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Abstract 

Automatic speech recognition (ASR) is vital for very low-resource languages 
for mitigating the extinction trouble. Chaha is one of the low-resource lan-
guages, which suffers from the problem of resource insufficiency and some of 
its phonological, morphological, and orthographic features challenge the de-
velopment and initiatives in the area of ASR. By considering these challenges, 
this study is the first endeavor, which analyzed the characteristics of the lan-
guage, prepared speech corpus, and developed different ASR systems. A small 
3-hour read speech corpus was prepared and transcribed. Different basic and 
rounded phone unit-based speech recognizers were explored using multilin-
gual deep neural network (DNN) modeling methods. The experimental re-
sults demonstrated that all the basic phone and rounded phone unit-based 
multilingual models outperformed the corresponding unilingual models with 
the relative performance improvements of 5.47% to 19.87% and 5.74% to 
16.77%, respectively. The rounded phone unit-based multilingual models 
outperformed the equivalent basic phone unit-based models with relative 
performance improvements of 0.95% to 4.98%. Overall, we discovered that 
multilingual DNN modeling methods are profoundly effective to develop 
Chaha speech recognizers. Both the basic and rounded phone acoustic units 
are convenient to build Chaha ASR system. However, the rounded phone 
unit-based models are superior in performance and faster in recognition 
speed over the corresponding basic phone unit-based models. Hence, the 
rounded phone units are the most suitable acoustic units to develop Chaha 
ASR systems. 
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1. Introduction 

Human language technologies (HLTs) are important for the low-resource lan-
guages, to revitalize and document them for preventing the challenge of extinc-
tion, and to raise the interest and make the language attractive again for their 
native speakers [1]. ASR is one of the HLTs that is developed for such languages 
using small training corpora, which are often prepared by researchers. Thus, the 
performance of speech recognizers of low-resource languages is worse than that 
of speech recognizers of technologically favored languages. Besides, due to the 
shortage of sufficient training corpora, the DNN models suffer from overfitting 
problem when developing speech recognizers for low-resource languages. The 
scarcity of the training dataset and overfitting challenges of DNN models are 
mitigated by either increasing the size of the training datasets or developing op-
timal DNN models using various model regularization techniques such as dro-
pout, l2-normalization, activation functions, layer normalization, and batch 
normalization. 

The model regularization techniques can reduce the overfitting problem to 
some extent, but to overcome the above problems substantially and to develop 
reliable ASR systems for the low-resource languages, it is better to increase the 
size of the training datasets. The size of the training datasets can be increased by 
preparing a new training corpus, borrowing from high-resource languages, and 
generating synthetic datasets via various audio data augmentation techniques. 
The first approach is expensive because it takes considerable time, human, and 
financial resources and it is challenging to obtain electronically available text for 
the very much low-resource languages. Thus, it is better to use the second and 
the third methods, namely, borrow training datasets from the high-resource 
languages and use the synthetic dataset by generating via data augmentation 
techniques. Using these methods, different multilingual acoustic modeling para-
digms were investigated in the previous works. Phone sharing [2], multitask 
learning [3] [4] [5], and weight transfer [4] [5] were utilized to develop reliable 
ASR systems for low-resource languages. 

Chaha is one of the low-resource languages, which has limited presence on the 
web and suffers from lack of language-specific electronic-resources, namely, text 
corpus, speech corpus, lexical dictionary, and language model, which are used 
for developing ASR systems. As a result, it is a very low-resource language. 
Moreover, some of the phonological, morphological, and orthographic features 
of Chaha challenge the development of ASR system. Due to these problems, 
there is no study conducted on HLTs in general and ASR system in particular for 
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Chaha language until now. 
This study investigates the development of different speech recognition sys-

tems using various multilingual DNN acoustic modeling techniques for the 
Chaha language, and offers the following contributions: 
 Analyzing the characteristics of the Chaha language that favors and chal-

lenges the development of the speech recognition systems. 
 Developing language resources, namely, text corpus, speech corpus, lexical 

dictionary, and language model for Chaha language. 
 Developing the basic1 phone and rounded2 phone unit-based GMM-HMM 

and unilingual DNN-HMM models for Chaha language. 
 Investigating different phone and rounded phone unit-based speech recog-

nizers using various multilingual DNN acoustic modeling paradigms and 
comparing the recognizers in terms of performance and recognition speed 
for the Chaha language.  

 Comparing and suggesting the best acoustic modeling units to develop 
speech recognition system for the Chaha language. 

The remainder of this paper is organized as follows. The review of related 
works is presented in Section 2. A description of the Chaha language is given in 
Section 3. Section 4 describes the preparation of corpora. The experiments, re-
sults, and discussion of this work are discussed in Section 5. Section 6 explains 
the conclusions and future directions of this work. 

