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ABSTRACT 

Projection clustering is an important cluster problem. Although there are extensive studies with proposed algorithms 
and applications, one of the basic computing architectures is that they are all at the level of data objects. The purpose 
of this paper is to propose a new clustering technique based on grid architecture. Our new technique integrates mini-
mum spanning tree and grid clustering together. By this integration of projection clustering with grid technique, the 
complexity of computing is lowered to . O(NlogN)
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1. Introduction 

Cluster analysis is as an important area in data mining 
which can explore the hidden structures of business da-
tabases [1]. Traditionally, cluster analysis can be catego-
rized as three classes. Partitioning method works by con-
structing various partitions and then evaluating them by 
some criterion. Hierarchy method creates a hierarchical 
decomposition of the set of data (or objects) using some 
criterion. Density-based method is based on connectivity 
and density functions. Grid-based method is based on a 
multiple-level granularity structure. Model-based method 
is to construct a model and to find the best fit model. 

Along these lines, many techniques and algorithms 
have been proposed in the literature. For example, Ester 
et al. [2] present the density-based clustering algorithm 
which uses an Eps-neighborhood for a point containing 
at least a minimum number of points. Raphael Bar-Or 
and Christiaan van Woudenberg [3,4] present a grav-
ity-based clustering method intended to find clusters of 
data in n-space. The most classical clustering technique 
is due to Raymond T. Ng and Jiawei Han [5] who devel-
oped a CLARANS which aims to use randomized search 
to facilitate the clustering of a large number of objects. 
More recent work include agglomerative fuzzy K-Means 
clustering algorithm by introducing a penalty term to the 
objective function to make the clustering process insensi-
tive to the initial cluster centers [6]. 

Among all these clustering techniques, one of the basic 

measurements is the Euclidean distance. It requires simi-
lar objects to have close values in all dimensions. When 
similarity between objects in high dimensional space is 
absent, this kind of technique is often invalid. To solve 
this problem, dimension reduction and manifold learning 
is applied [7–9]. Another method for this skewed data is 
the projection clustering [10]. The main idea of projected 
clustering is that different clusters may distribute along 
part of the dimensions. A projected cluster is a subset of 
data points, together with a subspace of dimensions, so 
that the points are closely clustered in the subspace. 

Different with the above clustering approaches, graph 
clustering works by transforming the initial working data 
into a kind of graph. Then graph clustering techniques 
can be applied to obtain the final clustering. One of these 
techniques is the Minimum Spanning Tree (MST) based 
clustering. Although the first MST-based clustering algo-
rithms have been studied for many years, due to its com-
putational efficiency for large databases, it attracts new 
researches frequently. In a more recent work [11], the 
authors present a more efficient method based on the 
divide and conquer approach that can quickly identify the 
longest edges in an MST so as to save some computa-
tions. The experimental results show that their MST in-
spired clustering algorithm is very effective and stable 
when applied to various clustering problems. The authors 
also expect that their algorithms have a  
computing time. 

( log )O N N

In this paper, we propose a new projection clustering 
technique by Minimum Spanning Tree based on the grid 
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clustering approach. Basically, our MST-inspired clus-
tering technique works on cells rather than data points 
directly. This will significantly reduce the size of graph 
and MST. Due to this reason, our technique has no spe-
cific requirements on the dimensionality of the data sets. 
This is different from some typical projection clustering 
algorithms [10]. 

The rest of this paper is organized as follows: Section 
2 presents the basic idea of projection clustering. In Sec-
tion 3, we summarize some basics on MST-based clus-
tering techniques. In Section 4, we propose a flexible grid 
clustering approach. Clustering is also discussed as an 
optimization process in this section. Section 5 contains a 
brief clustering behavior and time complexity analysis. 

2. Projection Cell Clustering 

Suppose the raw data set is 1{ , , }NX x x 
1( , , )n

. Each point 

has n components by x x x . It is contained in a 

rectangle D0 in Rn. Generally, we will not cluster the 
original data set X. Instead, we will consider a derived 
data set X composed of data cells. However, after we 
transforme the data set into cells, each cell can be considered 
as a new data point represented by its center. The number 
of data points in the cell is called the mass of the cell. 

More precisely, a cell (grid) is a polyhedron as a com-
plex x = (D, norm, c, b, p), where D is the polyhedron, 
norm is a unit vector indicating normal vector of one of 
its edges, c is the center, b is a boolean value indicating 
whether the grid is dense or sparse, and p is the number 
of data points covered by the grid. 

