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Abstract 
Many therapeutic drugs are racemates; i.e. they are chiral molecules consist-
ing of “left”- and “right-handed” enantiomers (stereoisomers that are mirror 
images of each other, and are non-superimposable). In some cases, both enan-
tiomers of the drug contribute to some extent (or equally) to the therapeutic 
effect; in other cases they contribute not at all. The same is true for the ad-
verse effects of racemate drugs: the adverse effects of a racemate drug can be 
greater-than, less-than, or equal to one or the other enantiomer. An unusual 
situation arises when a drug consists of “atropisomers”, stereoisomers arising 
because of hindered rotation about a single chemical bond. We summarize 
the concept of atropisomerism, and give examples. 
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1. Atropisomerism 

Atropisomerism relates to chemical structures that contain at least two rings 
linked by a single bond. Normally, the free-energy of rotation is very low in such 
cases, so the rings are free to rotate about the axis of the bond. But if the rings 
have constituent groups sufficiently large, bulky, or otherwise repulsive, rotation 
can be inhibited, and create asymmetry. This situation gives rise to distinct 
non-interconvertible forms that are “rotational isomers” termed “atropisomers” 
(from the Greek for the unturning, after the eldest of the three Fates ætropoç, 
Atropos). The first atropisomers were identified for the compound 6,6'-Dinitro- 
2,2'-diphenic acid (Figure 1) [1]. 
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Figure 1. 6,6'-Dinitro-2,2'-diphenic acid. The two aromatic rings are joined by a 
single bond, which would normally allow the rings to rotate freely around the axis of 
the bond. But the carboxyylic and nitro groups sterically interfere with rotation, 
leading to non-superimposable “atropisomers”. Top: usual representation of chemical 
structure; Bottom: heavy lines indicate that the aromatic ring is not planar.  

 
Some examples of naturally-occurring atropisomers that have medicinal 

properties and are used in pharmacotherapeutic applications include the rela-
tively small chemical structure of the selective inhibitor of leukotriene metabol-
ism knipholone (Figure 2) [2] obtained from the roots of the tropical ferns 
Kniphofia foliosa to the very large chemical structure of the antibiotic vancomy-
cin (Figure 2) [3] obtained from the soil bacterium Amycolatopsis orientalis 
(Streptomyces orientalis). 

2. Relation to Drug Development 

Chirality is of well-recognized importance in medicinal chemistry and drug de-
velopment because mirror-image molecules often have clinically significantly 
different pharmacologic properties [4] [5] [6]. The enantiomers of a chiral drug 
can differ in pharmacodynamics or any aspect of ADME (absorption, distribu-
tion, metabolism, or elimination). And each of the enantiomers can be pharma-
cologically inert, or contribute (additively, synergistically, or sub-additively) to 
the drug’s therapeutic effect or adverse effects [4]. If one enantiomer does not 
significantly contribute to the desired pharmacologic effect, it has been called 
“isomeric ballast” [7] [8]. Widely-used drugs that benefit from the contribution 
of both enantiomers are the analgesic tramadol [9] [10] [11] and the antidepres-
sant fluoxetine [12] [13] [14]. A particularly tragic example of a negative contri-
bution of an enantiomer to a drug is thalidomide [15] [16] [17].  

In the case of compounds with classical chiral centers, interconversion of 
enantiomers requires bond-breaking. In contrast, in the case of atropisomers, 
interconversion involves only rotation around a bond (Figure 3). Thus, for 
atropisomers, the question becomes one of relative stability of the two forms. 
That is, the greater the steric hindrance inhibiting free rotation, the more sta-
ble—and less interconvertible—the individual forms (Figure 4). The relevant 
stability for pharmacotherapeutic use has to be assessed at body conditions, 
since the interconversion is pH and temperature-dependent [18] [19]. 
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Figure 2. Left: knippholone from Kniphofia foliosa. Right: vancomycin 
from Amycolatopsis orientalis.  

 

 

Figure 3. Rotation around the bond yields interconvertible forms 
(atropisomers). (S) and (R) are the stereochemical configurations 
according to the standard Cahn-Ingold-Prelog system. 

 

 

Figure 4. Greater steric hindrance increases the time of conversion from one 
chiral form to other. Different colors designate different constituent groups.  

 
The complexities inherent in dealing with atropisomers in drug synthesis and 

development hindered enthusiasm for such compounds as drugs, but recent 
technical advances have spawned new interest [20]-[26] (Figure 5). As just one ex-
ample, Takahashi et al. [27] introduced atropisomerism to a series of N-benzoylated 
indole derivatives of indomethacin and isolated stable atropisomers with differ-
ent selectivity for cyclooxyhenase COX-1 and COX-2 isozymes. 

https://doi.org/10.4236/pp.2020.111001


R. B. Raffa et al. 
 

 

DOI: 10.4236/pp.2020.111001 4 Pharmacology & Pharmacy 
 

 

Figure 5. Number of publications listed in 
MedLine for the search term “atropisome(s)”.  

3. Atropisomeric NaV1.7 Inhibitors 

NaV1.7 is the designation for one member of a family of sodium channels con-
sisting of at least nine known members [28] [29]. They are proteins differentially 
located within certain cell membranes, and form transmembrane ion channels 
with selectivity for Na+ ions [29]. Because of their location in dorsal root ganglia 
and other sites relevant to pain sensation transmission, mutations in the gene 
that encodes NaV1.7 in humans (SCN9A) are linked to hereditary pain disorders 
[30] [31] [32], and loss-of-function mutations are associated with congenital in-
sensitivity to pain [33], the NaV1.7 type has been a favored target of analgesics 
drug discovery research [34] [35] [36] [37] [38] (Figure 6).  

As an example, as part of a program to optimize the potency and reduce some 
negative ADME characteristics related to the pharmacokinetics and CYP450 
metabolism of a series of selective sulfonamide NaV1.7 inhibitors [39], Graceffa 
et al. [40] synthesized a series of atropisomeric quinolinone sulfonamide NaV1.7 
inhibitors. Several compounds had high affinity (nM) and selectivity for NaV1.7, 
with improved pharmacokinetic and metabolic characteristics. One particular 
compound (AM-0466) showed antinociceptive activity in mice in a capsai-
cin-induced pain model. The analgesic pharmacologic characteristics of the 
atropisomer quinolone sulfonamide NaV1.7 antagonist AMG8379 (Figure 7) 
were reported by Kornecook et al. [41]. It demonstrated dose-related activity in 
several NaV1.7-dependent endpoints in vivo.  

4. Summary and Conclusions 

Atropisomerism is a less well-known type of chirality. Because the conversion of 
one form to the other involves rotation about a single bond, it can be relatively 
facile and occur in the timeframe of seconds. But, depending on the atropiso-
mer’s size and shape (steric bulk), electronic properties, and external factors  
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Figure 6. Putative evolutionary relationship among the NaV1.x sodium 
channels and mapping to human chromosome 2. From Wikipedia.  

 

 

Figure 7. Chemical structure of AMG8379, 
an atropisomer NaV1.7 antagonist.  

 
such as pH and temperature, one chiral form might not easily convert to the 
other form, and only do so so slowly (e.g. hours or even years) that the individu-
al forms are essentially non-interconvertible. The recognition of, and an interest 
in, atropisomeric pharmacotherapeutics have increased in recent years, and sev-
eral atropisomeric compounds have shown desirable properties over their 
non-chiral counterparts.  
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