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Abstract 
Predictive modelling for quality analysis becomes one of the most critical re-
quirements for a continuous improvement of reliability, efficiency and safety 
of laser welding process. Accurate and effective model to perform non-des- 
tructive quality estimation is an essential part of this assessment. This paper 
presents a structured approach developed to design an effective artificial 
neural network based model for predicting the weld bead dimensional cha-
racteristic in laser overlap welding of low carbon galvanized steel. The model-
ling approach is based on the analysis of direct and interaction effects of laser 
welding parameters such as laser power, welding speed, laser beam diameter 
and gap on weld bead dimensional characteristics such as depth of penetra-
tion, width at top surface and width at interface. The data used in this analysis 
was derived from structured experimental investigations according to Tagu-
chi method and exhaustive FEM based 3D modelling and simulation efforts. 
Using a factorial design, different neural network based prediction models 
were developed, implemented and evaluated. The models were trained and 
tested using experimental data, supported with the data generated by the 3D 
simulation. Hold-out test and k-fold cross validation combined to various 
statistical tools were used to evaluate the influence of the laser welding para-
meters on the performances of the models. The results demonstrated that the 
proposed approach resulted successfully in a consistent model providing ac-
curate and reliable predictions of weld bead dimensional characteristics un-
der variable welding conditions. The best model presents prediction errors 
lower than 7% for the three weld quality characteristics. 
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1. Introduction 

Laser welding is an assembly process widely used in the industry, including the 
automotive industry. Overlap welding of galvanized steels enables joining of 
body car elements from different thicknesses. The disadvantage of the overlap 
configuration is the premature vaporization of zinc, which generates pressure at 
the interface of the overlapped sheets. These pressurized vapors eventually eject 
the metal out of the melting pool or trapped as blowers after solidification. 

Several experimental studies have shown the possibility of overcoming this 
situation by controlling the welding process parameters. Like the keyhole weld-
ing, which creates a channel permitting the evacuation of zinc vapors, an optim-
al gap between the parts to be welded also allows the lateral evacuation of these 
vapors. This means that a good control of welding parameters and conditions 
(laser power, welding speed, focal diameter, Gap between sheets and sheet 
thicknesses) can produce the desired welds characteristics. 

Laser welding parameters play an important role in determining the mechan-
ical characteristics of the weld seam [1]. Since the resistance of welded joints is 
linearly proportional to the shape and dimensions of the weld cross section, it is 
obvious to identify the relationship between the welding parameters and the 
geometrical attributes of the weld. To obtain welds with well-defined characte-
ristics, the traditional test-failure method proves too expensive and more 
time-consuming. Finite element modeling has led to promising results through 
the performance of simulation software, but the complexity of the laser welding 
process, which includes many physical phenomena (thermal transfer, fluid flow, 
electromagnetic and thermodynamics), makes the models very complex; there-
fore, the calculation time becomes too long.  

In contrast, thanks to their strong learning ability, artificial neural networks 
(ANNs) can establish nonlinear deterministic relationships between the inputs 
and the outputs of any system regardless of their complexity. ANNs are inspired 
by the human brain, they can learn and experience from examples, as they have 
a powerful ability to classify and recognize patterns. ANNs are used in many 
different fields of business, industry and science [2]. 

Synthia et al. [1] have developed a neural network-based prediction model of 
weld bead geometry according to laser welding parameters, in three different 
shielding gases (argon, helium and nitrogen). Another study applied an artificial 
neural network to predict a geometry of GMAW welds with alternating shiel-
ding gases. The experimental results proved conformity and accordance with the 
predicted geometries. Furthermore, a sensitivity analysis showed that the weld-
ing speed is the most influential input parameter in the predicting model [3]. 

