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Abstract 
In this paper, it is proposed to estimate the memory parameter of a potential-
ly long-range dependent time series by applying goodness-of-fit tests to the 
cumulative normalized periodogram in the neighborhood of frequency zero. 
The results of an extensive simulation study show that this new estimator 
performs well compared to conventional frequency-domain estimators which 
are based on the Whittle likelihood or are obtained from the popular log pe-
riodogram estimator by trimming, smoothing, and utilizing non-Fourier fre-
quencies, respectively. In an empirical investigation of log absolute daily in-
dex returns, we find evidence of long-range dependence with values of the 
memory parameter in the range between 0.2 and 0.3 both in developed and 
developing stock markets. There are no indications of long-range dependence 
in the case of the original index returns. 
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1. Introduction 

In various fields, there are numerous reports of varying reliability claiming to 
have found empirical evidence of long memory, including hydrology [1] [2] [3] 
[4] [5], meteorology [6] [7] [8] [9] [10], geophysics [11] [12] [13], psychology 
[14] [15], economics [16] [17] [18], and finance [19]-[28]. For example, Hurst 
[1] estimated an exponent, which measures the degree of long-range depen-
dence, for river levels and many other geophysical time series and obtained in 
most cases values that are much greater than the value 0.5 characteristic for 
short-range dependence. Applying a new frequency-domain test, which is more 
robust against transitory effects than conventional tests, to an annual time series 
of global surface air temperature, Reschenhofer [10] found further evidence of 
nonstationarity (global warming). Kiss et al. [13] detected long-range correla-
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tions of extrapolar total ozone. A Fourier analysis performed by Aks, and Sprott, 
[14] on the time series of reversals in an psychological experiment on the human 
visual system showed evidence of pink noise, which is characterized by a spectral 
density that is inversely proportional to the frequency. Examining the persis-
tence of various annual and quarterly measures of aggregate economic activity 
with fractionally integrated ARMA (ARFIMA) models, Diebold and Rudebusch 
[16] obtained estimates of the memory parameter d, which is related to Hurst’s 
exponent H by 0.5d H= − , mostly in the range between 0.5 and 0.9, which in-
dicates that macroeconomic shocks are persistent. Finally, Cajueiro and Tabak 
[21] observed decreasing estimates of H in emerging stock markets and inter-
preted their findings as a tendency towards market efficiency over time. 

Long memory of a discrete-time stationary process can be characterized by a 
slowly decaying autocorrelation function satisfying 

( )
1 2

1~
d

j C
j

ρ
−

 
 
 

                          (1) 

where 0 0.5d< <  and 0C > . The memory parameter d, which is also called 
fractional differencing parameter, measures the degree of long-range depen-
dence. A simple example of a process, for which property (1) holds, is fraction-
ally integrated white noise. It satisfies the difference equation 

( )1 d
t ty L u−= − ,                          (2) 

where L is the lag operator and tu  is white noise with mean zero and variance 
2σ  [29] and its autocorrelation function is given by 
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([30], pp. 466-467), where Γ denotes the gamma function. Granger and Joyeux 
[31] and Hosking [32] introduced the more general class of autoregressive frac-
tionally integrated moving average (ARFIMA) processes by extending (2) to 

( ) ( ) ( )1

1 11 1 1dp q
t p q ty L L L L L uφ φ θ θ

− −= − − − − − − −  .       (4) 

Like the R package fracdiff, which will be used in our simulation study, we use 
the Box-Jenkins convention with reverse signs for the MA parameters. Setting d 
to zero, we obtain the class of ARMA processes, which have short memory be-
cause their autocorrelations decay exponentially fast. 

Unfortunately, the task of distinguishing between long and short memory is 
far more difficult than it might appear at first glance. Pötscher [33] showed that 
many common estimation problems in statistics and econometrics, which in-
clude the estimation of the memory parameter d, are ill-posed in the sense that 
the minimax risk is bounded from below by a positive constant independent of n 
and does therefore not converge to zero as n →∞ . For the case when the class 
Y of data generating processes contains all Gaussian ARFIMA processes, he 
found that for any 1 r≤ < ∞ , 

https://doi.org/10.4236/tel.2020.101004


E. Reschenhofer et al. 
 

 

DOI: 10.4236/tel.2020.101004 49 Theoretical Economics Letters 
 

1ˆinf sup 0
2

r

n rE d d− ≥ > ,                     (5) 

where the infimum is taken over all estimators ˆ
nd  based on a sample of size n 

and the supremum is taken over all possible data generating processes. Fur-
thermore, he showed that for every 0y Y∈ , (5) holds also “locally”, when the 
supremum is taken over an arbitrarily small L1-neighborhood of 0 y . Finally, he 
established that confidence intervals for d coincide with the entire parameter 
space for d with high probability and are therefore uninformative. Thus, drawing 
inferences about d appears to be a futile exercise unless restrictive assumptions 
on Y are imposed. Fortunately, there are applications, which do not require very 
rich classes of data generating processes. For example, in the case of daily return 
series, the class of ARFIMA processes with small p and 0q =  seems to be ade-
quate. Fittingly, simulation studies carried out to compare different tests and es-
timators for d focused on ARFIMA processes with 1p q+ ≤  [34]-[41]. 

Smith et al. [34] carried out Monte Carlo simulations, which also included the 
problematic case where both p and q are greater than zero, in order to compare 
the performance of the maximum likelihood (ML) procedure used by Dahlhaus 
[42] and Sowell [43], which estimates the memory parameter d simultaneously 
with the AR parameters jφ  and the MA parameters jθ , with that of two se-
miparametric estimation methods, which yield only estimates of d. Both of the 
latter methods are frequency-domain methods. The first frequency-domain es-
timator is obtained from Geweke and Porter-Hudak’s [44] log periodogram re-
gression by trimming out the contributions from the very lowest frequencies 
[45] and the second is a variant [46] of Robinson’s [47] average periodogram 
method. The results of their simulations suggest that the ML estimator is supe-
rior provided that the order (p,q) of the ARFIMA model is correctly specified. 
However, the ML estimator will in general be inconsistent if the model is miss-
pecified. In contrast, consistency of the semiparametric estimators was estab-
lished by Robinson [47] in case of the average periodogram method and by Hur-
vich et al. [48] in case of the log periodogram regression. Another advantage of 
the semiparametric estimators is that they are available in closed form and 
therefore do not require numerical methods.   

In their simulation study, Reisen et al. [39] additionally investigated frequen-
cy-domain estimators that are based on the smoothed periodogram [49]. The 
results indicate that smoothing is indeed advantageous but trimming is not. Re-
schenhofer [50] explored another way to improve the performance of the log pe-
riodogram estimator. Including also log periodogram ordinates at non-Fourier 
frequencies, he achieved a significant decrease in the root mean square error. 
Again, the omission of the very lowest frequencies had a negative effect. 