In order to simplify symbols, we will use  as cell 
data object and 

xX
[ ]x X  as the data points defined by x 

in the original data space X. For two objects x, y, the dis-
tance is defined as the minimum distance of the two cells 

[ ], [ ]
( , ) min ( , )

p x q y
x y d p q

 
             (1) 

The diameter of a data object is measurement of its 
size 

, [ ]

1
( ) max ( , )

2 p q x
x p q 


              (2) 

Let N(x) be the set of k-nearest neighbors (KNN) of x 
including itself, then the number of object in N(x) is k+1. 
The sparseness or thickness of the data object can be 
measured by the relative location of its k-nearest 
neighbors 

( )

1
( ) ( , )

z N x

x z x
k

 


               (3) 

Suppose there is a mass function defined on  by 

;  (total number of points). 

Then we define the density of a data point as 

X

:m RX ( ) #[ ]m x x p 

( )

1
( ) ( )

( ) x N x

x m x
x


 

                (4) 

Suppose x X . We use i  to denote the projection 

operator in the i-th component, i.e., ( ) i
i ix x x  

i

. 

Respectively, ( ,d x ) ( )i iy d y,x  . For ,x yX , de-

fine { :i i [ ]}x z z x   ( , )i, ( , )i ix y x y    , and 

( ) (i )ix x   . Then we consider projection into the 

i-th component, the KNN neighbor set N(x) is replaced 
by 1{ ,i i x y( )N x , , : i iyk y    are the k-nearest points 

to i x }. The corresponding definition of sparseness and 

density are 

( )

1
( ) ( , )

i

i i
z N x

x z x
k

 


  , 
( )

1
( ) ( )

( )
i

i
i x N x

x m x
x


 

   (5) 

Now we describe the process of projected clustering. 
The main idea is that distance between data objects is 
restricted to subsets of dimensions where object values 
are dense [10]. This means that we only consider contri-
butions of relevant dimensions when computing the dis-
tance between data point and the cluster center. 

Different from [10], we use a fixed threshold value to 
determine the dense and sparse dimensions. Now let 
xX  to be a cell data object. Suppose 0 0   is a 

positive threshold determined in the process of griding 
process. Define a matrix [ ]ij N n    by1 

0

,

1, if ( )
; 1, ,

0, else

j

x j

x
j

 


 


 n         (6) 

By this index matrix we obtain a projected cell dis-
tance as follows 

1

2
2

, ,
1

( , ) ( ( , ))
n

x j y j j
j

x y x y   


 
  
 
        (7) 

3. Minimum Spanning Trees 

Let G=(V, E) be a connected, undirected edge-weighted 
graph with N nodes as before. W = [wij] is the weight 
matrix. For any , we use Q = G-P to denote the 
subgraph generated by the vertices V\P called a partition 
of nodes. A spanning subgraph is a subgraph that contains 
all the vertices of the original graph. A minimal spanning 
tree of graph G is a spanning graph with no circuits 
whose weight is minimum among all spanning trees of G. 

P V

For a partition P, Q of G, define ( , )P Q  as the 

smallest weight among all edges from the cut-set C (P, 
Q), which is the set of edges connecting P and Q. A link 
is any edge in C(P, Q) with weight ( , )P Q . The link 

set is denoted by ( , )P Q  [12]. 
1Notice that the size of this matrix maybe less than N since we are using 
cells instead of data points. 
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There are several ways to build Minimum Spanning 
Tree (MST) from the graph [11]. Two popular ways to 
implement the algorithms are the agglomerative and the 
divisive procedures. 

The well-known agglomerative procedures are the 
Kruskal and Prim’s algorithms. The first one works by 
constructing the tree from initial N isolated vertices of 
the original graph. All the edges are sorted into a non-de-
creasing order by their weights. For each edge which is 
not in the tree, if this edge does not form a cycle with the 
current tree, then we can add this edge to the tree. In the 
Prim’s algorithm, the tree construction starts with a root 
node. At each step, among all the edges between the 
nodes in the tree T and those which are not in the tree yet, 
the node and the edge associated with the smallest weight 
to the tree T are added. 

The second kind of algorithm is the divisive one called 
the reverse delete algorithm starting with the full graph. 
Edges are deleted in order of nonincreasing weights bas- 
ed on the cycle property as long as keeping the connec-
tivity of the graph. 