Frason et al. [4] developed a laser weld penetration monitoring system using 
an ANN to analyze acoustic emissions from the weld, and thereby determine the 
depth of penetration of the weld in real time. The system uses a fuzzy logic algo-
rithm to compute the necessary speed changes to maintain the penetration at 
desired levels. An identical study used an ANN model to diagnose welding 
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faults. Features extracted from the acoustic signals were used to train the ANN. 
After training, the ANN could identify normal and abnormal welds [5]. In the 
same vein, an ANN model uses data extracted from infrared thermal images that 
are recorded in real time during A-TIG welding, for the purpose of weld width 
and depth estimation [6]. Another study shows the possibility of using neural 
networks in the ascertainment of the weld quality for thermoplastics welded by 
laser transmission [7]. 

Olabi et al. [8] combined a backpropagation ANN with Taguchi design for 
experiments in order to optimize the parameters level (welding speed, laser 
power and focal position) of CO2 keyhole laser welding process in butt joint 
configurations. The laser welding of stainless steel in butt joint configuration 
was modeled using backpropagation trained neural network. The predicted weld 
dimensions showed conformance with the measured weld cross sections [9]. 
Castiliano et al. integrated an artificial neural network into the laser welding 
process, in order to optimize process parameters when welding stainless steel 
and increase its efficiency [10]. 

Depending on their architecture and their fields of application, several types 
of ANN exist. A broader description of different neural networks is presented in 
the literature review made by Zhang et al. [2]. The Multi-layer feedforward ANN 
is the most popular and widely used ANN in many applications, especially fore-
casting, because of their great ability to map nonlinear and complex relation-
ships in multi-inputs multi-output context [11] [12] [13]. Jacques et al. proposed 
an ANN based predictive modelling approach for weld shape and dimensions in 
butt joint laser welding of galvanized steel [14]. The resulting model presents 
excellent predictions with an average error less than 10%. This model, however, 
can only be applied in the case of laser welding in butt joint configurations. 

Only a few studies used ANNs to predict the quality of laser welding of galva-
nized steels and even less in overlap configurations. The few attempts revealed in 
the literature are focussed on specific application of the ANNs without explicit 
and detailed references to the nature of the data used in the models training and 
validation and criteria adopted for the model performance evaluation. These 
fundamental ideas that constitute the basic ingredients of any models optimiza-
tion procedure are indispensable to build an efficient predictive modeling ap-
proach. 

The present paper presents an artificial neural network based model for pre-
dicting the weld bead dimensional characteristic in laser overlap welding of low 
carbon galvanized steel. The modelling approach is based on laser welding pa-
rameters such as laser power, welding speed, laser beam diameter and the gap 
between the overlapped parts to estimate specific weld bead dimensional cha-
racteristics such as depth of penetration, width at top surface and width at inter-
face. A series of data provided from experiments using a 3KW Nd-YAG laser 
source in a well-structured Taguchi design are combined with simulation data 
provided by a 3D finite element model to train and test the ANN built using va-
riables selection based factorial design. Hold-out test and k-fold cross validation 
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combined to various improved statistical criteria are used for assessing the mod-
els performance. 

2. Modeling Approach 
2.1. Methodology 

The purpose of this study is to set up a model able to predict accurately and 
quickly three geometrical characteristics of the weld seams: depth of penetration 
(DOP), weld width at the top surface (WS) and at the interface (WI) as defined 
in Figure 1. The three welds characteristics prediction in overlap laser welding 
configuration of low-carbon galvanized steel is based on laser power (P), weld-
ing speed (S), laser beam diameter (D) and Gap (Gap) between the overlapped 
sheets as variables. The prediction model is achieved using an artificial neural 
network-based model (ANN). 

In order to know the most influential laser welding parameters on the model 
accuracy, as well as the effects of these parameters on the quality of the of weld 
characteristics prediction, 16 models are built according to a full factorial design 
including the variables known for their influence on the variation of the geome-
trical characteristics of the weld. As shown in Table 1, a variable takes the value 
1 when it is included in the model and 0 when it is not. 