This paper is concerned with the estimation of the memory parameter d. A 
new frequency-domain estimator is proposed, which is inspired by a test for 
long-range dependence recently introduced by Mangat and Reschenhofer [40]. 
In contrast to earlier studies, which evaluated the performance of different estima-
tors mainly in terms of the mean squared error (MSE) or the root-mean-square 
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error (RMSE) and typically found that smoothing boosts the performance, we 
also stress the importance of the bias. In financial applications, estimates of d are 
often obtained with a rolling estimation window in order to assess the stability of 
the estimates over time. When the individual estimates are put together after-
wards, only the variance decreases with the sample size but the bias remains 
fixed. Of course, a small bias is especially important for such situations. In the 
next sections, we will evaluate the performance of our new estimator both theo-
retically and empirically. First, an extensive simulation study is carried out to 
compare the new estimator with its competitors in terms of the bias and the 
RMSE. Subsequently, all estimators are applied to daily stock market indices in 
order to assess their practical suitability.  

The paper is structured as follows. The next section reviews existing estima-
tors and introduces the new estimator. The different estimators are compared by 
means of a simulation study in Section 3. Section 4 presents the results of an 
empirical study of both developed and developing stock markets. Section 5 con-
cludes. 

2. Frequency-Domain Estimation of the Memory Parameter 

In Subsections 2.1 - 2.5, we briefly review various frequency-domain estimators 
for the memory parameter d, which will serve as benchmarks in the simulations 
presented in Section 3, before we introduce our new estimator in Subsection 2.6. 

2.1. Log Periodogram Regression 

The spectral density of the ARFIMA process (4) is given by 

( )
( )0

2 2 22

1 11 e 1 e 1 e
2

d q pi i j i j
j jj j

f

f ω ω ω

ω

σω θ φ
−−− − −

= =
= − + −

π ∑ ∑


.      (6) 

Geweke and Porter-Hudak [44] introduced a semiparametric estimator of d that 
is based on a log periodogram regression. The periodogram of a sample 

1, , ny y  is defined by 

( )
2

1

1 e
2

n i t
ttI y

n
ωω −

=
=

π ∑ .                      (7) 

Taking logarithms and adding ( )log I ω  to both sides of   

( ) ( ) ( ) ( )( )2 2
0 01 e 4sin 2

ddif f fωω ω ω ω
−−−= − = ,          (8) 

we obtain 

( ) ( )( ) ( ) ( ) ( )( )0log log 4 2log 1 e logd iI f d I fωω ω ω ω− −= + − − + .    (9) 

Since the ARMA component ( )0f ω  of the spectral density ( )f ω  is approx-
imately constant near frequency zero, the parameter d can be estimated by a 
simple linear regression with ( )log I ω  as dependent variable and 

( )( )2log 1 e 2log sin 2ji
j jx ω ω−= − − = −              (10) 

https://doi.org/10.4236/tel.2020.101004


E. Reschenhofer et al. 
 

 

DOI: 10.4236/tel.2020.101004 51 Theoretical Economics Letters 
 

as independent variable, where 2j j nω = π , 1, , 2j K n= < , are Fourier fre-
quencies in a small neighborhood of zero. Hurvich et al. [48] established the 
consistency of Geweke and Porter-Hudak’s [44] estimator ˆ

GPHd  under the as-
sumption that ( )4 5K o n=  and ( ) ( )2log n o K= . 

2.2. Trimming 

In the simple case where the observations 1, , ny y  are i.i.d. normal with mean 0 
and variance 2σ , the normalized periodogram ordinates ( ) ( ) ( )j j jJ I fω ω ω=  
are i.i.d. standard exponential and their logs are i.i.d. Gumbel with mean −γ and 
variance π2/6, where 0.57721γ =   is Euler’s constant. Under more general 
conditions, the normalized periodogram at a set of fixed frequencies still con-
verges in distribution to a vector of i.i.d. standard exponential random variables 
([30], pp. 337-340). However, in the case of the Fourier frequencies 1, , Kω ω , 
only the indices are fixed whereas the frequencies move closer to frequency zero 
as the sample size n increases, which poses a problem particularly for ARFIMA 
spectral densities because they have either a zero (when d < 0) or a pole (when 
d > 0) at frequency zero. Indeed, Künsch [51] showed for d > 0 that the asymp-
totic distribution of ( )jJ ω  depends on j. Furthermore, Hurvich and Beltrao 
[52] and Robinson [47] showed that for both d < 0 and d > 0, the normalized pe-
riodogram ordinates ( )jJ ω , 1 j K≤ ≤ , are asymptotically neither indepen-
dent nor identically distributed when n →∞  but the indices j stay fixed (for 
bounds on the asymptotic bias of the normalized periodogram and the cova-
riance between normalized periodogram ordinates at different frequencies see 
[53] [54] [55]). However, Künsch [51] showed that the standard asymptotic re-
sults still hold for the Fourier frequencies 1, ,H H Kω ω+ +  if ( )1H n+ →∞  
and ( ) 0H K n+ → . An obvious modification of the log periodogram regres-
sion is therefore to trim the first H Fourier frequencies [45]. We denote the re-
sulting estimator by ˆ tr

GPHd . 

2.3. Smoothing 

Hassler [56], Peiris and Court [57], and Reisen [49] proposed to replace the pe-
riodogram ordinates ( )jI ω , 1, ,j K=  , in the log periodogram regression by 
the lag-window estimates  

( ) ( ) ( )1ˆ ˆ e
2

jm i s
j s mf w s m s ωω γ −

=−
=

π∑ , 1, ,j K=  ,          (11) 

of ( )jf ω , 1, ,j K=  , for the spectral density f, where ( )ˆ sγ  denotes the 
sample autocovariance at lag s and the lag window w satisfies ( )0 1w = , 

( ) 1w s ≤ , and ( ) ( )w s w s− = . A widely used lag window is the Parzen window 

( )
( )

32

3

11 6 6 , ,
2

12 1 , 1.
2

z z z
w z

z z

 − + <= 
 − ≤ ≤


                (12) 

The truncation point m determines the smoothness of the estimate. For consis-
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tency it is required that m →∞  and 0m n →  as n →∞ . When the resulting 
estimator, which is based on the smoothed periodogram, is compared with the 
previous estimators, it is important to bear in mind that its performance de-
pends not only on K but in addition also on m. In our simulation study, we will 
use the tuning parameters α, which determines the number K nα =    of in-
cluded periodogram ordinates, and β, which determines the truncation point 
m nβ =   . 

2.4. Non-Fourier Frequencies 

Reschenhofer [50] modified the log periodogram regression by including 
non-Fourier frequencies. In this case, the amplitude R of the sinusoid 

( ) ( ) ( ) ( ) ( )sin sin cos cos sint

A B

x R t R t R tµ ω φ µ φ ω φ ω= + + = + +
 

    (13) 

can no longer be estimated by 

2 2ˆˆ ˆR A B= + ,                         (14) 

where Â  and B̂  are the least squares (LS) estimates obtained by regressing 

tx  separately on ( )cos tω  and ( )sin tω , because the usual orthogonality rela-
tions are only valid in case of Fourier frequencies. Instead, Â  and B̂  have to 
be obtained by regressing tx  simultaneously on ( )cos tω , ( )sin tω , and a 
constant. The periodogram is then defined by 

( ) ( )2 2 2ˆˆ ˆ
8 8
n nI R A Bω = = +
π π

,                   (15) 

which is only identical to (7) in case of Fourier frequencies < π. Including the 
frequencies 1jω , 1,1.5,2,2.5, ,j K=   in the log periodogram regression 
yields the estimator ˆ

GPHd + . The frequency 10.5ω  is omitted because it does not 
make sense to investigate cycles with periods that are twice as long as the obser-
vation period. 