Some well-known properties of MST are summarized 
in the following theorem [12]. 

Theorem 3.1. The minimum spanning tree T(G) of a 
graph G has the following properties. 

1) T contains at least one edge from ( , )P Q  for each 

partition P, Q. 
2) Each edge of T is a link of some partition of G.  
3) Let (C1,C2) be a partition of G. If 1 2( , ) ( , )P Q C C   

for each partition (P, Q) of C1, then T (C1) forms a con-
nected subtree of T (G). 

Once we have the MST, we can obtain the desired 
clustering by removing inconsistent edges of MST. The 
simplest way to define inconsistent edges is using weight 
measure ratio of the edge with average weight of nearby 
edges in the tree [12]. If the ratio is larger than a thresh-
old, then it is inconsistent. We can determine a stop crite-
ria by the number of clusters, or a minimum size of any 
cluster by removing edges which can result in two clusters 
whose sizes are larger than the minimum cluster size. 

If we know the number of clusters k, then clustering 
can start by removing k-1 arbitrary edges from the tree, 
creating a k-partition. Then we can minimize the change 
of the total weight of the current clusters to obtain the 
final clustering. 

To reduce computation complexity, Xiaochun Wang et 
al. proposed a divide and conquer approach [11]. Given a 
loose estimate of minimum and maximum numbers of 
data items in each cluster, they propose an iterative ap-
proach for MST clustering algorithm in five steps: 1) Start 
with a spanning tree built by the sequential initialization 
(SI). 2) Calculate the mean and the standard deviation of 
the edge weights in the current distance array and use 
their sum as the threshold. Partially refine the spanning  

tree by running Divisive Hierarchical Clustering Algo-
rithm (DHCA) multiple times until the percentage 
threshold difference between two consecutively updated 
distance arrays is below 610 . 3) Identify and verify the 
longest edge candidates by running MDHCA until two 
consecutive longest edge distances converge to the same 
value at the same places. 4) Remove this longest edge. 5) 
If the number of clusters in the data set is preset or if the 
difference between two consecutively removed longest 
edges has a percentage decrement larger than 50 percent 
of the previous one, we stop. Otherwise go to Step 3. 

However, if the graph size is not large, we can directly 
get clustering from the graph. When we use the flexible 
grids technique to obtain the graph, this is often the case. 
Anyway, the technique of [11] can be applied to further 
reduce the computing time. 

4. Grid Based Spatial Clustering 

The grid based clustering uses a multi-resolution grid 
structure which contains the data objects and acts as op-
erands of clustering performance [1]. For example, the 
authors [13] propose a gravity based grid which ap-
proximates the cell influence by gravity centers. The au-
thors claim that the proposed technique can reduce 
memory usage and simplify computational complexity 
with minor loses of the clustering accuracy. 

Traditional grids are regular hypercubic grid. This re-
quires the grid construction cover all the data space with 
the same precision. The second method uses flexible 
grids, i.e. multi-resolution grids with hypercubic or hy-
per-rectangular cells having randomly oriented borders 
[14]. The main clustering technique is a tree based 
searching with a similarity measure composed of both 
the density and distance differences [15]. 

Suppose the data set is 1[ , , } n
NX x x R 

nR

 . It co- 

ntains in a rectangle  in . A grid is a graph G 

where each node is a complex v = ( D, norm, c, is-
Crowded, p), where D is the polyhedra, norm is a unit 
vector indicating normal vector of previous cutting plane, 
c is a point which lies in the grid acting as its center, is-
Crowded is 1 or 0 indicating whether the grid is highly 
populated or not, and p is the number of data points cov-
ered by the grid. The initial grid is D0 with an arbitrary 
normal vector. In each step, we can define the center of 
the grid as its geometrical center. 

0D

For two nodes (i iv D , , , , )i i inorm c isCrowded pi , 1, 2i   

xists a connecting edge between them. The weight 
value on this edge is defined as 
there e

      (8) 1 2
1 2

1 2

0, if  min{ , } 0
( , )

( , ),    else

p p
D D

v v





 

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The graph is constructed in an iterative way. We start 
with an initial candidate node 

 where D  is the origi

graph into clusters. A commonly used technique to deal 
with this problem is the hierarchical clustering [1]. Ag-
glomerative methods iteratively connect vertices that are 
close to each other with edges. Small clusters are merged 
with each other building up the hierarchical structure to 
find the desired larger clustering structure. Divisive 
methods on the contrary are based on network flows. 
This is done by iteratively identifying the intercluster 
edges in a top-down approach. 

