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Abstract 
In this paper, we consider an extragradient thresholding algorithm for find-
ing the sparse solution of mixed complementarity problems (MCPs). We es-
tablish a relaxation 1l  regularized projection minimization model for the 
original problem and design an extragradient thresholding algorithm (ETA) 
to solve the regularized model. Furthermore, we prove that any cluster point 
of the sequence generated by ETA is a solution of MCP. Finally, numerical 
experiments show that the ETA algorithm can effectively solve the 1l  regu-
larized projection minimization model and obtain the sparse solution of the 
mixed complementarity problem. 
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1. Introduction 

Define a continuously differentiable function : n nF R R→ , and a nonempty set 

{ }: | ,nx R a x bΩ = ∈ ≤ ≤  

where { }{ } { }{ },
n n

a R b R= −∞ = +∞∪ ∪  and ( ), 1, 2, ,i ia b a b i n< < = � . The 
mixed complementarity problem is to find a vector x∈Ω , such that 

( ) ( )T 0, .y x F x y− ≥ ∀ ∈Ω                     (1) 

The mixed complementarity problem, also known as box constrained varia-
tional inequality problem, denoted by MCP (a, b, F). In particular, if : nR+Ω = , 
the mixed complementarity problem becomes a nonlinear complementarity prob-
lem (NCP), is to find a vertor 0x ≥ , such that 

( ) ( )T0, 0.F x F x x≥ =  
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Moreover, if ( ) :F x Mx q= + , where ,n n nM R q R×∈ ∈ , the nonlinear com-
plementary problem reduces a linear complementary problem (LCP): 

( )T0, 0, 0.x Mx q Mx q x≥ + ≥ + =  

The set of solution to the mixed complementarity problem is denoted by SOL 
(F), throughout this paper, we assume ( )SOL F ≠ ∅ . 

The MCP has wide applications in fields of science and engineering [1] [2], 
and many results on its theories and algorithms have been developed (see e.g. [3] 
[4] [5] [6]). 

In recent years, the problem of recovering an unknown sparse solution from 
some linear constraints has been an active topic with a range of applications in-
cluding signal processing, machine learning, and computer vision [7], and there 
are many articles available for sloving the sparse solutions of systems of linear 
equations [8]-[13] as well as the optimization problems [14] [15] [16]. 

In contrast with the fast development in sparse solutions of optimization and 
linear equations, there are few researches available for the sparse solutions of the 
complementarity problems. The sparse solution problem of linear complementar-
ity was first studied by Chen and Xiang [17], by using the concept of minimum 
( )0 1p p< <  norm solution, they studied the characteristics and calculations of 

sparse solutions and minimum p-norm solutions for linear complementarity 
problems. Recently, some solution methods had been proposed for LCP and 
NCP, for examples, shrinkage-thresholding projection method [18], half thre-
sholding projection algorithm [19] and extragradient thresholding method [20]. 

Along with the research of [17] [18] [19] [20], in this paper, we aim to design 
an extragradient thresholding Algorithm for the sparse solution of MCP, and 
which can be seen as an extension of the sparse solution algorithm for NCP. 

Due to the relationship between MCP and the variational inequality, we aim 
to seek a vector x∈Ω  by solving the solution of 0l  norm minimization problem: 

( ) ( )
0

T

min ,

s.t. 0,

x

y x F x− ≥                       
(2) 

for any y∈Ω , where 
0x  stands for the number of nonzero components of x 

and a solution of problem (2) is called the sparse solution of MCP. 
In essence, the minimization problem (2) is a sparse optimization problem 

with equilibrium constraints. It is not easy to get solutions due to the equili-
brium constraints, even if the objective function is continuous. 

To overcome the difficulty for the 0l  norm, many researchers have suggested 
to relax the 0l  norm and instead to consider the 1l  norm, see [21]. Motivated 
by this outstanding work, we consider applying 1l  norm minimization to find 
the sparse solution of MCP, and we obtain the following minimization problem 
to approximate problem (2): 

( ) ( )
1

T

min ,

s.t. 0
x

x

y x F x
∈Ω

− ≥                       

(3) 
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for any y∈Ω  and where 1
1

n

i
i

x x
=

= ∑ . 