2. Related Works 

Multilingual DNN acoustic modeling paradigms are helpful to share and trans-
fer DNN hidden layers among or between multiple languages for improving the 
performance of the individual languages. These paradigms are effective to re-
duce overfitting problem of DNN-based speech recognition systems for 
low-resource languages. The widely used multilingual DNN acoustic modeling 
paradigms in speech recognition of low-resource speech recognition systems in-
clude phone sharing, multi-task learning, and weight transfer. In phone sharing 
modeling paradigm, the phones of various languages are either merged with a 
language identifier prefix or combined with the universal phones of all the lan-
guages based on data-driven or International phonetic alphabet (IPA) ap-
proaches to create the multilingual phone sets, and then train the model using 
the mixed multilingual datasets from all languages. For instance, Vu et al. [2] 
have trained two phone sharing multilingual DNN models for the ten languages 
from Global phone database in the low resource scenarios. The first is merged 
phone sets based phone sharing, which is created by simply concatenating all 
involved monolingual phone sets with a language identification prefix to ensure 
that all the phones are distinct between languages. The second is a universal 

 

 

1Basic phone units contain only basic phones, where the rounded phones are maps to the corres-
ponding basic phones. 
2Rounded phone units contain all the basic phones and the rounded vowels, where rounded phones 
map to the basic phones and rounded vowels to consider their roundedness. 
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phone set based phone sharing, which merges all the monolingual phones that 
share the same symbol in the IPA table. Using both paradigms, they have ob-
tained superior performances over the corresponding unilingual DNN models. 

Multitask learning is helpful to transfer knowledge between or among lan-
guages if the languages are phonetically related with each other and share some 
internal representation by jointly learning together. In this multilingual para-
digm, the hidden or initial layers of the network are shared across all languages 
and each language has a specific output layer, as shown in Figure 1. On the oth-
er hand, in the weight transfer modeling paradigm, the hidden layers of the 
source DNN model train using the unilingual or multilingual datasets, and then 
remove the output layer and replace it with a new target language output layer 
with dimension equal to the number of senones. Then, train only the added 
output layer or retrain all the model-hidden layers using small training dataset of 
the target language, as shown in Figure 2. For example, Gales et al. [6] have 
examined the use of shared hidden layer multilingual DNN-HMM models for 
the low-resource languages from IARPA Babel project. Huang et al. [5] have 
studied the multi-task learning DNN architecture and weight transfer schemes, 
and attained better performance over the unilingual DNN models. Lin et al. [7] 
have also used these two multilingual DNN models to develop speech recognizers  
 

 
Figure 1. Multitask or shard hidden layer multilingual DNN paradigm with M languages. 
A number of hidden layers are shared for multiple M languages and trained via multilin-
gual datasets, while the output layer is specific to each language. 
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Figure 2. Weight-transfer DNN paradigm. The hidden layers are borrowed from the 
multitask or shared hidden layer multilingual DNN, while the output layer requires to be 
trained with dataset from the target language. 
 
for the low-resource Taiwanese Mandarin language, and obtained better per-
formances using both models, and the multitask learning model outperforms the 
corresponding weight transfer model. Similarly, Ghahremani et al. [4] have 
compared the multitask learning and weight transfer models using lattice free 
maximum mutual information (LF-MMI) objective function, and obtained su-
perior performance using the multitask learning model over the weight transfer 
model. Moreover, Miao and Metze [8] have combined and trained the dropout 
model regularizer with multitask learning DNN model for the very low-resource 
language settings, and acquired significant performance improvements. 

The performance of the multilingual modeling paradigms is profoundly af-
fected by the size of the training datasets and the relatedness of the languages. 
Hence, training related target and source languages together produce better per-
formance than training unrelated target and source languages. For example, the 
works presented in [2] [4] [5], and [8] are trained related target and source lan-
guages, and obtained superior performances over the works presented in [2] [5] 
[7], which train unrelated target and source languages. The target and source 
languages are considered related languages when they are phonetically related to 
each other. Commonly, the languages that are found within the same language 
family are phonetically related languages. For example, Chaha and Amharic are 
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members of the Semitic language family. Hence, these languages are phonetically 
related to each other. 

Different researchers have investigated ASR system for Amharic language [9]. 
For example, Abate et al. [10] have analyzed the language specific and re-
source-related challenges for developing ASR system for Amharic language. 
Tachbelie et al. [11] have examined syllable and hybrid acoustic modeling units 
based speech recognizers for Amharic. Tachbelie et al. [12] have also analyzed 
the various acoustic, language, and lexical modeling units to develop Amharic 
ASR system. However, HLTs in general and ASR system in particular have not 
been investigated for the Chaha language. Thus, this study is a first attempt to 
investigate Chaha speech recognition systems using multilingual DNN modeling 
paradigms by borrowing the training datasets from a phonetically related lan-
guage, Amharic.  

3. The Chaha Language 

Chaha is one of the major dialects of the west Gurage language. It belongs to the 
Semitic language family of which the other members are Arabic, Geez, Amharic, 
Tigriyna, Argobba, Harari, and Gaft [13]. Chaha is spoken in the Gurage Zone 
that is located in the southern part of Ethiopia. Gurage settlers in different Ethi-
opia cities such as Addis Ababa, Dire Dawa, and Hawssa also speak it. Based on 
a 2007 census, Chaha has around half a million speakers as the first language. 
This figure does not include a large number of Chaha speakers who live outside 
the Gurage zone. The linguistic features of Chaha are more studied than the 
other dialects of the west Gurage language by local and foreigner linguistics [13] 
[14] [15] [16] [17].  