2.5. Whittle Likelihood 

The task of carrying out a fair comparison between competing estimators with 
different numbers of tuning parameters becomes even more difficult when dif-
ferent types of estimators are involved, e.g., parametric, semiparametric and 
nonparametric estimators. Clearly, using the true dimension of the ARFIMA 
model, which is unknown in practice, for the calculation of the ML estimate of d 
would give this parametric method an unfair advantage over its competitors. Al-
ternatively, an automatic model selection criterion could be used to choose an 
appropriate model. However, there are many different criteria which favor dif-
ferent model dimensions, hence the performance of the ML estimator will criti-
cally depend on the choice of the model selection criterion. Similarly, the per-
formance of the nonparametric estimator obtained with Hurst’s [1] ad-
justed-rescaled-range approach after applying an ARMA filter to accommodate 
for any short-range autocorrelation also depends on the specification of the 
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ARMA model. For example, Szilagyi and Batten [58] used an AR(1) model whe-
reas Batten et al. [25] used different submodels of the ARMA(2,1) model. 

While it is quite understandable when we do not pursue rather special ap-
proaches like nonparametric estimation based on the adjusted-rescaled-range [1] 
[59], which involve nonstandard asymptotics [60] [61], it is essential that we in-
clude ML estimation in one way or another. The fairest way to do so is to use the 
frequency-domain likelihood (Whittle likelihood) and focus on the narrow fre-
quency band ( ]0, Kω  [62]. Assuming that the periodogram ordinates 
( ) ( )1 , , KI Iω ω  are approximately independent exponential with means 
( ) ( )1 , , Kf fω ω  and using (8), which becomes 

( ) 2~ df Cω ω−                          (16) 

in the neighborhood of frequency zero because of the constancy of ( )0f ω  and 
( )sin ~ω ω , we obtain 

( )
( )
( )

( ) ( )
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j j

jK K
jj j
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 
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∏

∑ ∑

∑

∑ ∑

          (17) 

[53]. The estimator obtained by minimization of (17) over a set D of possible 
values of d is denoted by ˆ

Wd . 

2.6. Goodness-of-Fit Testing 

Mangat and Reschenhofer [40] reduced the problem of testing hypotheses about 
the memory parameter d to a problem of goodness-of-fit testing. Observing that 
the random variables 

( ) ( )
( )

0

0

2

0 1 2
1

 

 

d
r k k

r Kk d
j jj

I
Q d

I

ω ω

ω ω=

=

= ∑
∑

, 1, , 1r K= − ,           (18) 

are under the null hypothesis 0 0:H d d=  approximately distributed as the or-
der statistics of a random sample of size 1K −  from a uniform distribution on 
[0,1], they tested the null hypothesis by applying a Kolmogorov-Smirnov good-
ness-of-fit test, which is based on the supremum of the differences between the 
hypothesized cumulative distribution function (CDF) and the empirical distri-
bution. If 0d d≠ , then the CDF will be either concave or convex on (0,1), which 
are exactly those cases where the Kolmogrov-Smirnov is most powerful. This is 
crucial for the good performance of the test proposed by Mangat and Reschen-
hofer [40] because of the well-known inefficiency of the Kolmogorov-Smirnov 
test in case of more complex (e.g., multimodal) alternatives [63] [64].  

This approach for testing hypotheses about d can easily be adapted for the 
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problem of estimating d. The estimation procedure proceeds as follows. First, 
the quantities ( ) ( )1 1, , KQ d Q d−  are calculated for each element of a set D of 
possible values of d. In each case, a two-sided Kolmogorov-Smirnov test is ap-
plied. The p-values are ignored. Only the values of the test statistic ( )T d , 
d D∈ , are of interest. The final estimate ˆ

KSd  of the memory parameter is ob-
tained by minimization of ( )T d  over D. 

3. Simulation Study 

In this section, the performance of the different estimators for the memory pa-
rameter d is evaluated with a simulation study. The findings of this study will 
later be of great help for the interpretation of the empirical results obtained by 
applying the estimators to financial data (see Section 4). Of particular interest is 
the new estimator ˆ

KSd  (goodness-of-fit testing), which has been introduced in 
Subsection 2.6. Its performance is compared with that of the competing estima-
tors in terms of the bias and the RMSE. The other estimators included in the si-
mulation study are ˆ

GPHd  (log periodogram regression), ˆ tr
GPHd  (trimming), 

ˆ
GPHd +  (non-Fourier frequencies), ˆ sm

GPHd  (simple smoothing by averaging over 
neighboring periodogram ordinates), 0.9ˆ

smPd  (smoothing with Parzen window 
and truncation point m nβ =   , where 0.9β = ), 0.5ˆ

smPd  (smoothing with Par-
zen window and 0.5β = ), 0.5ˆ

smBd  (smoothing with Bartlett window and 0.5β = ) 
and ˆ

Wd  (narrow-band Whittle likelihood), where n is the length of the syn-
thetic time series. 

The highest frequency used for the estimation was defined by setting K nα =    
with 0.5α = . For the calculation of ˆ tr

GPHd  and ˆ
Wd , ˆ

KSd , we used 1H =  and  
11 | 0,1, , 200

100
D j j = − + = 

 
 , respectively. Using the R-package fracdiff, we  

generated 10,000 realizations of length n = 100,300,3000 of ARFIMA(1,d,0) 
processes with standard normal innovations, a burn-in period of 1000, and the pa-
rameter values 0.4, 0.2,0,0.2,0.4d = − − , 1 0.75, 0.5, 0.25,0,0.25,0.5,0.75φ = − − − . 
For each realization, nine different estimates were calculated. The results of this 
simulation study are summarized in Tables 1-6. Table 1 and Table 2 show the 
mean bias and the RMSE, respectively, for the case n = 100. Analogously, Table 
3 & Table 4 and Table 5 & Table 6 show the results for the cases n = 300 and n 
= 3000, respectively.  

The conventional log periodogram estimator serves as the main benchmark. 
In general, the inclusion of additional frequencies as well as simple smoothing 
lead to an improvement over this benchmark in terms of the RMSE whereas 
trimming has the opposite effect. Increasing the degree of smoothing further 
with the help of a lag window leads to a further improvement but the tuning pa-
rameter β, which determines the truncation point m nβ =   , needs to be 
adapted. In case of larger sample sizes, larger values of β are preferable. Indeed, 
with a large value like 0.9β = , the RMSE of the lag window estimator is for 

3000n =  approximately of the same size as that of its main competitors ˆ
Wd   
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Table 1. Bias of the estimators ˆ
GPHd  (log periodogram regression), ˆ tr

GPHd  (trimming), 
ˆ

GPHd +  (non-Fourier frequencies), ˆ
smd  (simple smoothing), 0.9ˆ

smPd  (smoothing with Par-

zen window and 0.9m n= ), 0.5ˆ
smPd  (smoothing with Parzen window and 0.5m n= ), 0.5ˆ

smBd  

(smoothing with Bartlett window and 0.5m n= ), ˆ
Wd  (narrow-band Whittle likelihood), 

ˆ
KSd  (goodness-of-fit testing) obtained from 10,000 Gaussian ARFIMA(1,d,0) processes of 

length 100n =  for 0.4, 0.2,0,0.2,0.4d = − −  and 1 0.75, 0.5, 0.25,0,0.25,0.5,0.75φ = − − −  
and 10K = . 