Given a vector x∈Ω , let ( )P xΩ  be the projection of x on Ω , for conven-
ience, we write ( ) [ ]P x xΩ Ω

= , it is well known (see, e.g., [22]) that *x  is a solu-
tion point of problem (1) if and only if it satisfies the following projection equa-
tion: 

( ) ( )* * * *: 0,W x x x F x
Ω

 = − − =                   
(4) 

and therefore problem (3) is equivalent to the following optimization problem 

( )

( )
1,

min :

s.t. .

nx z R
f x x

x x F x
∈

Ω

=

= −                        

(5) 

In order to simplify the objective function, we introduce a new variable 
nz R∈  and a regularization parameter 0λ >  and establish the corresponding 

regularized minimization problem as follows: 

( )

( )

2

1,
min , :

s.t. .

nx z R
f x z x z x

z x F x

λ λ
∈

Ω

= − +

= −                     

(6) 

We call (6) the 1l  regularized projection minimization problem. 
This paper is organized as follows. In Section 2, we study the relation between 

the solution of model (6) and that of problem (3), and we show theoretically that 
(6) is a good approximation of problem (3). In Section 3, we propose an extra-
gradient thresholding algorithm(ETA) for (6) and analyze the convergence of 
this algorithm. Numerical results are given in Section 4 and conclusion is de-
scribed in Section 5. 

2. The l1 Regularized Approximation 

In this section, we study the relation between the solution of model (6) and that 
of model (3). The following theorem shows that model (6) is a good approxima-
tion of problem (3). 

Theorem 2.1. For any fixed 0λ > , the solution set of (6) is nonempty and 
bounded. Let ( ){ },

k k
x zλ λ  be a solution of (6), and { }kλ  be any positive se-

quence converging to 0. If ( )SOL F ≠ ∅ , then ( ){ },
k k

x zλ λ  has at least one ac-

cumulation point, and any accumulation point x∗  of { }k
xλ  is a solution of 

(1.3). 
Proof. For any fixed 0λ > , since 

( ) ( ), as , ,f x z x zλ → +∞ →∞
                  

(7) 

which means ( ),f x zλ  is coercivity. On the other hand, it is clear that for any 
nx R∈  and nz R∈ , ( ), 0f x zλ ≥ . This together with (7) implies the level set 

( ) ( ) ( ) ( ){ }0 0, | , ,  and n nL x z R R f x z f x z z x F xλ λ Ω
= ∈ × ≤ = −    
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is nonempty and compact, where 0
nx R∈  and ( )0 0 0z x F x

Ω
 = −   are given 

points, which deduces that the solution set of problem (6) is nonempty and 
bounded since ( ),f x zλ  is continuous on L. 

Now we consider the proof of the second part of this theorem. Let  
( )x̂ SOL F∈  and ( )ˆ ˆẑ x F x

Ω
= −   . from (5), we have ˆ ˆx z= . Since ( ),

k k
x zλ λ  

is a solution of (6) with kλ λ= , where ( )k k k
z x F xλ λ λ

Ω
 = −  , it follows that 

{ }2 2

1 1

2

1

1

max ,

ˆ ˆˆ

ˆ .

k k k k k kk k

k

k

x z x x z x

x z x

x

λ λ λ λ λ λλ λ

λ

λ

− ≤ − +

≤ − +

=
          

(8) 

This implies that for any 0kλ > , 

11
ˆ .

k
x xλ ≤

                         
(9) 

Hence the sequence { }k
xλ  is bounded and has at least one cluster point and 

so is { }k
zλ  due to 

2

1
ˆ

k k kx z xλ λ λ− ≤ . 

Let x∗  and z∗  be any cluster points of { }k
xλ  and { }k

zλ , respectively, and 

( )k k k
z x F xλ λ λ

Ω
 = −  . Then there exists a subsequence of { }kλ , say { }jkλ , 

such that 

lim and lim .
k kj jj jk k

x x z zλ λ
∗ ∗

→∞ →∞
= =  

We can obtain ( )z x F x∗ ∗ ∗

Ω
 = −   by letting jk →∞  in  

( )k k k
z x F xλ λ λ

Ω
 = −  . Letting 0

jkλ → , in 

2

1
ˆ

k k jj j kx z xλ λ λ− ≤  

yields x z∗ ∗= . Consequently, ( )x x F x∗ ∗ ∗

Ω
 = −  , which implies ( )x SOL F∗ ∈ . 

Let jk  tend to ∞  in (9), we get 
11

ˆx x∗ ≤ . Then by the arbitrariness of  
( )x̂ SOL F∈ , we know x∗  is solution of problem (3). This completes the proof.  

3. Algorithm and Convergence 

In this section, we give the extragradient thresholding algorithm (ETA) to solve 

1l  regularization projection minimization problem (6) and give the convergence 
analysis of ETA. 