0 0( ,v D
nal rectangle, norm0 

p is the total popula-

0 , ,norm c is  

, )Crowded p

tion number. T

0

is a random selected unit vector, c is the geometrical 
center of D0, is Crowded = 1, and 

hen at each step, the cell containing more 
number of points (controlled by a threshold value 

p
 , or 

larger enough by diameter) controlled by another thresh-
old value 

d
 , is split into two subcells by a hyperplane 

which is orthogonal to the current normal vector. si-
tion of the hyperplane is random. A cell is called 
crowded if its population is larger than 

p

 Po

 . Otherwise it 

is called sparse. If we reach a sparse cell, then add this 
cell to the node set of the graph. If we reach a cell with 
diameter less than 

d
 , then add this cell e node set. 

This step continues until each cell has a population 
less than 

p

 to th

 , or its diameter is smaller than 
d

 . Table 1 

gives the algorithm r the graph construction process. 

Once we have completed the graph construction, those 
nodes in the graph which are not crowded will corre-
spond to vacant area or outliers. Therefore, in order to 
reduce computing complexity, we first remove all sparse 
graph nodes with corresponding edges. The resulting 
graph is G = (V, E) where V is the set of vertices, E the 
set of weighted edges. An example is shown in Figure 1 
with part of its edges. 

Now we use C(X) = {Xq: q = 1, 2,…k} to denote a 
clustering of the data set X where O is the set of outliers. 
Then  fo

ith ph
e  

By this algorithm, we can generate a hierarchical grid 

( )C C X

X O


 together w  a resulting graph. When the gra  is gener-
ated, the clustering will become grouping nodes of th

C

s construction algorithm 

Algorithm: Construction of flexible grids 

                 (9) 

 
Table 1. Flexible grid

Inputs 

1, , }Nx x  dataset of N points in n{X  R . 

D : hyper-rectangle containing X 

p : population threshold value. 

d : cell diameter threshold value 

Outputs 

1{ , , }NV v v   set of vertices 

Begin 

0 0 0 0 0(0) { ( , , ,1, )}V v D n c p  . Let t = 0. 

while 

for each v = (D, n, c, isCrowded, p)

( )V t    

V(t) 

Generate a cutting hyperplane L passing c and with normal 
vector parallel to n. Cut the current cell v into two subcells 

1 2,v v . For each new node, if p < p  or diam(D) < d , 

add this new cell to the node set V. Else add it to V(t + 1). 
Let the new norms be orthogonal to n. 

end 

t + +; 

end 

End 
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Figure 1. An example clustering area  three clusters 

For given population threshold value and diameter 
threshold value, we can generate the flexible grid and 
obtain a graph. Then we can generate a minimum span-
ning tree. Then we can get the final clustering. Figure 1 
shows an example of minimum spanning tree corre-
sponding to the data set in Figure 1. 

Consequently, for fixed 

 with

 

d  and p , the data set X is 

clustered as ( , ,d pC X )  . We  define | |qX  as e 

number of cells in Xq. Define the energy of clustering as 
the sum of intra-cluster variation measure and in-
ter-cluster distance as 

th

2

1
,

1

( , , )

1 1

| | ( ) ( )

1

min ( , )

i j

i j q

p d

k
ji

q v v q i
v v X

i jj ii k

E X

pp

k X diam D diam D

X X

j

 



 


 

 



 



   (10) 

By this grid based method, the final clustering can be 
treated without direct computation to the data points and 
reduce the number of nodes significantly. The only p -
ra l 

ne way to choose these two parameters is to optimize 
the energy of clustering. 