To eliminate the maximum random error sources, the learning data inputs, 
and the testing data inputs must represent the same population, i.e. both should 
be contained in the same variation range. This is the case in the present study, as 
shown in Table 2. Three levels are assigned to each parameter. The upper and 
lower limits of factors are respectively 2000 to 3000 W for the power of the laser, 
40 to 70 mm/s for the welding speed, 300 to 490 μm for the beam diameter and 
0.05 to 0.15 mm for the Gap. The Data assigned for training and testing the var-
ious models are partly provided from an experimental investigation of laser 
welding process [15] while the other part is produced by a 3D FEM simulation 
[16]. In order to include the gap in the ANN modeling, the finite element model 
is adapted for each Gap value (0.05, 0.1 and 0.15 mm) by recalculating the cali-
bration coefficients (m and n) of the heat source for each time step. 

The database generated by simulations is structured in a full factorial design 
of 4 factors, each at three levels, while experimental data are planned in three L9  
 

 
Figure 1. Geometric characteristics of weld cross section in overlap configuration. 
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Table 1. Input variables of each of 16 ANN models. 

Model Gap Power Speed Diameter 

M1 1 1 1 1 

M2 0 1 1 1 

M3 1 0 1 1 

M4 1 1 0 1 

M5 1 1 1 0 

M6 0 0 1 1 

M7 0 1 0 1 

M8 0 1 1 0 

M9 1 0 0 1 

M10 1 0 1 0 

M11 1 1 0 0 

M12 1 0 0 0 

M13 0 1 0 0 

M14 0 0 1 0 

M15 0 0 0 1 

M16 0 0 0 0 

 
Table 2. Levels of process parameters. 

Level Gap Power Speed Diameter 

1 0.05 2000 40 300 

2 0.10 2500 55 395 

3 0.15 3000 70 490 

 
orthogonal matrix. For each gap value, to determine the true prediction errors of 
an ANN model and its accuracy for future predictions, new unused data in 
learning stage should be used in model testing phase, because learning errors are 
often inferior to validation errors. To do this, two validation methods are adopted: 
“hold-out set method” and “k-fold crossvalidation method”. The hold-out set 
method consists of using the large part of the data to train the model and the 
remaining data to test it. The k-fold cross validation method consists of sam-
pling all the n data after its randomization in k segments, the model is then 
trained by n-k data and tested by k remaining data. The procedure is repeated k 
times by changing the testing sample each time. The validation errors are esti-
mated by various statistical tools for the k variants, then averaged to determine 
the real prediction errors of the model. 

The neural network modeling procedure used in this study consists first in 
confirming the reliability of the data provided by the 3D finite element model. 
Using the hold-out set method, the ANN models are trained by the entire simu-
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lation data and then tested by the experimental data. Second, all the data are 
mixed and randomized, then the k-fold cross validation method is applied, with 
k = 6. 

2.2. ANN Model Building  

There are several kinds of networks according to their architectures, their inter-
nal mechanisms and their application objectives. In the present study, the inter-
est is focused on multilayer feedforward back propagation perceptron for its 
prediction capability. As illustrated in Figure 2, the MLP is mainly composed of: 
1) an input layer with a number of neurons equals the number of input variables 
of the ANN, called independent variables. 2) One or more hidden layers having 
a limited number of neurons (n). It is necessary to try several networks for dif-
ferent values of n in order to optimize the training performances especially as 
the number of variables varies from one model to another and to avoid over-
training. Consequently, to avoid long training and overfitting that could affect 
the models accuracy, only one hidden layer is considered using n = 2 × p + 1, 
with p is the number of independent variables. 3) An output layer containing a 
specific number of neurons equal to the number of output variables. In our case, 
there are three outputs (DOP, WS and WI). 

The artificial neuron is an integrator that performs the weighted sum of its 
inputs originate from the previous layer (Equation (1)). The resulted sum is then 
transformed by a transfer function to provide the neuron output. The transfer 
function used for neurons of the input and hidden layer, is a sigmoid (Equation  
 

 
Figure 2. Neural network architecture. 
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(2)), and that used for the output layer neurons is a linear function (Equation 
(3)) where x, wT and b denote respectively neuron input, Wight matrix and bias. 