First, we review some basic concepts about the monotone operator and the 
properties of the projection operator which can be found in [23]. 

Lemma 3.1. Let ( )KP ⋅  be a projection from nR  to K, where K is a non- 
empty closed convex subset on nR . Then we have 

(a) For ny R∈ , 

[ ]( ) [ ]( )T
0, ;K Ky P y P y x x K− − ≥ ∀ ∈

              
(10) 

(b) for any , ny z R∈ , 
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[ ] [ ] ( ) [ ] [ ]( )2 T .K K K KP y P z y z P y P z− ≤ − −
            

(11) 

Using Lemma 3.1, we can obtain the following properties easily. 
Lemma 3.2. Define a residue funtion 

( ) [ ]: , 0, .n
KH P x d d Rα α α= − ≥ ∈                (12) 

Then the following statements are valid. 

(a) For any 0α ≥ , 
( )x H α

α
−

 is non-increasing; 

(b) 0α∀ > , ( )( ) ( ) 2

T x H
d x H

α
α

α
−

− ≥ ; 

(c) nz R∀ ∈ , [ ] [ ]2 22
K KP z x z x P z z− ≤ − − − . 

In this paper, we suppose the mapping : n nF R R→  is co-coercive on the set 
Ω , i.e., there exists a constant 0c >  such that 

( ) ( ) ( ) ( ) 2
, , , .F x F y x y c F x F y x y− − ≥ − ∀ ∈Ω  

It is clear that the co-coercive mapping is monotone, namely, 

( ) ( ) , 0, , .F x F y x y x y− − ≥ ∀ ∈Ω  

For a given kz ∈Ω  and 0kλ > , we consider an unconstrained minimiza-
tion subproblem: 

( ) 2

1min , : .
kn

k k
k

x R
f x z x z xλ λ

∈
= − +

                
(13) 

Evidently, the minimizer *x  of the model (13) satisfies the corresponding 
optimality condition 

( )* ,
k

kx S zλ=
                        

(14) 

where the shrinkage operator Sλ  is defined by (see, e.g., [18]) 

( )( )

, ;
2 2

0, ;
2 2

, .
2 2

i i

ii

i i

z z

S z z

z z

λ

λ λ

λ λ

λ λ

 − ≥

= − ≤ ≤



+ ≤ −                

(15) 

It demonstrates that a solution nx R∈  of the subproblem (13) can be analyt-
ically expressed by (14). 

In what follows, we construct the extragradient thresholding algorithm (ETA) 
to solve the 1l  regularized projection minimization problem (6). 

Algorithm ETA 
Step 0: Choose ( )0

00 , , 0, , , 0,1 , 0z lλ γ τ µ≠ ∈Ω > ∈ >  and a positive integ-
ers max 0 0n K> > , set 0k = . 

Step 1: Compute ( ) ( ),
k

k k k k k
kx S z y x F xλ α

Ω
 = = −  , where km

k lα γ=  with 

km  being the smallest nonnegative integer satisfying 
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( ) ( ) .
k k

k k

k

x y
F x F y µ

α

−
− ≤

                 
(16) 

Step 2: If k kx z− ≤   or the number of iterations is greater than maxn , then 
return , ,k k kz x y  and stop. Otherwise, compute 

( )1 ,k k k
kz x F yα+

Ω
 = −   

and update 1kλ +  by 

0
1

, if 1 is a multiple of ,
, otherwise.
k

k
k

k Kτλ
λ

λ+

+
= 


 

Step 3: Let 1k k= + , then go to Step 1. 
Define 

( ) ( ) , 0x x F xα α α
Ω

= − ≥    

and 

( ) ( ) ( ) ( ), , , ,e x a x x r x e xα α α= − =  

It is easy to see that kx  is a solution for MCP if and only if  
( ), 0, 0ke x α α= ∀ > . 
The following lemma plays an important role in the analysis of the global 

convergence of the Algorithm ETA. 
Lemma 3.3. Suppose that mapping F is co-coercive and ( )SOL F ≠ ∅ . If kx  

generated by ETA is not a solution of ( )MCP F , then for any ( )x̂ SOL F∈ , we 
have 

( ) ( ) ( )
2

ˆ, , 1 .
k k

k k k k k
x y

F y x x F y x y µ
γ

−
− ≥ − ≥ −

       
(17) 