d 1φ  ˆ
GPHd  ˆ tr

GPHd  ˆ
GPHd +  ˆ

smd  0.9ˆ
smPd  0.5ˆ

smPd  0.5ˆ
smBd  ˆ

Wd  ˆ
KSd  

−0.4 −0.75 0.063 0.044 0.064 0.165 0.057 0.242 0.299 0.029 0.054 

 −0.5 0.031 0.007 0.033 0.119 0.025 0.229 0.262 0.003 0.030 

 −0.25 0.028 0.017 0.028 0.103 0.016 0.232 0.239 −0.002 0.030 

 0 0.032 0.021 0.036 0.104 0.020 0.245 0.228 0.002 0.035 

 0.25 0.056 0.057 0.060 0.122 0.043 0.273 0.235 0.029 0.069 

 0.5 0.132 0.167 0.139 0.193 0.117 0.327 0.277 0.106 0.161 

 0.75 0.378 0.487 0.400 0.432 0.342 0.423 0.398 0.360 0.440 

−0.2 −0.75 −0.002 −0.016 0.000 0.067 −0.034 0.094 0.112 −0.034 −0.004 

 −0.5 −0.008 −0.020 −0.004 0.054 −0.042 0.090 0.092 −0.038 −0.005 

 −0.25 0.001 −0.005 0.005 0.059 −0.036 0.095 0.084 −0.028 0.005 

 0 0.003 0.004 0.007 0.058 −0.033 0.108 0.084 −0.026 0.009 

 0.25 0.038 0.051 0.043 0.090 0.000 0.137 0.104 0.009 0.050 

 0.5 0.126 0.169 0.134 0.169 0.081 0.189 0.157 0.096 0.155 

 0.75 0.370 0.490 0.395 0.416 0.313 0.282 0.287 0.351 0.435 

0 −0.75 −0.017 −0.028 −0.015 0.030 −0.077 −0.040 −0.041 −0.050 −0.018 

 −0.5 −0.017 −0.026 −0.014 0.029 −0.075 −0.039 −0.043 −0.045 −0.014 

 −0.25 −0.012 −0.015 −0.006 0.033 −0.070 −0.033 −0.040 −0.043 −0.008 

 0 0.002 0.001 0.006 0.044 −0.059 −0.020 −0.031 −0.031 0.006 

 0.25 0.031 0.038 0.039 0.074 −0.028 0.005 −0.007 0.002 0.044 

 0.5 0.118 0.167 0.126 0.154 0.053 0.052 0.049 0.087 0.144 

 0.75 0.371 0.489 0.394 0.406 0.289 0.138 0.182 0.347 0.430 

0.2 −0.75 −0.025 −0.032 −0.023 0.012 −0.101 −0.164 −0.156 −0.057 −0.027 

 −0.5 −0.011 −0.020 −0.010 0.023 −0.091 −0.160 −0.145 −0.045 −0.014 

 −0.25 −0.013 −0.018 −0.009 0.021 −0.090 −0.156 −0.140 −0.044 −0.010 

 0 0.001 0.000 0.001 0.034 −0.078 −0.146 −0.128 −0.034 0.000 

 0.25 0.034 0.046 0.039 0.067 −0.045 −0.123 −0.101 0.003 0.045 

 0.5 0.117 0.165 0.129 0.149 0.037 −0.084 −0.047 0.087 0.143 

 0.75 0.365 0.480 0.388 0.400 0.273 −0.010 0.082 0.342 0.414 

0.4 −0.75 −0.006 −0.014 −0.006 0.023 −0.099 −0.284 −0.235 −0.043 −0.014 

 −0.5 −0.005 −0.010 −0.004 0.025 −0.096 −0.282 −0.226 −0.039 −0.009 

 −0.25 0.003 −0.001 0.006 0.034 −0.089 −0.278 −0.219 −0.033 −0.001 

 0 0.009 0.009 0.011 0.039 −0.081 −0.271 −0.208 −0.025 0.008 

 0.25 0.041 0.048 0.043 0.069 −0.051 −0.254 −0.185 0.007 0.044 

 0.5 0.127 0.169 0.134 0.154 0.033 −0.223 −0.134 0.095 0.144 

 0.75 0.365 0.478 0.385 0.395 0.261 −0.167 −0.019 0.324 0.376 
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Table 2. RMSE of the estimators ˆ
GPHd  (log periodogram regression), ˆ tr

GPHd  (trimming), 
ˆ

GPHd +  (non-Fourier frequencies), ˆ
smd  (simple smoothing), 0.9ˆ

smPd  (smoothing with Parzen 

window and 0.9m n= ), 0.5ˆ
smPd  (smoothing with Parzen window and 0.5m n= ), 0.5ˆ

smBd  

(smoothing with Bartlett window and 0.5m n= ), ˆ
Wd  (narrow-band Whittle likelihood), 

ˆ
KSd  (goodness-of-fit testing) obtained from 10,000 Gaussian ARFIMA(1,d,0) processes of 

length 100n =  for 0.4, 0.2,0,0.2,0.4d = − −  and 1 0.75, 0.5, 0.25,0,0.25,0.5,0.75φ = − − −  
and 10K = . 