( ) ( )Ta f s f xW b= = −                       (1) 

( ) ( )1 1 sf s e−= +                          (2) 

( )f s s=                              (3) 

The outputs of last layer neurons are then compared to the target values (de-
pendent variables), if the difference is greater than the tolerated deviation, the 
network updates the weights associated to each neuron by means of a backpro-
pagation technique and therefore starts a new computing loop, to help minimize 
the gap between the network output and the target value. Thus, the iterations 
continue until reaching a tolerated value of the error. The networks are assem-
bled using the built in Matlab NetfitingToolbox. The function used for the 
training of the various networks is the Levenberg-Marquardt function. This 
function use an algorithm for supervised learning considered the fastest available 
algorithm by virtue of the validation vectors, which enables the network learning 
to stop prematurely if the performance in the validation matrix fails to reduce 
the error. 

2.3. Model Assessment 

Based on the modeling process results, three statistical variables are estimated to 
evaluate the performance of each model: 1) Coefficient of determination R2 
which is commonly applied to training errors. Its main defect is its growth with 
the addition of input variables to the model, whereas an excess of variables does 
not always lead to robust models. This is why one is interested in the adjusted 
coefficient 2R . 2) Root mean squared error (RMSE) is the standard deviation of 
prediction errors (residuals), it measures the extent of these residuals and indi-
cates the concentration of data around the line of best fit, and 3) mean absolute 
percentage error (MAPE) is a useful measure of forecasting accuracy. It is easy to 
interpret because it is expressed in percentage. The criteria are expressed ma-
thematically as: 
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where n, p, iy , ŷ  and y  denote respectively sample size, number of input 
process parameter, actual output, predicted output and the mean actual output. 
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3. Results and Discussion 

The evaluation of the training and testing performances of the 16 models are 
based on the three statistical criteria applied to the two validation methods. First, 
the models training and testing performances using the hold-out set method are 
evaluated and the contributions of the laser welding parameters to ANN model 
improvement are estimated. In this case, as the models are trained using numer-
ical simulation data and tested by means of experimental data, the major part of 
the training errors are due to the laser welding parameters not considered as va-
riables in the ANN model building and to the possible bias in the 3D numerical 
model predictions, while the observed testing errors are related to experimental 
errors. 

Table 3 illustrates the learning error estimates of the 16 ANN models using 
the three performance indicators mentioned above, namely RMSE, MAPE and 

2R . The comparison between the learning performances of the 16 models shows 
the contribution of the various welding parameters to the improvement of the 
model performances. The results show that the best model for the prediction of 
the three weld seam attributes (DOP, WS and WI) is indeed the model M1, 
which contains the four process variables. The relative errors of DOP, WS and 
WI Prediction are 2.1%, 1.1% and 2.6% respectively. The M2 model, which does 
not include the gap as input, also shows high performances in the prediction of  
 
Table 3. Training performance of the models using hold-out set method. 