However, Chaha is a developing language. This is because Chaha is in vigor-
ous use, with literature in a standardized form being used by some though this is 
not yet widespread [18], Chaha is not used as a medium for lesson delivering or 
as a program in education, namely, primary and secondary schools and higher 
institutions, and has less documentation and development products. For in-
stance, it has very few books. As of the time of writing this paper only four fic-
tions, one bible, one poem, and one proverb publications are available in the 
language. Moreover, there are no revitalization efforts and language develop-
ment agencies for the language. Hence, Chaha needs a particular attention of 
linguistics and HLTs developers, to make the language easily accessible and usa-
ble by the speakers. This section discusses the phonological, morphological, and 
orthographic characteristics of the language. 

3.1. Chaha Phonology 

Chaha has 47 speech sound units, which are 38 consonants and nine vowels [13] 
[14] [15]. The consonants are classified into stops, affricatives, fricatives, spi-
rants, and sonorants based on the manner of articulation, as listed in Table 1. 
The phonetic transcription of the consonants b, p, f, m, w, g, k, d, t, z, s, h, l, n, r,  
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Table 1. Chaha consonants (adapted from [13] [14]). 

Manner of articulation 

Place of articulation 

Labial Velar 

Plain Rounded Alveolar Alveo-palatal Palatal Plain Rounded Laryngeal 

Stops 

Voiceless ejectives   tʼ  q’ q q  ̫  

Voiceless p pw t  k’ k kw  

Voiced b bw d  g’ g gw  

Affricates 

Voiceless ejectives    č’     

Voiceless    č     

Voiced    ǧ    h 

Fricatives 
Voiceless f fw s š     

Voiced   z ž     

Spirants      x’ x xw  

Sonorants 
Nasal m mw n  ɲ    

Approximant β w r,l  y    

 
and y corresponds to that of Amharic and English consonants. The pronuncia-
tion of consonants t’, č, k’, š, ž, c, ǧ, x, β, ɲ, qʷ, kw, and gw correspond to the 
equivalent Amharic consonants t’, č’, q, š, ž, č, ğ, h, v, ň, qw, kw, and gw, respec-
tively. The consonant speech sounds, q’, k’, g’, x’, xw, pw, bw, fw, and mw are pecu-
liar to Chaha, and do not have corresponding sounds in Amharic and English 
languages. The sound units q’, k’, g’, and x’ are palatalized counterparts from 
amongst the consonants q, k, g, and x, while qʷ, kw, gw, xw, pw, bw, fw, and mw are 
the labialized form of the consonants q, k, g, x, p, b, f, and m, respectively [13] 
[14]. The only laryngeal sound that exists in Chaha is h, which is used to call a 
few Amharic loan words such as haymanot “belief”, har “silk”. Chaha is a 
non-geminating language, in which whenever an originally voiced consonant 
expects to geminate, it becomes voiceless. For example, the sound b becomes p. 
However, occasionally one encounters occurrences with a geminated radical, as 
in ənnəm “all” for the loan words from the Amharic language. Hence, Chaha has 
only a few consonants that can geminate, namely, m, n, t, and k [13] [15]. 

The seven basic vowels, namely, ä, u, i, a, e, ə, o, and the two low-mid front (ɛ) 
and back (ɔ) vowels, form the nine phonetic vowel inventory of Chaha, as pre-
sented in Table 2. The vowel ä alternates with ə vowel of Amharic such as in 
Chaha äxər meaning “cereal”, while in Amharic it sounds as əhəl. Similarly, the 
vowels u, i, a, e, and o have the same phonetic transcription with the corres-
ponding Amharic vowels. The vowel ə corresponds to the ɨ vowel of Amharic 
language. The open ä (ɛ) and open o (ɔ) vowels are distinctive for Chaha, and are 
minimal pairs with ä and o vowels, respectively. 

Most of the Chaha consonants are basic consonant phones, but eight conso-
nant phones (21.1% of the total consonants) are rounded consonants. Thus, the 
rounded nature of these consonants should be considered during development  
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Table 2. Chaha vowels (adapted from [13] [14]). 

 Front Central Back 

High i ə u 

High-mid e  o 

Low-mid ɛ ä ɔ 

Low  a  

 
of Chaha speech recognition systems. Moreover, there are consonants which 
have similar pronunciation with different symbols namely, x and h. Neverthe-
less, the speech recognition system considers a unique pronunciation of ortho-
graphic symbols. Hence, one of the two phones should be used when developing 
Chaha speech recognition system. 

3.2. Chaha Morphology 

Chaha exhibits a root-pattern, inflectional, and derivational morphological 
phenomena like other Semitic languages such as Arabic and Amharic [17]. 
Moreover, Chaha has unique properties, namely, labialization, palatalization, 
devoicing, and sonorant alternations. Hence, Chaha is a morphologically rich 
language, and its morphological richness challenges the performances of speech 
recognition systems.  