d 1φ  ˆ
GPHd  ˆ tr

GPHd  ˆ
GPHd +  ˆ

smd  0.9ˆ
smPd  0.5ˆ

smPd  0.5ˆ
smBd  ˆ

Wd  ˆ
KSd  

−0.4 −0.75 0.308 0.424 0.272 0.295 0.200 0.248 0.302 0.253 0.277 

 −0.5 0.297 0.434 0.271 0.275 0.197 0.236 0.266 0.251 0.274 

 −0.25 0.300 0.430 0.276 0.270 0.197 0.239 0.246 0.248 0.272 

 0 0.296 0.426 0.277 0.273 0.199 0.252 0.238 0.250 0.274 

 0.25 0.298 0.430 0.282 0.281 0.204 0.278 0.246 0.252 0.282 

 0.5 0.326 0.462 0.316 0.321 0.235 0.331 0.289 0.279 0.325 

 0.75 0.481 0.648 0.490 0.503 0.401 0.426 0.408 0.444 0.528 

−0.2 −0.75 0.296 0.429 0.270 0.257 0.201 0.110 0.122 0.256 0.275 

 −0.5 0.297 0.429 0.280 0.260 0.210 0.108 0.112 0.259 0.277 

 −0.25 0.295 0.429 0.280 0.262 0.208 0.112 0.110 0.255 0.274 

 0 0.293 0.426 0.280 0.260 0.207 0.123 0.115 0.254 0.274 

 0.25 0.299 0.430 0.285 0.272 0.206 0.148 0.134 0.253 0.280 

 0.5 0.320 0.463 0.313 0.309 0.223 0.197 0.180 0.273 0.321 

 0.75 0.474 0.650 0.487 0.491 0.378 0.287 0.303 0.437 0.523 

0 −0.75 0.290 0.428 0.274 0.252 0.217 0.071 0.077 0.255 0.272 

 −0.5 0.295 0.426 0.279 0.255 0.221 0.072 0.091 0.257 0.275 

 −0.25 0.297 0.427 0.280 0.258 0.220 0.070 0.095 0.258 0.275 

 0 0.292 0.427 0.282 0.263 0.220 0.064 0.097 0.258 0.275 

 0.25 0.296 0.430 0.285 0.270 0.213 0.059 0.095 0.256 0.279 

 0.5 0.321 0.459 0.314 0.304 0.221 0.077 0.110 0.271 0.315 

 0.75 0.475 0.652 0.488 0.484 0.362 0.148 0.210 0.433 0.515 

0.2 −0.75 0.299 0.429 0.284 0.260 0.237 0.176 0.180 0.261 0.273 

 −0.5 0.292 0.429 0.281 0.260 0.234 0.172 0.175 0.256 0.271 

 −0.25 0.292 0.424 0.281 0.258 0.232 0.168 0.173 0.255 0.271 

 0 0.290 0.421 0.278 0.259 0.228 0.159 0.165 0.255 0.271 

 0.25 0.297 0.429 0.285 0.267 0.220 0.137 0.147 0.252 0.275 

 0.5 0.315 0.456 0.309 0.300 0.220 0.101 0.117 0.268 0.308 

 0.75 0.470 0.644 0.480 0.476 0.350 0.049 0.137 0.423 0.487 

0.4 −0.75 0.297 0.429 0.285 0.265 0.245 0.291 0.261 0.258 0.268 

 −0.5 0.296 0.431 0.280 0.264 0.245 0.289 0.254 0.258 0.270 

 −0.25 0.292 0.421 0.282 0.265 0.241 0.286 0.248 0.256 0.268 

 0 0.298 0.431 0.281 0.265 0.237 0.278 0.239 0.256 0.268 

 0.25 0.296 0.431 0.285 0.270 0.229 0.261 0.220 0.252 0.269 

 0.5 0.318 0.462 0.308 0.302 0.224 0.229 0.178 0.267 0.299 

 0.75 0.471 0.641 0.477 0.474 0.345 0.173 0.118 0.397 0.434 
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Table 3. Bias of the estimators ˆ
GPHd  (log periodogram regression), ˆ tr

GPHd  (trimming), 
ˆ

GPHd +  (non-Fourier frequencies), ˆ
smd  (simple smoothing), 0.9ˆ

smPd  (smoothing with Par-

zen window and 0.9m n= ), 0.5ˆ
smPd  (smoothing with Parzen window and 0.5m n= ), 0.5ˆ

smBd  

(smoothing with Bartlett window and 0.5m n= ), ˆ
Wd  (narrow-band Whittle likelihood), 

ˆ
KSd  (goodness-of-fit testing) obtained from 10,000 Gaussian ARFIMA(1,d,0) processes of 

length 300n =  for 0.4, 0.2,0,0.2,0.4d = − −  and 1 0.75, 0.5, 0.25,0,0.25,0.5,0.75φ = − − −  
and 17K = . 

d 1φ  ˆ
GPHd  ˆ tr

GPHd  ˆ
GPHd +  ˆ

smd  0.9ˆ
smPd  0.5ˆ

smPd  0.5ˆ
smBd  ˆ

Wd  ˆ
KSd  

−0.4 −0.75 0.060 0.041 0.059 0.113 0.054 0.272 0.326 0.033 0.048 

 −0.5 0.034 0.023 0.036 0.084 0.031 0.268 0.293 0.014 0.033 

 −0.25 0.034 0.024 0.034 0.077 0.026 0.267 0.273 0.011 0.029 

 0 0.024 0.016 0.025 0.067 0.019 0.269 0.258 0.002 0.021 

 0.25 0.033 0.025 0.034 0.074 0.027 0.280 0.254 0.013 0.036 

 0.5 0.057 0.065 0.059 0.094 0.050 0.305 0.263 0.036 0.066 

 0.75 0.182 0.222 0.192 0.218 0.171 0.373 0.330 0.167 0.224 

−0.2 −0.75 0.007 0.002 0.009 0.043 −0.016 0.122 0.133 −0.015 0.004 

 −0.5 −0.002 −0.005 0.000 0.032 −0.023 0.121 0.116 −0.020 0.001 

 −0.25 0.002 0.002 0.005 0.035 −0.020 0.123 0.110 −0.017 0.007 

 0 0.004 0.000 0.006 0.036 −0.019 0.126 0.107 −0.014 0.008 

 0.25 0.015 0.014 0.018 0.045 −0.010 0.136 0.110 −0.005 0.020 

 0.5 0.043 0.053 0.046 0.072 0.018 0.160 0.129 0.024 0.057 

 0.75 0.169 0.216 0.180 0.198 0.141 0.224 0.206 0.154 0.215 

0 −0.75 −0.007 −0.008 −0.004 0.020 −0.045 −0.015 −0.018 −0.027 −0.004 

 −0.5 −0.008 −0.010 −0.006 0.016 −0.047 −0.015 −0.020 −0.028 −0.005 

 −0.25 −0.002 −0.001 0.001 0.022 −0.042 −0.013 −0.018 −0.022 0.001 

 0 −0.001 0.000 0.002 0.024 −0.040 −0.010 −0.016 −0.020 0.004 

 0.25 0.007 0.006 0.010 0.030 −0.033 −0.002 −0.009 −0.013 0.012 

 0.5 0.040 0.055 0.044 0.062 −0.002 0.020 0.014 0.020 0.053 

 0.75 0.163 0.210 0.174 0.188 0.122 0.077 0.092 0.150 0.211 

0.2 −0.75 −0.003 −0.004 −0.001 0.018 −0.054 −0.146 −0.125 −0.023 −0.003 

 −0.5 −0.004 −0.006 −0.003 0.015 −0.055 −0.146 −0.122 −0.025 −0.004 

 −0.25 −0.003 −0.008 −0.002 0.017 −0.053 −0.145 −0.119 −0.023 −0.002 

 0 0.003 0.006 0.004 0.023 −0.048 −0.141 −0.115 −0.018 0.007 

 0.25 0.013 0.016 0.016 0.034 −0.037 −0.134 −0.105 −0.006 0.020 

 0.5 0.046 0.058 0.051 0.064 −0.007 −0.117 −0.083 0.025 0.056 

 0.75 0.172 0.218 0.181 0.192 0.117 −0.070 −0.008 0.156 0.216 

0.4 −0.75 0.009 0.005 0.009 0.027 −0.048 −0.277 −0.205 −0.013 0.008 

 −0.5 0.004 0.000 0.002 0.020 −0.053 −0.278 −0.205 −0.017 0.004 

 −0.25 0.008 0.007 0.009 0.026 −0.049 −0.277 −0.202 −0.013 0.008 

 0 0.014 0.014 0.014 0.031 −0.045 −0.275 −0.197 −0.008 0.016 

 0.25 0.021 0.022 0.022 0.038 −0.036 −0.270 −0.190 0.001 0.025 

 0.5 0.052 0.059 0.052 0.067 −0.007 −0.257 −0.170 0.030 0.060 

 0.75 0.172 0.219 0.181 0.192 0.114 −0.224 −0.106 0.157 0.213 
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Table 4. RMSE of the estimators ˆ
GPHd  (log periodogram regression), ˆ tr