Model 
DOP WS WI 

RMSE MAPE 2R  RMSE MAPE 2R  RMSE MAPE 2R  

M1 68.9 2.1 1 20.2 1.1 1.01 53.5 2.6 0.99 

M2 142.3 4.2 0.95 35.5 2 0.97 80 4.6 0.89 

M3 263 9.3 0.79 119.3 7.1 0.50 179 10.4 0.53 

M4 440.4 16.4 0.29 111.1 4.1 0.58 193 10.8 30.9 

M5 237.9 8.2 0.82 47.8 2.8 0.93 79.8 4.5 0.89 

M6 281.5 9.7 0.74 124 7.4 0.48 191 11.2 0.48 

M7 449.2 16.2 0.27 107.6 6.2 50.8 196.8 11.4 0.36 

M8 268.9 8.9 0.77 57.5 3.2 0.89 105.3 6.1 0.83 

M9 476.2 16.9 0.16 147.6 8.4 0.17 238.9 13.3 0.064 

M10 330.1 11.1 0.64 130.4 7.8 0.36 184.2 11 0.48 

M11 476.7 17.0 0.16 117.7 6.8 0.50 191.3 11 0.375 

M12 507.6 18.1 0.03 161 9.1 0.02 242.3 13.2 0.047 

M13 487.1 17.2 0.12 121.8 7 0.47 204.6 11.8 0.32 

M14 347.8 1.8 0.59 137.1 8.1 0.33 199 11.9 0.43 

M15 486.1 17 0.12 151.7 8.5 0.15 250.9 14 0.018 

M16 517.3 18.3 0 165.6 9.3 0 253.8 14.2 0 
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the three weld seam attributes with respectively a relative error of 4.2%, 2% and 
4.6%. In third place comes the M5 model, which does not consider the focal di-
ameter as input with prediction errors of 8.2%, 2.8% and 4.5% for DOP, WS and 
WI respectively. Among the two-variable models, the model M8, which considers 
only the power and the welding speed as inputs, shows relatively good perfor-
mance during learning stage. The DOP, WS and WI relative prediction errors 
are 8.9%, 3.2% and 6.1% respectively. 

Variance analysis (ANOVA) results in Table 4 and graphs of main effects 
presented in Figures 3-5 are the two statistical tools used to evaluate the contri-
bution of the laser parameters, as well as their interactions in the reduction of 
the prediction error estimator (RMSE) for the three geometric welding attributes 
(DOP, WS and WI). 

Despite their percentage differences, the graphs of effect reveal that all weld-
ing parameters have a positive effect on improving the prediction quality of the 
three geometric attributes of the weld. This asserts that the most accurate and re-
liable model is indeed the M1 which considers all the variables. 

The P-value and F-value express the reliability of ANOVA results. For exam-
ple, for P = 0.03, the Gap contribution of 1.2% is a reliable result with 97% con-
fidence. As we can see, the confidence interval for the effects of laser power, 
welding speed and focal diameter is about 99%, and that associated with the gap 
effect is 94%, this is most likely due to difficulty maintaining a constant Gap 
along the welding line. 

A comparison between validation errors and learning errors shows how well 
an ANN model can predict the geometric attributes of the weld for any laser 
welding parameters combination. The comparison is applied to the models that 
show better performances during the learning process, namely models M1, M2, 
M5 and M8. Table 5 includes learning errors, validation errors, and k-fold cross- 
validation error. 
 
Table 4. Contribution of laser welding parameters to ANN model learning improvement. 

Source 
RMSE_DOP RMSE_WS RMSE_WI 

C% F-Value P-Value C% F-Value P-Value C% F-Value P-Value 

Gap 0.51 5.18 0.057 0.29 5.22 0.06 1.18 20.46 0.003 

P 8.28 84.63 0.000 54.4 988.6 0.00 41 711.54 0.000 

S 77.5 792.4 0.000 34.4 624.5 0.00 50.1 868.69 0.000 

D 6.42 65.6 0.000 2.70 48.9 0.00 0.43 7.43 0.030 

P*S 3.25 3.25 0.001 7.34 133.3 0.00 6.18 107.2 0.000 

P*D 0.72 7.34 0.030 0.10 1.89 0.21 0.18 3.21 0.116 

S*D 2.05 20.98 0.003 0.17 3.08 0.12 0.34 5.84 0.046 

P*S*D 0.53 5.42 0.053 0.23 4.2 0.08 0.17 3 0.127 

Error 0.69 - - 0.39 - - 0.40 - - 

Total 100 - - 100 - - 100 - - 
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Figure 3. Laser welding parameters effects on training MSE_DOP reduction. 

 

 

Figure 4. Laser welding parameters effects on training MSE_WS reduction. 
 

 

Figure 5. Laser welding parameters effects on training RMSE_WS reduction. 
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Table 5. Error estimates of training, hold-out set validation (Val1) and 6-fold cross vali-
dation (Val2) of the best models. 