Proof. Since ( )x̂ SOL F∈  and ky ∈Ω , it follows that ( )ˆ ˆ, 0kF x y x− ≥ . 
By the co-coercive of mapping F, we have ( ) ˆ, 0k kF y y x− ≥ . Hence 

( ) ( )
( )
( ) ( ) ( )

2 2

2

ˆ ˆ, ,

,

, ,

1

1 ,

k k k k k k

k k k

k k k k k k k

k k k k

k k

k k

F y x x F y x y y x

F y x y

F x x y F x F y x y

x y x y

x y

µ
α α

µ
γ

− = − + −

≥ −

= − − − −

≥ − − −

−
≥ −

 

where the second inequality comes from Lemma 3.2(b) and (16), and the last 
inequality is based on kα γ≤ . 

The following theorem gives the global convergence of the algorithm ETA. 
Theorem 3.4. Suppose F is co-coercive and ( ) 0SOL F ≠ . If { }kx  and  

{ }ky  are infinite columns generated by the algorithm ETA, then 

lim 0.k k

k
x y

→∞
− =

                      
(18) 
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Further, { }kx  converges to a solution of the problem MCP(a, b, F). 
Proof. Let ( )x̂ SOL F∈ , by Lemma 3.2(c) and (17), we have 

( )( ) ( )
( ) ( ) ( ) ( )
( ) ( )

( )( ) ( )

21

2 21

T T2 21 1

T2 21 1

T2 2 21 1

ˆ

ˆ

ˆ ˆ2 2

ˆ 2

ˆ 2

k

k k k k k
k k

k k k k k k k k
k k

k k k k k k
k

k k k k k k k k k k
k

z x

x F y x z x F y

x x F y x x F y z x x z

x x F y z y x z

x x x y z y x y F y z y

α α

α α

α

α

+

+

+ +

+ +

+ +

−

≤ − − − − +

= − − − − − − −

≤ − − − − −

= − − − − − + − − −

(19) 

Now consider the last term of Equation (19), by Lemma 3.1 (a), we have 

( )( ) ( )T 1 0k k k k k
ky x F x z yα +− + − ≥  

It follows that 

( )( ) ( )
( )( ) ( ) ( )( ) ( )

( ) ( )( ) ( )
( ) ( )( )

T 1

T T1 1

T 1

2 22 1

2

2 2

2

k k k k k
k

k k k k k k k k k k
k k

k k k k
k

k k k k
k

x y F y z y

x y F y z y y x F x z y

F x F y z y

F x F y z y

α

α α

α

α

+

+ +

+

+

− − −

≤ − − − + − + −

= − −

≤ − + −

(20) 

Replacing (20) into (19), and by (16), we deduce 

( ) ( )( )

( )

2 2 2 21 1

2 22 1

2 2 22

2 22

ˆ ˆ

ˆ

ˆ 1

k k k k k k

k k k k
k

k k k k k

k k k

z x x x x y z y

F x F y z y

x x x y x y

x x x y

α

µ

µ

+ +

+

− ≤ − − − − −

+ − + −

≤ − − − + −

= − − − −
         

(21) 

According to the definition of shrinkage operator (15), we know that 
1 1ˆ ˆ .k kx x z x+ +− ≤ −  

Hence, { }2
ˆkx x−  has contraction properties, which means { }kx  is bounded, 

and 

( ) { }2 2 22 1

0 0
ˆ ˆ1 ,k k k k

k k
x y x x x xµ

∞ ∞
+

= =

− − ≤ − − − < +∞∑ ∑  

so we get (18) holds. 
Since { }kx  is bounded, the sequence { }kx  has at least one cluster point, let 

*x  be a cluster points of { }kx  and a subsequence { }ikx  converge to *x . Next 
we will show ( )*x SOL F∈ , we consider two cases: 

Case 1: assume that there is a positive low bounded minα  such that  

min 0
ikα α≥ > , then by inequality 

{ } ( ) ( ) { } ( )min 1, ,1 , max 1, ,1 .e x e x e xα α α≤ ≤
         

(22) 
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the continuity of ( ),e x α  for x and (18), we get 

( ) ( ) ( )
{ }

( )
{ } { }

*

min min

,
,1 lim ,1 lim

min 1,

,
lim lim 0.

min 1, min 1,

i
ii

i i
i

i i i
i

i i

k
kk

k k
k

k k k
k

k k

e x
e x e x

e x x y

α

α

α

α α

→∞ →∞

→∞ →∞

= ≤

−
≤ = =

 