GPHd  (trimming), 
ˆ

GPHd +  (non-Fourier frequencies), ˆ
smd  (simple smoothing), 0.9ˆ

smPd  (smoothing with Parzen 

window and 0.9m n= ), 0.5ˆ
smPd  (smoothing with Parzen window and 0.5m n= ), 0.5ˆ

smBd  

(smoothing with Bartlett window and 0.5m n= ), ˆ
Wd  (narrow-band Whittle likelihood), 

ˆ
KSd  (goodness-of-fit testing) obtained from 10,000 Gaussian ARFIMA(1,d,0) processes of 

length 300n =  for 0.4, 0.2,0,0.2,0.4d = − −  and 1 0.75, 0.5, 0.25,0,0.25,0.5,0.75φ = − − −  
and 17K = . 

d 1φ  ˆ
GPHd  ˆ tr

GPHd  ˆ
GPHd +  ˆ

smd  0.9ˆ
smPd  0.5ˆ

smPd  0.5ˆ
smBd  ˆ

Wd  ˆ
KSd  

−0.4 −0.75 0.219 0.270 0.193 0.206 0.154 0.274 0.327 0.179 0.195 

 −0.5 0.213 0.268 0.191 0.194 0.150 0.270 0.295 0.177 0.194 

 −0.25 0.207 0.263 0.189 0.189 0.147 0.270 0.276 0.172 0.190 

 0 0.209 0.266 0.192 0.188 0.149 0.271 0.262 0.175 0.190 

 0.25 0.208 0.266 0.193 0.190 0.150 0.282 0.259 0.173 0.193 

 0.5 0.212 0.270 0.197 0.197 0.153 0.307 0.268 0.175 0.200 

 0.75 0.274 0.345 0.271 0.281 0.227 0.374 0.335 0.241 0.298 

−0.2 −0.75 0.203 0.260 0.186 0.176 0.146 0.128 0.137 0.169 0.184 

 −0.5 0.200 0.260 0.186 0.174 0.147 0.127 0.124 0.169 0.184 

 −0.25 0.203 0.261 0.190 0.179 0.151 0.129 0.119 0.173 0.188 

 0 0.202 0.264 0.189 0.178 0.150 0.131 0.118 0.169 0.187 

 0.25 0.203 0.264 0.191 0.180 0.149 0.141 0.123 0.170 0.189 

 0.5 0.206 0.265 0.194 0.189 0.149 0.164 0.141 0.171 0.197 

 0.75 0.262 0.338 0.261 0.263 0.204 0.227 0.214 0.228 0.288 

0 −0.75 0.203 0.262 0.191 0.176 0.157 0.040 0.052 0.171 0.187 

 −0.5 0.204 0.266 0.192 0.178 0.160 0.041 0.059 0.174 0.187 

 −0.25 0.199 0.260 0.188 0.175 0.156 0.040 0.061 0.170 0.184 

 0 0.203 0.264 0.193 0.179 0.158 0.039 0.062 0.171 0.187 

 0.25 0.199 0.257 0.190 0.178 0.155 0.037 0.062 0.169 0.186 

 0.5 0.205 0.267 0.195 0.185 0.151 0.041 0.064 0.169 0.197 

 0.75 0.260 0.334 0.259 0.258 0.195 0.084 0.113 0.227 0.288 

0.2 −0.75 0.203 0.263 0.190 0.177 0.165 0.152 0.142 0.171 0.185 

 −0.5 0.206 0.264 0.194 0.179 0.167 0.151 0.140 0.173 0.187 

 −0.25 0.204 0.264 0.192 0.179 0.166 0.150 0.138 0.172 0.187 

 0 0.203 0.263 0.192 0.181 0.165 0.146 0.135 0.173 0.189 

 0.25 0.202 0.262 0.193 0.180 0.160 0.140 0.127 0.170 0.188 

 0.5 0.206 0.269 0.196 0.188 0.155 0.123 0.109 0.169 0.194 

 0.75 0.265 0.340 0.264 0.262 0.196 0.077 0.073 0.232 0.291 

0.4 −0.75 0.202 0.262 0.191 0.180 0.168 0.280 0.221 0.170 0.187 

 −0.5 0.202 0.264 0.189 0.179 0.171 0.281 0.221 0.172 0.188 

 −0.25 0.202 0.263 0.190 0.180 0.168 0.280 0.217 0.170 0.187 

 0 0.204 0.264 0.191 0.181 0.166 0.277 0.213 0.171 0.187 

 0.25 0.205 0.265 0.193 0.182 0.166 0.273 0.207 0.171 0.189 

 0.5 0.208 0.270 0.198 0.190 0.161 0.260 0.189 0.173 0.197 

 0.75 0.266 0.341 0.262 0.261 0.196 0.226 0.132 0.231 0.283 
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Table 5. Bias of the estimators ˆ
GPHd  (log periodogram regression), ˆ tr

GPHd  (trimming), 
ˆ

GPHd +  (non-Fourier frequencies), ˆ
smd  (simple smoothing), 0.9ˆ

smPd  (smoothing with Par-

zen window and 0.9m n= ), 0.5ˆ
smPd  (smoothing with Parzen window and 0.5m n= ), 0.5ˆ

smBd  

(smoothing with Bartlett window and 0.5m n= ), ˆ
Wd  (narrow-band Whittle likelihood), 

ˆ
KSd  (goodness-of-fit testing) obtained from 10,000 Gaussian ARFIMA(1,d,0) processes 

of length 3000n =  for 0.4, 0.2,0,0.2,0.4d = − −  and  

1 0.75, 0.5, 0.25,0,0.25,0.5,0.75φ = − − −  and 54K = . 