3.3. Chaha Writing System 

Chaha is written using Geez script. However, Chaha represents the palatalized 
consonants, which are not found in Geez script by introducing the modified 
characters to the script, such as using wedges on the tops. Chaha script is syllab-
ic, where each symbol represents a consonant combined with a vowel except the 
sixth-order consonant, which is sometimes realized as a consonant without a 
vowel, and at other times a consonant with a vowel [13]. Each symbol in Chaha 
writing system represents a consonant-vowel (CV) syllable, and there are 264 
distinct letters [13] [14]: 224 letters—32 core symbols with seven orders, 20 let-
ters—four rounded velars with five orders, and 20 letters—four rounded labials 
with five orders. In the 32 core letters, consonants are concatenated with every 
seven basic vowels to obtain a total 264 CV syllables. Similarly, four plain velar 
letters, namely, q, k, g, and x, and four plain labial letters, namely, p, b, f, and m 
are combined with five rounded vowels, namely, wä, wi, wa, we, and wə, to obtain 
20 rounded velars and 20 rounded labial letters, respectively. In addition, Chaha 
has various syllable structures with a form of C(C)V(C)(C), and the possible syl-
lable types are vowel (V), CV, consonant-vowel-consonant (CVC), vo-
wel-consonant (VC), consonant-vowel-consonant-consonant (CVCC), vo-
wel-consonant-consonant (VCC), consonant-consonant-vowel (CCV), and 
consonant-consonant-vowel-consonant-consonant (CCVCC) [15]. The CV and 
CVC syllables are basic, and are called light and heavy syllables, respectively, 
while the CVCC syllables are the super heavy syllables. CV syllable is the domi-
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nantly available syllable type in the language [14] [16]. 
The phonetic and syllabic features of the Chaha writing system favor the de-

velopment of ASR systems. For example, it is easy to develop lexical dictionary 
using a grapheme-based approach. However, Chaha writing system does not 
show gemination and devoicing of consonants, and pronunciation of an epen-
thetic vowel ə and open vowels, namely, ɛ and ɔ. These characteristics of Chaha 
writing system are analogous to the vowels of Arabic and Hebrew, and the ge-
minated consonants and epenthetic vowel of Amharic, which are not indicated 
in writing system. Moreover, Chaha has syllables that have the same pronuncia-
tion with different orthographic symbols. Overall, the above features of the lan-
guage challenge the development of ASR systems. 

4. Preparation of Corpora 

In this section, the text corpus, speech corpus, lexical dictionaries, and synthetic 
speech corpora, which we have used in our study, and the process followed to 
prepare them are discussed. 

Chaha does not have a readily available text corpus. Besides, it has limited 
presence on the web, and has limited hardcopy books. Thus, we have collected 
small set of texts from bible, web, and hardcopy books such as fiction, poem, and 
proverbs. Then, the texts of bible, web, and books are merged, and applied text 
cleaning tasks like correcting spelling and grammar errors, expanding abbrevia-
tions, removing foreign words, textually transcribing numbers, and separating 
concatenated words. As a result, we obtained 14,595 sentences (200,944 tokens 
and 38,182 word types) as text corpus, which is used to generate lexical dictiona-
ries and to train language models. 

Moreover, the phone-level Unicode versions of the text corpus and tran-
scribed speech text are used. The transliteration3 of the text corpus and the tran-
scribed speech text from their syllable-level Unicode versions into the corres-
ponding phone-level Unicode versions is conducted as follows: All the syllables 
except the 20 rounded velars and 20 rounded labials syllables are transliterated 
in terms of CV pattern. For instance, the word በና/bäna/, which means “eat”, is 
transliterated as ብኧንኣ/bäna/, where syllable በ/bä/ is transliterated as the combi-
nation of the sixth-order phone, namely, ብ/b/, with the first vowel, namely, ኧ/ä/, 
to the transliterated form of ብኧ/bä/, and syllable ና/na/ is transliterated as the 
combination of sixth-order phone ን/n/ with the 4th vowel, namely, ኣ/a/, to the 
transliterated form of ንኣ/na/. However, the rounded velar and labialized syllables 
are combinations of two or three CV syllables. Thus, according to [13] [14], 
these syllables can be transliterated as the concatenations of sixth-order phones 
with rounded vowels. For example, ኳ/kwa/ is a rounded velar syllable and is 
transliterated as a combination of sixth-order phone ክ/k/ with rounded vowel 
ውኣ/wa/ to the corresponding phone transliteration of ክውኣ /kwa/. 

Like the text corpus, Chaha does not have publicly available speech corpus for 

 

 

3Transliteration refers to the conversion of a syllable-level Unicode version to the corresponding 
phone-level Unicode version. 
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examining speech recognition tasks. Hence, we have prepared the speech corpus 
by selecting 2000 relatively phonetically balanced sentences from the obtained 
text corpus. A speech corpus of 3-hour is recorded in an office environment us-
ing a Philips voice recorder (VTR5100) from 15 native speakers (10 male and 5 
female), who read a total of 2000 sentences. Of the 3-hour speech corpus, 
2.67-hour (1778 sentences), is collected from 10 native speakers (7 male and 3 
female) who read 178 sentences each. This corpus is utilized as a training data-
set. To avoid the overlapping between the training and testing datasets with re-
spect to speakers and sentences, a 0.33-hour (222 sentences) corpus is collected 
from a separate 5 native speakers (3 male and 2 female) who read 45 sentences 
each, and this corpus is ten percent of the total 3-hour corpus and is used as a 
testing dataset. However, compared to other speech corpora that contain tens 
and above hours of speech data for training, clearly this corpus is very much 
small, and hence, the models will suffer from lack of training data. The distribu-
tion of phonemes within 2.67-hour training dataset is shown in Figure 3. 