Case 2: assume 0
ikα → , for enough large ik , by the Lemma 3.2 (a) and the 

Arimijo search (16), we get 

( ) ( )
1,

1,1 .
1

i
i

i i i
i

i

k
k

k k k
k

k

e x
l

e x F x F x
l

l

α
µ µ α

α

 
     ≤ < −   

  
 

Hence, we have 

( ) ( ) ( )* 1,1 lim ,1 lim 0.i i i
i

i i

k k k
kk k

e x e x F x F x
l
α

→∞ →∞

  = ≤ − =  
        

(23) 

In summary, we can get ( )*x SOL F∈ . Replacing this formula into (21), we 
have 

( )2 2 2 21 * 1 * * 21 .k k k k kx x z x x x x yµ+ +− ≤ − ≤ − − − −  

Hence we get { }kx  converges to the solution *x . The proof is thus com-
plete.  

4. Numerical Experiments 

In this section, we present some numerical experiments to demonstrate the ef-
fectiveness of our ETA algorithm, and show the algorithm can obtain the sparse 
solution of the MCP (a, b, F). 

We will stimulate three examples to implement the ETA algorithm. They will be 
ran 100 times for difference dimensions, and thus average results will be recorded. 
In each experiment, we set 0z e= , 2cγ = , 0.1l = , 1 cµ = , max 2000n =  
and other related parameters will be given in the following test example. 

4.1. Test for LCPs with Z-Matrix [18] 

The test is associated with the Z-matrix which has an important property, that is, 
there is a unique sparse solution of LCPs when M is a kind of Z-matrix. Let us 
consider LCP(q, M) where 

T

1 1 11

1 1 111

1 1 11

n

n n n

M I ee n n n
n

n n n

 − − − 
 
 − − − = − =
 
 
 
− − − 

 

�

�

� � � �

�
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and 
T1 1 11, , ,q

n n n
 = − 
 

� , here nI  is the identity matrix of order n and  

( )T1,1, ,1 ne R= ∈� . Such a matrix M is widely used in statistics. It is clear that 
M is a positive semidefinite Z-matrix. For any scalar 0α ≥ , we know that vector 

1x e eα= +  is a solution to LCP(q, M), since it satisfies 

( )T
10, 0, 0.x Mx q Me q x Mx q≥ + = + = + =  

Among all the solution, the vector ( )T
1ˆ 1,0, ,0x e= = �  is the unique sparse 

solution. 
We choose 0z e= , 1c = , 0 0.2λ = , 2cγ = , 0.75τ = , 0.1l = , 1 cµ = ,  

1 6e= − , max 2000n = , 0 5K = . We will take advantage of the recovery error 
ˆx x−  to evaluate our algorithm. Apart from that, the average cpu time (in 

seconds), the average number of iteration times and residual x z−  will also 
be taken into consideration on judging the performance of the method. 

As indicated in Table 1, the ETA algorithm behaves very robust because the 
average number of times of iteration is identically equal to 205, the recovered 
error ˆx x−  and residual x z−  are basically similar. In addition, the spar-
sity 

0x  of the recovered solution x is in all cases equivalents to 1, which means 
the recover is successful. 

4.2. Text for LCPs with Positive Semidefinite Matrices 

In this subsection, we test ETA for randomly created LCPs with positive semide-
finite matrices. First, we state the way of constructing LCPs and their solution. 
Let a matrix ( )n rZ R r n×∈ <  be generated with the standard normal distribu-
tion and TM ZZ= . Let the sparse vector x̂  be produced by choosing randomly 
the 0.01s n= ∗  nonzero components whose values are also randomly generated 
from a standard normal distribution. After the matrix M and the sparse vector 
x̂  have been generated, a vector nq R∈  can be constructed such that x̂  is a 
solution of the LCP (q, M). Then x̂  can be regarded as a sparse solution of the 
LCP (q, M). Namely, 

( )T
0

ˆ ˆ ˆ ˆ ˆ0, 0, 0, and 0.01 .x Mx q x Mx q x n≥ + ≥ + = = ∗  

To be more specific, if ˆ 0ix >  then choose ( )ˆi iq Mx= − , if ˆ 0ix =  then  
 

Table 1. ETA’s computational results on LCPs with Z-matrices. 

n Iter ˆx x−  x z−  
0

x̂  
0

x  Time(sec.) 