d 1φ  ˆ
GPHd  ˆ tr

GPHd  ˆ
GPHd +  ˆ

smd  0.9ˆ
smPd  0.5ˆ

smPd  0.5ˆ
smBd  ˆ

Wd  ˆ
KSd  

−0.4 −0.75 0.030 0.023 0.029 0.049 0.031 0.293 0.337 0.021 0.025 

 −0.5 0.020 0.014 0.021 0.038 0.021 0.291 0.314 0.013 0.017 

 −0.25 0.018 0.012 0.018 0.034 0.018 0.291 0.300 0.010 0.014 

 0 0.017 0.012 0.017 0.033 0.017 0.291 0.291 0.009 0.015 

 0.25 0.015 0.010 0.016 0.031 0.016 0.292 0.283 0.008 0.013 

 0.5 0.016 0.011 0.016 0.030 0.016 0.295 0.276 0.009 0.015 

 0.75 0.031 0.031 0.032 0.045 0.031 0.311 0.277 0.023 0.037 

−0.2 −0.75 0.004 0.003 0.005 0.015 −0.005 0.141 0.140 −0.003 0.005 

 −0.5 0.005 0.003 0.005 0.014 −0.006 0.141 0.131 −0.004 0.005 

 −0.25 0.003 0.003 0.004 0.014 −0.006 0.140 0.127 −0.005 0.003 

 0 0.002 0.001 0.004 0.013 −0.007 0.140 0.125 −0.005 0.003 

 0.25 0.004 0.002 0.004 0.014 −0.006 0.142 0.124 −0.004 0.004 

 0.5 0.005 0.004 0.006 0.016 −0.004 0.144 0.124 −0.002 0.008 

 0.75 0.022 0.024 0.024 0.033 0.013 0.160 0.134 0.016 0.030 

0 −0.75 −0.001 −0.002 0.000 0.007 −0.017 −0.003 −0.004 −0.008 0.001 

 −0.5 0.001 0.002 0.003 0.010 −0.015 −0.003 −0.004 −0.005 0.003 

 −0.25 −0.002 −0.002 0.000 0.008 −0.017 −0.003 −0.004 −0.008 0.001 

 0 0.001 0.001 0.002 0.008 −0.016 −0.003 −0.004 −0.007 0.002 

 0.25 0.001 0.001 0.003 0.010 −0.015 −0.002 −0.003 −0.006 0.003 

 0.5 0.004 0.004 0.006 0.013 −0.012 0.001 −0.001 −0.003 0.006 

 0.75 0.019 0.022 0.020 0.026 0.002 0.014 0.012 0.012 0.026 

0.2 −0.75 0.001 0.001 0.003 0.009 −0.017 −0.140 −0.107 −0.005 0.003 

 −0.5 0.000 0.001 0.002 0.008 −0.019 −0.140 −0.107 −0.006 0.003 

 −0.25 0.002 0.001 0.003 0.009 −0.018 −0.140 −0.106 −0.005 0.003 

 0 0.003 0.003 0.003 0.009 −0.017 −0.139 −0.106 −0.005 0.005 

 0.25 0.003 0.003 0.004 0.010 −0.017 −0.139 −0.105 −0.004 0.005 

 0.5 0.005 0.005 0.006 0.012 −0.015 −0.137 −0.103 −0.002 0.008 

 0.75 0.022 0.025 0.023 0.028 0.001 −0.127 −0.089 0.015 0.029 

0.4 −0.75 0.007 0.006 0.008 0.014 −0.012 −0.276 −0.186 0.001 0.008 

 −0.5 0.008 0.007 0.007 0.014 −0.012 −0.276 −0.186 0.000 0.007 

 −0.25 0.009 0.008 0.009 0.016 −0.011 −0.276 −0.185 0.002 0.010 

 0 0.006 0.006 0.007 0.014 −0.013 −0.276 −0.186 0.000 0.007 

 0.25 0.008 0.007 0.007 0.014 −0.012 −0.276 −0.185 0.000 0.008 

 0.5 0.012 0.011 0.011 0.018 −0.008 −0.274 −0.182 0.004 0.013 

 0.75 0.027 0.030 0.028 0.034 0.008 −0.267 −0.171 0.021 0.035 
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Table 6. RMSE of the estimators ˆ
GPHd  (log periodogram regression), ˆ tr

GPHd  (trim-

ming), ˆ
GPHd +  (non-Fourier frequencies), ˆ

smd  (simple smoothing), 0.9ˆ
smPd  (smoothing 

with Parzen window and 0.9m n= ), 0.5ˆ
smPd  (smoothing with Parzen window and 

0.5m n= ), 0.5ˆ
smBd  (smoothing with Bartlett window and 0.5m n= ), ˆ

Wd  (narrow-band 

Whittle likelihood), ˆ
KSd  (goodness-of-fit testing) obtained from 10,000 Gaussian 

ARFIMA(1,d,0) processes of length 3000n =  for 0.4, 0.2,0,0.2,0.4d = − −  and  

1 0.75, 0.5, 0.25,0,0.25,0.5,0.75φ = − − −  and 54K = . 

d 1φ  ˆ
GPHd  ˆ tr

GPHd  ˆ
GPHd +  ˆ

smd  0.9ˆ
smPd  0.5ˆ

smPd  0.5ˆ
smBd  ˆ

Wd  ˆ
KSd  

−0.4 −0.75 0.110 0.119 0.097 0.100 0.084 0.293 0.338 0.089 0.097 

 −0.5 0.104 0.116 0.093 0.093 0.079 0.292 0.314 0.085 0.093 

 −0.25 0.102 0.113 0.091 0.091 0.078 0.292 0.300 0.083 0.091 

 0 0.103 0.114 0.093 0.091 0.078 0.292 0.291 0.082 0.091 

 0.25 0.102 0.113 0.092 0.090 0.078 0.292 0.283 0.082 0.090 

 0.5 0.102 0.114 0.093 0.091 0.078 0.296 0.277 0.082 0.092 

 0.75 0.105 0.117 0.097 0.096 0.082 0.312 0.278 0.085 0.099 

−0.2 −0.75 0.100 0.113 0.092 0.086 0.076 0.142 0.141 0.079 0.090 

 −0.5 0.099 0.112 0.092 0.086 0.077 0.142 0.133 0.080 0.090 

 −0.25 0.098 0.111 0.092 0.086 0.077 0.142 0.129 0.080 0.090 

 0 0.099 0.113 0.091 0.086 0.077 0.142 0.127 0.079 0.089 

 0.25 0.100 0.114 0.092 0.086 0.077 0.143 0.126 0.080 0.090 

 0.5 0.099 0.112 0.092 0.086 0.077 0.145 0.126 0.080 0.091 

 0.75 0.102 0.115 0.095 0.091 0.078 0.161 0.137 0.082 0.096 

0 −0.75 0.098 0.112 0.091 0.084 0.079 0.018 0.028 0.079 0.089 

 −0.5 0.098 0.113 0.092 0.086 0.079 0.018 0.029 0.080 0.090 

 −0.25 0.099 0.113 0.092 0.085 0.080 0.018 0.029 0.080 0.090 

 0 0.100 0.112 0.092 0.086 0.080 0.018 0.029 0.080 0.090 

 0.25 0.098 0.112 0.091 0.085 0.079 0.018 0.029 0.079 0.089 

 0.5 0.099 0.111 0.092 0.086 0.079 0.017 0.029 0.079 0.089 

 0.75 0.101 0.115 0.094 0.090 0.078 0.022 0.033 0.081 0.095 

0.2 −0.75 0.099 0.111 0.092 0.085 0.081 0.141 0.113 0.080 0.090 

 −0.5 0.099 0.112 0.093 0.086 0.082 0.141 0.112 0.081 0.090 

 −0.25 0.098 0.112 0.092 0.086 0.081 0.141 0.112 0.080 0.090 

 0 0.098 0.111 0.091 0.085 0.081 0.141 0.111 0.079 0.090 

 0.25 0.099 0.112 0.092 0.086 0.080 0.140 0.110 0.079 0.090 

 0.5 0.098 0.111 0.092 0.086 0.081 0.138 0.109 0.080 0.091 

 0.75 0.100 0.113 0.094 0.089 0.079 0.128 0.096 0.080 0.095 

0.4 −0.75 0.102 0.115 0.094 0.089 0.084 0.277 0.191 0.082 0.091 

 −0.5 0.100 0.113 0.092 0.087 0.082 0.277 0.191 0.081 0.090 

 −0.25 0.100 0.113 0.092 0.086 0.081 0.276 0.190 0.080 0.091 

 0 0.101 0.114 0.093 0.087 0.083 0.277 0.191 0.080 0.090 

 0.25 0.100 0.113 0.093 0.087 0.083 0.277 0.191 0.081 0.091 

 0.5 0.101 0.113 0.093 0.088 0.082 0.275 0.188 0.081 0.091 

 0.75 0.104 0.117 0.096 0.093 0.083 0.268 0.177 0.084 0.098 
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and ˆ
KSd . When our focus is on the bias, smoothing is no longer an option be-

cause it generally increases the bias. In contrast, the inclusion of non-Fourier 
frequencies causes no problems in this regard. The new estimator ˆ

KSd  and the 
narrow-band Whittle estimator ˆ

Wd  also perform quite well in terms of the bias. 
Although the mean squared error is just the sum of the squared bias and the 

variance and therefore strikes a fair balance between the bias and the variance, it 
sometimes makes sense to focus largely on only one of the two aspects. While 
the variance is in our simulation study typically large compared to the squared 
bias, the relationship is reversed in our empirical study of stock returns (see Sec-
tion 4), where we perform a rolling analysis (in order to assess the stability of the 
estimates over time) and put the individual estimates together afterwards. In 
such a case, it is clearly the bias which matters more because the variance de-
creases steadily as the sample size increases whereas the bias remains fixed. As 
far as the bias is concerned, the results of our simulation study show that 
smoothing does not help. We may therefore expect that particularly the empiri-
cal results obtained with 0.5ˆ

smPd  and 0.5ˆ
smBd  are not reliable. 