There are no available lexical dictionaries for Chaha language. Hence, we have 
prepared two basic phone-based and two rounded phone-based lexicons via a 
grapheme-based approach [19]. The two basic phone-based lexicons contain 36 
basic phones: 29 basic consonants and 7 basic vowels, and 32 basic phones: 25 
basic consonants and 7 basic vowels, respectively. In the first lexicon, the four 
palatalized phones are used directly, while in the second lexicon, these phones 
are mapped into the corresponding basic phones. These lexicons are prepared by 
a simple transcription of words as separated phones. The two rounded 
phone-based lexicons consist of 44 phones: 29 basic consonants, 7 basic vowels, 
5 rounded vowels and 3 palatial vowels, and 41 phones: 29 basic phones, 7 basic 
vowels and 5 rounded vowels, respectively. The first lexicon includes additional 
palatal vowels, while the second lexicon uses the palatal phones directly. These  
 

 
Figure 3. Distribution of Chaha phonemes within real and synthetic training speech 
corpora. 
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lexicons are prepared by following the same procedure as basic lexicons except 
for the rounded phones. These phones transcribe in the lexicon as a separated 
basic phones and rounded vowels. All lexicons are derived from the text corpus 
by selecting the most frequent words and are of size 4 k. These lexicons are not 
considered the language properties, namely, consonant gemination and devoic-
ing, insertion of epenthetic vowel, pronunciation of open vowels, and elision of 
vowels or insertion of semivowels, because the lexicons are prepared by nonlin-
guistic experts with the help of the writing system of the language. However, an 
epenthetic vowel is inserted for all available sixth-order consonant phones in the 
training corpora and lexical dictionaries. 

Moreover, we have used Amharic as a resource provider language. It has 
26-hour training speech corpus (from [20] and own), which contains a total of 
13,549 sentences that are collected from 125 native speakers. Alternatively, to 
increase the size of training datasets, the synthetic training datasets are generated 
using the speed perturbed audio data augmentation approach [21] by modifying 
the speed of speech signal to 90% and 110% of the initial rate for both languages. 
Figure 3 shows the distribution of Chaha phonemes in the synthetic training 
dataset and Table 3 lists the summary of the total training datasets used to train 
the Chaha ASR systems. 

5. Experiments 

5.1. Experimental Setups 

All the GMM-HMM and DNN-HMM models are developed using the 
state-of-the-art speech recognition toolkit, Kaldi [22]. For GMM-HMM models, 
speaker adaptive training (SAT) technique based 40-dimensional features are 
extracted with feature-space maximum likelihood linear regression (fMLLR) 
method. Various Bakis HMM topology triphone models are built for all basic 
and rounded phone acoustic modeling units. Moreover, word based backed-off 
and interpolated trigram language models are built using SRI language modeling 
(SRILM) toolkit [23]. These language models are smoothed using the modified 
Kneser-Ney smoothing algorithm, and are applied to train all the basic and 
rounded phone acoustic units. 

For DNN-HMM models, we used a chain model that trains with LF-MMI cri-
terion without the need for frame level cross-entropy pretraining [24]. This 
model uses a one-state HMM topology for each context-dependent phone, and 
the phonetic-context decision tree obtains using one-state HMM topology and 
reduced frame rate after converting the alignments from the GMM-HMM model.  
 
Table 3. Training speech datasets (hours). 

Language Real dataset Synthetic dataset Total dataset 

Chaha 2.67 5.34 8.01 

Amharic 26 52 78 
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We used the time delay neural network (TDNN) models. We used 40-dimensional 
high resolution MFCC features and 50-dimensional i-vector speaker adap-
tion features as input features for training the unilingual TDNNs models, 
and 40-dimensional high resolution MFCC features and 100-dimensional 
i-vector speaker adaption features as input features for training multilingual 
TDNNs models. For both models, a left context width of 16 frames and a right 
context width of 10 frames are used to combine the frames. The ReLU nonli-
nearity is used for each hidden layers with a batch normalization and dropout 
model regularization techniques for monitoring the model complexity and over-
fitting problem. A dropout scheduling with values of 0, 0.2, 0.3, and 0 is used. 
The L2, xent, and leaky regularization techniques are also applied with values of 
0.05, 0.1, and 0.1, respectively. The variable mini-batches, namely, 128, 64, and 
32 frames are used for weight updating during training. The training process is 
accelerated via Nvidia GeForce GTX 1050 GPU on a single machine. A weighted 
finite state transducer is used for decoding. 

In addition to the above universal parameters, the unilingual and weight 
transfer TDNN models are used output dimensions of 656 and 696 senones for 
basic and rounded phone units. These models also used similar initial and final 
learning rate values of 0.004 and 0.0006, respectively. However, the unilingual 
TDNN models used ten training epochs while weight transfer models applied 
two epochs. Conversely, phone sharing and multitask learning multilingual 
TDNN models used the same initial and final learning rate values of 0.0004 and 
0.0001, respectively. These models also used six training epochs for both basic 
and rounded phone units. The output layer dimensions of phone sharing models 
are 1752 and 1848 for basic and rounded phones, respectively, while the output 
layer dimensions of the multitask learning models are similar to the unilingual 
and weight transfer models. 

