ar+2)” r(p)(2a+z)

vided z#-Aa .=

2.7. Pareto Distribution and Its Laplace Transform

Proposition 7. The Laplace transform of the Pareto distribution with parame-
0

ters 4,0 and density function f, (X):% with x>1 and A,a positive;
X

is given by,
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F(z)=04"2°[T(-0)-1(24,-0)T(-0)] (8)

where T s defined as before» Whereas 7is given by, |(t,a)=

1 t

x [x“ e dx.
I(a) 3
Proof of Proposition 7:

The Laplace transform is defined as, F(z)= J f (t)e™dt, so that
0

) 4
F(z)= j%e’“dt . Using the change of variable U= zt, one gets
p
T 916 —-u 6.6 K -0-1,-u :
F(z)= I ——edu=01"z J.u e'du which leads to,
Z Z z
g Z:9+1 g

® 2
F(z)=04"7" [ju‘“e‘“du | u‘“e‘“du)
0 0

Thus, F (Z) =04%7° [F(—H)— | (Zl,—H)F(—H)] where 7is defined as:

I(t,a)= !

I'(a)

2.8. Log-Normal Distribution and Its Laplace Transform

t
x J' x“ e *dx . =
0

Proposition 8. The Laplace transform of the log-normal distribution with pa-

ex 1(Inx—p ZJ
(- ()

x/2no

rameters o and x with density function f,
with x positive; is given by:

F(2)=E(e™) )
where E, is the mathematical expectation of a normal random distribution

truncated at 0 and with parameters o and u.

Proof of Proposition 8:

The Laplace is by definition, F(z)= f f (t)e™dt, so that
0

1 Int—,u2
P 2( - ”

F(Z):I ( t\/ﬁa

exp(—ltx_#n exp(—l(x_yjzj

“ 2 X “ 2 X X

F(z)=] 7 e = 7 e ax =, (e’Ze )
o e*\2no 5 2no

where E, is the mathematical expectation of a normal random distribution

e “dt. By setting X =Int, one obtains,

truncated below at 0 and with parameters ¢ and g .m

2.9. Log-Logistic Distribution and Its Laplace Transform

Proposition 9. The Laplace transform of the log-logistic distribution with pa-
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ax* A
rameters A,a and with density function: f, (x)= with A,«a

2
(1+ ﬂx“)
positive; is:

F(2)=Ex(e™) (10)
where E, is the mathematical expectation of a log-logistic random distribu-
tion with parameters « and A.

Proof of Proposition 9:

The Laplace transform is by definition, F(z) :I f (t)e"dt. Note that the
0

a-1
function defined by, g (X)= Me'Zx

5 is continuously differentiable on
(1+ ﬂx“)

the interval admitting a limit equal to zero in the neighbourhood of +oo. The

© a-1
Laplace transform therefore always exits. Thus, F(z)= J- oAt

~edt .
0 (1+ /lt")

Hence, F(z)=E, (e’zx) where E, is the mathematical expectation of a

log-logistic random distribution with parameters « and A.=

2.10. Gompertz Distribution and Its Laplace Transform

Proposition 10. The Laplace transform of the Gompertz distribution with pa-

rameters @ and o with density function: f, (x)= 0™ exp[g(l—e‘” )} with
a

0,a positive is:

F(z):.fé?e(“’z)t exp[g(l—e‘”)}dt (11)
a

Proof of Proposition 10:

The Laplace is, F(z)= I f (t)e *dt . Thus,
0

F(z)= Té’e‘Zt exp [g(l—e“‘ )J e dt = Té’e(“’z)t exp [g(l—e“‘ )J dt  (eg. see
0 0

[14] and [15]). =

3. Conclusion

In this paper one derived the Laplace transform of some important distributions
used in counting processes. Results have important implications in 1) solving
differential equations; 2) solving partial derivative equations; 3) deriving com-
plex impedances; 4) solving partial fraction expansions; 5) conducting convolu-
tion analysis; 6) running complex geometric analyses; 7) determining structure

of astronomical objects etc.
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