4. Empirical Results 

Studying emerging stock markets, Cajueiro and Tabak [21], Hull and McGroarty 
[65] and Auer [27] observed time-varying estimates of the Hurst exponent H. 
Batten et al. [25] and Auer [28] took things a step further. Assuming that fractal 
dynamics does in fact exist in precious metal returns, they explored possible 
trading strategies that are based on local estimates of H. In contrast, Reschenho-
fer et al. [66] found no evidence of long-range dependence, neither in stock in-
dex returns nor in gold returns. Mangat and Reschenhofer [40] and Reschenho-
fer and Mangat [41] developed formal statistical tests of hypotheses about d or H 
and applied them to stock index returns and gold returns. Again, they found no 
evidence of long-range dependence let alone fractal dynamics. In contrast to 
conventional tests, which are based on the assumption that both the length of 
the time series and the number of used periodogram ordinates are large and are 
therefore unsuitable in case of a rolling analysis, their tests require only a small 
number of periodogram ordinates. While we may therefore not expect to obtain 
estimates of the memory parameter that differ significantly from zero in the case 
of daily stock returns, there is a priori a much better chance of finding evidence 
of the presence of long memory in volatility. Accordingly, we will analyze not 
only the (log) returns, which are obtained as the differences of successive log 
prices, but also at the log absolute returns. Using log absolute returns instead 
of absolute returns or squared absolute returns for the investigation of volatil-
ity has the advantage that we do not have to work with extremely skewed dis-
tributions. 

In our empirical study, we look for indications of long-range dependence both 
in developed and developing stock markets. For this purpose, six major world 
indices, two from America, Europe, and Asia, respectively, were downloaded 
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from Yahoo Finance, namely S&P 500 (03.01.1950 - 26.08.2019), CCA40 
(01.03.1990 - 26.08.2019), Nikkei 225 (05.01.1965 - 26.08.2019), Bovespa Index 
(27.04.1993 - 26.08.2019), BIST 100 (14.12.1992 - 26.08.2019), and Hang Seng 
Index (31.12.1986 - 26.08.2019). First we examine the return series. Applying the 
estimators discussed in the previous sections in a rolling analysis, we find no 
evidence of long-range dependence. Figure 1 shows that the estimates obtained 
from subseries of length 300 are consistently in a very small range around zero. 
The discrepancies between the estimates obtained with different estimators on 
the one hand or with the same estimator for different stock market indices on 
the other hand are therefore of no significance. 

Figure 2 is analogous to Figure 1, but shows the cumulative estimates for the 
log absolute returns. Not surprisingly, there is strong evidence of long-range  
 

 

Figure 1. Cumulative plots of the estimates obtained by applying ˆ
GPHd  (magenta), 

ˆ tr
GPHd  (green), ˆ

GPHd +  (blue), ˆ
smd  (red), 0.9ˆ

smPd  (gray), 0.5ˆ
smPd  (brown), 0.5ˆ

smBd  (yellow-

green), ˆ
Wd  (gold), ˆ

KSd  (black) to the daily log returns of (a) S&P 500, (b) Ibovespa, (c) 
CCA 40 (d) BIST 100, (e) Nikkei 225, (f) Hang Seng Index with a rolling window of n = 
300 days and K = 17. 
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Figure 2. Cumulative plots of the estimates obtained by applying ˆ
GPHd  (magenta), 

ˆ tr
GPHd  (green), ˆ

GPHd +  (blue), ˆ
smd  (red), 0.9ˆ

smPd  (gray), 0.5ˆ
smPd  (brown), 0.5ˆ

smBd  (yellow-

green), ˆ
Wd  (gold), ˆ

KSd  (black) to the log absolute daily returns of (a) S&P 500, (b) 
Ibovespa, (c) CCA 40 (d) BIST 100, (e) Nikkei 225, (f) Hang Seng Index with a rolling 
window of n = 300 days and K = 17. 
 
dependence in the volatility. Most estimators, particularly also ˆ

Wd  and ˆ
KSd , 

which are approximately unbiased according to Table 3, suggest that the mem-
ory parameter d is approximately in the range between 0.2 and 0.3. Only the es-
timators 0.5ˆ

smPd  and 0.5ˆ
smBd , which are severely downward biased in case of posi-

tive d (see Table 3), favor smaller values of the memory parameter. The agree-
ment with the results of the simulation study is remarkably good. For 300n = , 

0.2d = , 1 0φ = , and 17K = , we have observed a large negative bias for 0.5ˆ
smPd  

(−0.141) and 0.5ˆ
smBd  (−0.115), a medium negative bias for 0.9ˆ

smPd  (−0.048), and a 
medium positive bias for ˆ

smd  (0.023). Indeed, 0.5ˆ
smPd  produced always (for each 

of the six stock market indices) the smallest estimate, 0.5ˆ
smBd  the second smallest, 

0.9ˆ
smPd  the third smallest, and ˆ

smd  the largest. The remaining estimators pro-
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duced estimates that lie very close to each other, which allows to draw very ac-
curate conclusions regarding the true value of d. 

5. Discussion 

In this paper, we have converted the test of Mangat and Reschenhofer [40] into 
an estimator for the memory parameter which is easy to use and highly competi-
tive. The results of our extensive simulation study show that this new estimator 
performs well both in terms of the RMSE and the bias. Overall, it shows the best 
performance together with the Whittle estimator. The estimators based on the 
smoothed periodogram cannot compete when the second tuning parameter β is 
fixed. Clearly, the possibility to fiddle about with the second tuning parameter β 
gives these estimators an unfair advantage over their competitors. Choosing an 
unsuitable value for this parameter can lead to a severe bias, which is confirmed 
in our empirical investigation of the long-range properties of international daily 
index returns. Interpreting the empirical findings properly with the help of the 
results of our simulation study, we conclude that the log absolute returns are 
long-range dependent with the memory parameter in the range between 0.2 and 
0.3 in contrast to the original returns which show no indications of long-range 
dependence. 

In conclusion, the main points of this paper are as follows. We have intro-
duced a simple frequency-domain estimator for the memory parameter, pro-
vided evidence of its good performance relative to conventional estimators in 
terms of bias and RMSE, pointed out some shortcomings of the popular lag 
window estimators, and used the new estimator successfully to confirm the ab-
sence of long memory in stock returns and to corroborate the presence of long 
memory in volatility. 
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