Using the above model parameters, the major hyper-parameters, namely, the 
number of hidden layers and the number of neurons per hidden layer are tuned 
for both unilingual and multilingual TDNN-HMM models, as shown in Figure 
4 and Figure 5, respectively. Figure 4 shows that the optimal number of TDNN 
layers which gives better performance for both unilingual and multilingual 
TDNN-HMM models is 8 with batch normalized ReLU hidden layers. The 
number of hidden layer seems large for training the unilingual TDNN-HMM 
models using the Chaha in-domain dataset but the ReLU nonlinearity and the 
dropout regularization enable us to increase the number of hidden layers with-
out overfitting challenge. Therefore, according to the preliminary experimental 
results both the unilingual and multilingual TDNN-HMM models used the same 
number of hidden layers. The optimal number of neurons per hidden layer is 
experimented by making the number of hidden layers fixed to 8, and the results 
are presented in Figure 5. Figure 5 demonstrates that the optimal number of 
neurons per hidden layer is 450 for both unilingual and multilingual 
TDNN-HMM models. 
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Figure 4. WER results vs. the number of hidden layers for basic phone and rounded 
phone-based unilingual and multilingual TDNN-HMM models. 
 

 
Figure 5. WER results vs. the number of neurons per hidden layer for basic phone and 
rounded phone-based unilingual and multilingual TDNN-HMM models. 

5.2. Experimental Results and Discussion 

5.2.1. Baseline GMM-HMM Models 
Two baseline GMM-HMM models are trained, namely, GMM-CH, which trains 
using the Chaha language in-domain dataset, and GMM-MUL which is a phone 
sharing model that trains using the mixed multilingual data (Chaha and Amhar-
ic languages) by concatenating the Chaha and Amharic phone sets with a lan-
guage identification. These models are developed for all basic and rounded tri-
phone acoustic units. 

Several GMM-CH models are trained for deciding the number of states and 
HMM topology, number of HMM leaves, and Gaussians for all basic and 
rounded phone acoustic modeling units. Hence, the standard 3-state with the 
fourth last non-emitting state Bakis HMM topology, and the 3-state with the 
fourth last non-emitting state with skip from the first state to the last 
non-emitting state Bakis HMM topology are empirically examined for all the ba-
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sic and rounded phone acoustic modeling units, as shown in Table 4. 
Table 4 indicates that the best HMM topology for both basic and rounded 

phone units-based GMM-CH model is a 3-state with the fourth last 
non-emitting state with skip from the first state to the last non-emitting state 
Bakis HMM topology. Using this topology, the best performing GMM-CH mod-
el that has a small word error rate (WER) consists of 1200 leaves i.e. 952 senones 
with 8000 Gaussians for the 36 phones of basic phone acoustic modeling units 
and 1200 leaves i.e. 960 senones with 8000 Gaussians for 41 phones of rounded 
phone acoustic modeling units. The results demonstrate that the rounded phone 
unit-based model outperforms the basic phone unit-based model with a relative 
WER reduction of 1.88%. All the rest GMM and DNN models are developed 
using 36 phones of basic phone units and 41phones of rounded phone units.  

For training GMM-MUL models, the multilingual phone set is created by 
simply concatenating the Chaha and Amharic phone sets with a language identi-
fication prefix to ensure that the phones are distinct between languages. Fortu-
nately, all phones of Amharic are similar with Chaha except the four palatalized 
phones, which are distinct for the Chaha language. Next, the GMM-MUL mod-
els are trained using 2432 and 2464 senones for basic and rounded phone acous-
tic units, respectively. Table 5 shows that both basic and rounded phone 
unit-based GMM-MUL models are worse in performance than the correspond-
ing GMM-CH models. 
 
Table 4. Number of HMM leaves and Gaussians, and the WER (%) of several GMM-CH 
models trained with 3-state HMM topologies. 

Number of 
HMM leaves 

Number of 
Gaussians 

Transition 
Topologies 

Acoustic modeling units (%WER) 

Basic phone units Rounded phone units 

32 phones 36 phones 41 phones 44 phones 

1000 6670 
Standard 27.37 28.53 29.01 28.34 

With skip 28.72 27.68 27.47 26.89 

1200 8000 
Standard 29.11 27.27 27.56 27.85 

With skip 27.76 26.02 25.53 27.76 

1400 9340 
Standard 28.53 29.01 25.73 28.43 

With skip 28.05 27.76 26.50 26.60 

1600 10670 
Standard 28.92 27.56 28.34 27.47 

With skip 27.56 28.63 27.66 27.18 

 
Table 5. WERs (%) of the baseline GMM-HMM models. 

Model Basic phone units Rounded phone units 

GMM-CH 26.02 25.53 

GMM-MUL 27.95 27.66 
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5.2.2. DNN-HMM Models 
Using the optimal parameters stated in Section 5.1, two unilingual TDNN mod-
els, namely, TDNN-CH and TDNN-AM are developed for Chaha and Amharic 
languages, respectively. The TDNN-AM models are used as the bootstrap to 
train the weight transfer multilingual models for the Chaha language. The 
TDNN-CH models are trained using the combined Chaha in domain real and 
synthetic speech corpus, and the results demonstrate that the rounded phone 
unit-based TDNN-CH model outperforms the equivalent basic phone 
unit-based model with an absolute WER reduction of 1.16%, as presented in the 
first row of Table 6. The finding shows that the use of rounded phones within 
lexical dictionary and phone list is improved the performance of Chaha ASR 
system.  