3000 205 7.7007E−06 7.5424E−07 1 1 2.89 

5000 205 7.6995E−06 7.5424E−07 1 1 7.92 

10,000 205 7.6986E−06 7.5424E−07 1 1 36.68 

15,000 205 7.6983E−06 7.5424E−07 1 1 78.40 

20,000 205 7.6981E−06 7.5424E−07 1 1 148.45 

25,000 205 7.6980E−06 7.5424E−07 1 1 232.82 
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choose ( ) ( )ˆ ˆi i iq Mx Mx= − . Let M and q be the input to our ETA algorithm and 
take 0z e= , ( )( )maxc svd M= , 0 0.2λ = , 2cγ = , 0.75τ = , 0.1l = , 

1 cµ = , 1 10e= − , max 2000n = , ( )0 max 2, 10000K n=    , here 10000 n    
denotes the largest integer less than 10,000/n. Then ETA will output a solution x. 
Similarly, the average number of iteration times, average cpu time (in seconds), 
and the residual x z−  will also be taken into consideration on valuating our 
ETA algorithm. 

As manifested in Table 2, the ETA algorithm performs quite efficiently. Fur-
thermore, the sparsity 

0x  of recovered solution x is in all cases equal to the 
sparsity 

0x̂ , which means the recover is exact. 

4.3. Test for Co-Coercive Mixed Complementarity Problem 

We now consider a co-coercive mixed complementarity problem (MCP) with 

( ) ( )F x D x Mx q= + +                     (24) 

where ( )D x  and Mx q+  are the nonlinear part and the linear part of ( )F x , 
generate a linear part of Mx q+  in a way similar to [24]. The matrix  

TM A A B= + , where A is an n n×  matrix whose entries are randomly gener-
ated in the interval ( )5,5− , and a skew-symmetric matrix B is generated in the 
same way. In ( )D x , the nonlinear part of ( )F x , the components are  

( ) ( )arctanj j jD x d x= ∗ , and jd  is a random variable in ( )1,0− , see similar 
example [25]. Then the sequent part of generating the sparse vector x̂  and 
vector nq R∈  such that 

( ) ( )T
0

ˆ ˆ ˆ ˆ, 0, , and 0.01 .x y x F x y x n∈Ω − ≥ ∀ ∈Ω = ∗  

is similar to the procedure of Section 4.2. Let M and q be the input to our ETA 
algorithm and take 0z e= , ( )150 logc n= ∗ , 0 0.2λ = , 2cγ = , 0.75τ = , 

0.1l = , 1 cµ = , 1 6e= − , max 2000n = , ( )0 max 2,10000K n= , and  
( ),1d rand n= − . Then ETA will output a solution x. Similariy, the average num-

ber of iteration times, the average residual x z− , the average sparsity 
0x  of 

x, and the average cpu time (in seconds) will also be taken into consideration on 
valuation our ETA algorithm. 

It is not difficult to see from Table 3 that the ETA algorithm also performs quite 
efficiently in such mixed complementarity problems. The sparsity 

0x  of the re-
covered solution x are all equal to the sparsity 

0x̂ , that is, the recover is exact. 
 

Table 2. Results on randomly created LCPs with positive semidefinite matrices. 

n Iter x z−  
0

x̂  
0

x  Time (sec.) 

2000 350 8.0136E−11 20 20 18.05 

3000 210 9.8366E−11 30 30 11.86 

4000 142 8.5188E−11 40 40 28.65 

5000 142 9.5243E−11 50 50 20.47 

7000 144 8.4519E−11 70 70 43.67 
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Table 3. Results on co-coercive mixed complementarity problems. 

n Iter x z−  
0

x̂  
0

x  Time (sec.) 

1000 468 8.5467E−07 10 10 2.64 

3000 159 7.8034E−07 30 30 16.84 

5000 105 9.4924E−07 50 50 37.59 

7000 103 7.4224E−07 70 70 73.59 

10,000 101 9.5524E−07 100 100 148.94 

5. Conclusion 

In this paper, we concentrate on finding sparse solution for co-coervice mixed 
complementarity problems (MCPs). An 1l  regularized projection minimization 
model is proposed for relaxation, and an extragradient thresholding algorithm 
(ETA) is then designed for this regularized model. Furthermore, we analyze the 
convergence of this algorithm and show any cluster point of the sequence gener-
ated by ETA is a sparse solution of MCP. Preliminary numerical results indicate 
that the 1l  regularized model as well as the ETA is promising to find the spare 
solution of MCPs. 

Data Availability 

Since data in the Network Vector Autoregression (NAR) is not public, we have 
not done empirical analysis. 
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