5. A Performance Study 

e t we want to cluster a data set  with 
N objects. By the graph construction al  the 

ious section, the data 

a
meters we need to determine beforehand is the cel

wded threshold value and the minimum cell diameter. cro
O

Suppos hat nR 
gorithm in

prev   set is split in ier-
chy. A minimum spanning tree is constructed associ-

ated with the cell graph. 
 make things simpler, we will assume that the cut-

ting planes are perpendicular to one of the axis in this 
section. Moreover, we assume that each cutting plane 

 through the geometrical center of the current cell. 
Therefore, all the cells are rectangles. Then we can easily 
count the total number of nodes of the graph. 

se the original data cube D0 has a diameter 

to a cell h
ar

To

passes

Suppo 0 , 

and the initial population threshold is p . For some

large number M, let  

 suf-

. Letficiently 02 , 1,2, ,i
i i M  

i  be another decreasing 
priate two sequences, we c

For pecific popul ion
rameters ,

sequence. B hoosing apy c pro-
an optimize the clustering. 

s at  and diameter threshold pa-
  , let the induced graph be G( ,  ) with 

ng tree T(minimum spanni ,  ). A cluste  of T is 

denoted b

ring

y C( , 
cide

) is a set disjoint subtree  whose 

node  with th riginal tr use 

of 

e o

s

ee. We s set coin
( , ) C  to denote the clust of the data
Evidently we have the following properties. 

ering  set. 

Theorem 5.1. Clusters have two properties. 
1) Anti-joint property. If 1 2  , then two disjoint 

clusters in 1( , ) C  are disjoint in 2( , ) C . 

2) Monotonicity property. If 1 2  , then a cluster in 

1( , ) C  cannot be disintegrated in 2( , ) C . 

ulatNow we assume the pop ion thr old esh   is a con-

stant which determines th granularity of the problem. 
Therefore we use

e 
 ( )C  to g denote the clus . Let us 

split the energy into two parts, the intra-cluster energy 
( )iaE

terin

  and the intercluster energy ( )ieE   as follows 

2

1
,

( , )

1 1

| | ( ) ( )
i j

i j q

ia

k
ji

q v v q i
v v X

E X  

j

pp

k X diam D diam D 


     (11) 

1

1
( , )

min ( , )ie
i jj ii k

E X
X X




 




       (12) 

Theorem 5.2. Inter-cluster energy is monotone. That is 
to say, if 1 2  , then 1 2( , ) ( , )ie ieE X E X  . 

Proof: It is clear to see that when 1 2  , a cell 

maybe split into small cells. Therefore, either the set iX  

will be smaller which means that the distance 
( , )i jj i
X X

  will become larger. 

In a recent work [11] the authors propose a divide and 
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g of two phases. The 
tial initialization and the 

se uses

im

conquer based algorithm consistin
first phase includes the sequen
spanning tree updating, and the second pha  some 
technique to locate the longest edges and partitions the 
obtained approximate min um spanning tree to form 
sensible clusters. The authors expect the first phase has 

( log )O fN N where f  is constant. The average time 

complexity of the second phase is ( log )O eN N  where e 
is constant. Therefore their expectation of time complex-
ity is ( log )O N N . However, our algorithm do provide a 

time complexity of ( log )O N N . 

Theorem 5.3. Suppose thresholds are p   and 

d  . Then the time complexity of the flexible g s 

construction algorithm is ( log )O N N . 

Proof: At each stage, if a ,d  

)  is sparse, i.e., isCrowded =0, then the cell is a node 
in the graph. Otherwise, a cutting hyperplane L passing c

rid

 cell 

ll v

( , , ,v D n c isCrowde

 
p

and with normal vector parallel to n is generated. The 
current ce  is cut into two subcells 1 2,v v r each 

new node, if pp

. Fo

  or ( ) dd Diam  , add this new 

cell to the node . 
In this process, the computation of isCrowded and p 

e a time of ( )iO N  where iN  is the nu

 set V

both hav mber of 
da
ce

ta points in the new cell. Ideally, the plane L passes the 
nter of the cell v. Hence / 2iN p  for i = 1; 2. If not 

so
xpect th . Let th otal time 

co  we 
2T  that T(

6.

d arc

structio re rela -
cated. The main ingredient here is the application of grid 
clustering to projection clustering. 

Apparently, this research will lead to efficie
rithms. In future work, we will give experimental study 
on the new technique. This will be lengthy, for the clus-
tering is essentially an optimization process. The best 
population threshold 

, the plane is randomly placed by a uniform distribution 
which we e e same property e t

mplexity be T(N). Then have T(N) = 
(N=2)+O(N). Hence we know N) =O(N log N). 

 Conclusions 

In this paper we present a new projection clustering tech-
nique based on gri hitecture and minimum spanning 
tree. The effective using of minimum spanning tree can 
possibly reduce computing complexity although the con-

n of the graph and the tree a tively compli

nt algo-

p  is to be determin

timizes the clustering energy presented in Section 3. For 
th

, o ith an application. 
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