Moreover, the effect of synthetic training dataset on the performance of basic 
and rounded phone unit-based TDNN models is examined by developing 
DNN-CH-Naug (None-augmented version of TDNN-CH) models using Chaha 
real training dataset (2.67 hrs), and compared with the TDNN-CH models de-
veloped using the Chaha total datasets (8.01 hrs). The basic phone and rounded 
phone unit-based TDNN-CH models achieved superior performance over the 
corresponding TDNN-CH-Naug models with absolute performance improve-
ments of 6.19% and 4.84%, respectively, as presented in Table 6. Hence, aug-
menting the training dataset by generating the synthetic data using audio data 
augmentation technique improves the performances of ASR system for very 
low-resource languages. 

We investigated three multilingual DNN models, explicitly, phone sharing 
(TDNN-MUL), multitask learning (TDNN-MT), and weight transfer models. 
The TDNN-MUL models are trained over the baseline GMM-MUL models, and 
realized superior performances over the unilingual TDNN-CH models with rela-
tive WER reductions of 18.82% and 13.57% for basic and rounded phone units, 
respectively, as presented in the second row of Table 7. Moreover, the basic 
phone unit-based TDNN-MUL model outperformed the corresponding rounded 
phone unit-based model with a relative WER reduction of 1.43%. 

The TDNN-MT models are trained by sharing the hidden layers for Chaha 
and Amharic languages, and by making the output layer specific to each lan-
guage. These models gain better performances than the corresponding unilin-
gual TDNN-CH models with relative WER reductions of 19.10% and 15.91% for 
basic and rounded phone units, respectively, as presented in the third rows of 
Table 7. The rounded phone unit-based TDNN-MT model performed better  
 
Table 6. WERs (%) of unilingual DNN-HMM models. 

Model Basic phone units Rounded phone units 

TDNN-CH 24.66 23.50 

TDNN-CH-Naug 30.85 28.34 

Absolute WER Reduction (%) 6.19 4.84 
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Table 7. WERs (%) of DNN-HMM models. 

Model Basic phone units Rounded phone units 

TDNN-CH 24.66 23.50 

TDNN-MUL 20.02 20.31 

TDNN-MT 19.95 19.76 

TDNN-AM-WT 23.31 22.15 

TDNN-MUL-WT 19.92 20.21 

TDNN-MT-WT 19.76 19.56 

Best Case Relative WER Reduction (%) 19.87 16.77 

 
than the corresponding basic phone unit-based model with a relative WER re-
duction of 0.95%. 

We investigated three weight transfer models, namely, weight transfer 
over TDNN-AM (TDNN-AM-WT), weight transfer over TDNN-MUL 
(TDNN-MUL-WT), and weight transfer over TDNN-MT (TDNN-MT-WT). 
To train these models, the seed TDNN-AM, TDNN-MUL, and TDNN-MT 
models are trained using Amharic, merged and shared multilingual (Amharic 
and Chaha datasets), respectively. Then, the last two hidden and output layers of 
the seed models are discarded and replaced by the new single hidden layer with 
450 nodes, and the output layer with the number of output nodes equal to the 
number of senones, which are 656 and 696 for basic and rounded phone units, 
respectively. All the weights that connect the nodes of sixth hidden layer and bi-
ases are randomly initialized, and all the transferred hidden layers are fixed, and 
only the added hidden and output layers are trained using the Chaha training 
dataset. 

The experimental results are presented from row 4 to 6 of Table 7, and all the 
weight transfer models improve the performances of the corresponding unilin-
gual TDNN-CH models. Both the basic and rounded phone unit-based 
TDNN-MT-WT and TDNN-MUL-WT models realized superior performances 
over the corresponding TDNN-AM-WT model. This finding is because the per-
formances of weight transfer models of Chaha are improved well, when the seed 
models are trained using both the Amharic and Chaha datasets. The rounded 
phone unit-based TDNN-MT-WT model is the best performing model with a 
relative WER reduction of 16.77% and it is also outperformed the corresponding 
TDNN-AM-WT model with a relative performance improvement of 1.01%. 

5.2.3. Comparison of DNN-HMM Models Based on Their Performances 
Table 7 reveals the following experimental results. All the basic and rounded 
phone unit-based multilingual TDNN models, namely, phone sharing, multitask 
learning, and weight transfer models outperform the baseline unilingual TDNN 
models consistently. This is because the unilingual TDNN models are trained 
using small training dataset than the multilingual TDNN models. 
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The multitask learning and phone sharing multilingual TDNN models rea-
lized better performances than the weight transfer multilingual TDNN models, 
when the seed models are trained using only the Amharic dataset. However, the 
performances of weight transfer multilingual TDNN models outperformed the 
multitask learning and phone sharing multilingual TDNN models if the seed 
models are trained using both Amharic and Chaha datasets. Among the multi-
lingual TDNN models, TDNN-MT-WT model is the best performing model 
with best-case relative WER reductions of 19.87% and 16.77% for basic and 
rounded phone acoustic modeling units, respectively.  