Model Limits RMSE_DOP MAPE_DOP RMSE_WS MAPE_WS RMSE_WI MAPE_WI 

M1 

Train 68.9 2.1 20.2 1.1 53.5 2.6 

Val1 134.01 6.05 48.51 3.1 133.4 6.81 

Val2 163.1 6.8 35.2 2.2 101.5 6.6 

M2 

Train 142.3 4.2 35.5 2.8 79.8 4.5 

Val1 194.6 8.2 62.4 4.2 166.4 8.7 

Val2 203.3 8.8 50.5 3.4 117.4 8.4 

M5 

Train 237.9 8.2 47.8 2.8 79.8 4.5 

Val1 330.2 12.9 68.7 4.2 152.3 7.6 

Val2 366.4 17.4 65.2 4.8 115.4 7.8 

M8 

Train 268.9 8.9 57.5 3.2 105.4 6.1 

Val1 337.2 13.6 80.5 4.9 168.4 8.7 

Val2 308.5 13.0 66.8 4.4 126.6 8.5 

 
The results do not show a large deviation between training errors and valida-

tion errors, as the maximum gap between these two has been proved to not ex-
ceed 4%. The validation errors obtained by the two methods are almost identical. 
In the light of the results shown in Table 5, the DOP can be predicted with a 
precision greater than 93% by the model M1, a precision greater than 91% by the 
M2 model and a prediction error exceeding 10% for the two other models. WS 
can be estimated with a precision greater than 95% by the four models. WI can 
be predicted by the model M1 with an accuracy greater than 93% and a precision 
of 91% for other models. Figure 6 shows the values predicted by the model M1 
Vs actual values, respectively of DOP, WS and WI. Figure 7 shows those pre-
dicted by the model M2 and Figure 8 shows those predicted by model M5. The 
contour of the cross section of a weld bead can be deduced from the three pre-
dicted geometric attributes DOP, WS and WI.  

4. Conclusion 

This paper presents a structured approach developed to design an effective ar-
tificial neural network based model for predicting the weld bead dimensional 
characteristic in laser overlap welding of low carbon galvanized steel. Based on a 
fused data provided by structured experimental investigations using Taguchi 
method and in-depth FEM based 3D simulations, the possible relationships be-
tween welding parameters such as laser power, welding speed, laser beam di-
ameter and gap, and weld bead dimensional characteristics such as depth of pe-
netration, width at top surface and width at interface are analyzed and their sen-
sitivity to the welding conditions are evaluated using relevant statistical tools. 
Based on these results, a factorial design is used to develop, implement and eva-
luate different neural network based prediction models. The proposed models  
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Figure 6. Predicted Vs actual DOP, WS and WI using M1. 
 

 

Figure 7. Predicted Vs actual DOP, WS and WI using M2. 
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Figure 8. Predicted Vs actual DOP, WS and WI using M5. 
 

are trained and tested using experimental data, supported by the data generated 
by the 3D simulation. Hold-out test and k-fold cross validation combined to 
improved statistical criteria are used to evaluate the influence of the laser weld-
ing parameters on the performances of the models. Analyses of variance results 
reveal that all the welding parameters have a positive contribution to the im-
provement of the prediction quality. The laser power and the welding speed 
contributions are much more important compared to the contribution of the la-
ser beam diameter. The gap contribution appears to be insignificant.  

The achieved predictive modelling results demonstrate that the resulting 
models present excellent performances and can effectively predict the weld bead 
dimensional characteristics with average predicting errors less than 10%. The va-
lidation process reveals that the WS can be predicted with an accuracy of 96% 
while the prediction accuracy of DOP and WI is about 93%. These results dem-
onstrate that the proposed ANN based prediction approach can effectively lead 
to a consistent model able to accurately and reliably provide an appropriate pre-
diction of weld bead dimensional characteristics in laser overlap welding of low 
carbon galvanized steel under variable welding parameters and conditions. 

With the encouraging results achieved using this modelling strategy, the laser 
overlap welding of low carbon galvanized steel will be the subject of additional 
and exhaustive investigations to produce more numerical simulation and expe-
rimental data as well as to test others neural networks approach in order to de-
velop more efficient ANN predictive modelling method. 
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