The rounded phone unit-based TDNN-CH, TDNN-MT, TDNN-AM-WT, 
and TDNN-MT-WT models outperformed the corresponding basic phone 
unit-based models with relative WER reductions of 4.7%, 0.95%, 4.98%, and 
1.01%, respectively. This is because the characteristics of the language, when 
considering the rounded nature of the rounded phones during acoustic model-
ing, the performances of the unilingual and multilingual TDNN models are im-
proved. Hence, the rounded phone units are the best acoustic modeling units to 
develop reliable Chaha ASR system. 

On the other hand, the rounded phone unit-based TDNN-MUL and 
TDNN-MUL-WT models are worse in performance than the equivalent basic 
phone unit-based models with relative WER reductions of 1.43%. Overall, most 
of the rounded phone unit-based unilingual and multilingual TDNN models 
outperformed the equivalent basic phone unit-based models. However, the per-
formances of both acoustic unit-based models are comparable to each other. 
Hence, the basic phone units can be used as alternative acoustic modeling units 
to develop Chaha ASR system. 

5.2.4. Comparison of DNN-HMM Models Based on Their Recognition  
Speeds 

The speed of a speech recognition system is measured using a real time factor 
(RTF). RTF is a very natural measure of a speech decoding speed which ex-
presses how much the speech recognition system decodes slower than the user 
speaks. It is the ratio of the speech recognition system response time to the ut-
terance duration, as formulated in Equation (1). 

( )( )
( )

time decode a
RFT

length a
=                        (1) 

where a is an utterance. Usually both the average RTF (average over all utter-
ances) and 90th percentile RTF is examined in efficiency analysis of speech rec-
ognition system. We have used an average RTF of all the utterances to analysis 
the speed of all the speech recognition systems developed in this study. Hence, 
the recognition speeds of the basic and rounded phone unit-based unilingual 
and multilingual TDNN models are presented in Table 8. Both the basic and 
rounded phone unit-based unilingual TDNN models are faster than the equiva-
lent phone sharing and multitask learning multilingual TDNN models. Likewise,  
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Table 8. Recognition speeds of DNN-HMM models. 

Model 
Real Time Factor 

Basic phone units Rounded phone units 

TDNN-CH 0.225 0.206 

TDNN-MUL 0.278 0.283 

TDNN-MT 0.284 0.279 

TDNN-AM-WT 0.086 0.086 

TDNN-MUL-WT 0.088 0.086 

TDNN-MT-WT 0.088 0.086 

 
the basic and rounded phone unit-based unilingual, phone sharing, and multi-
task learning TDNN models are slower than the corresponding weight transfer 
multilingual TDNN models. Hence, the fastest recognition speeds are realized 
using the basic phone unit-based TDNN-AM-WT, and rounded phone 
unit-based TDNN-AM-WT, TDNN-MUL-WT and TDNN-MT-WT models 
with real-time factor of 0.086. Almost all the rounded phone unit-based multi-
lingual TDNN models are faster than the corresponding basic phone unit-based 
models. The reason for this is because making all the decoding parameters uni-
versal for all models, the recognition speed varies with graph size, and thus the 
graph size of all the rounded phone unit-based multilingual TDNN models are 
smaller than the corresponding basic phone unit-based models. The graph sizes 
of the basic and rounded phone unit-based multilingual TDNN models increase 
because the size of the training dataset is increased to realize better performance, 
and this leads to relatively slow recognition speeds. 

Overall, the performances of rounded phone unit-based multilingual TDNN 
models are better than the corresponding basic phone unit-based models, as 
discussed in Section 5.2.3. In line with this, the recognition speeds of basic 
phone unit-based multilingual TDNN models are worse than the corresponding 
rounded phone unit-based models. Hence, the rounded phone units are the best 
acoustic modeling units to develop ASR system for the very low-resource lan-
guage, Chaha.  

6. Conclusions and Future Works 

This study presents a first attempt made on the investigation of ASR systems 
using various multilingual DNN techniques for the very low-resource language, 
Chaha. The language and resource-related problems are the major factors that 
challenge the development of Chaha ASR systems. By considering these chal-
lenges, this paper investigated different unilingual and multilingual speech re-
cognizers. The experimental results demonstrate that all the basic and rounded 
phone unit-based multilingual TDNN models realized superior performances 
over the corresponding unilingual TDNN models with overall relative WER re-
ductions of 5.47% to 10.87% and 5.74% to 16.77%, respectively. Hence, multi-
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lingual DNN models are profoundly effective and efficient to develop better 
performance speech recognizers for the very low-resource languages, which are 
spoken in the developing and minority countries. Moreover, both basic and 
rounded phone unit-based multilingual TDNN models achieved comparable 
recognition performances and decoding speeds. Hence, both basic and rounded 
phone acoustic modeling units are convenient to develop ASR system for Chaha. 
However, almost all the rounded phone unit-based unilingual and multilingual 
models realized superior performances and faster recognition speeds than the 
corresponding basic phone unit-based models. Hence, the rounded phone units 
are the best acoustic modeling units to develop reliable ASR system for the very 
low-resource language, Chaha. 

As future work, we are interested in exploring the use of CV syllables as 
acoustic modeling units for building Chaha ASR system. Besides, the lan-
guage-specific issues like gemination and devoicing of consonants, proper inser-
tion of an epenthetic vowel, and pronunciation of open vowels in the training 
corpus and pronunciation dictionaries will need to be handled. 
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