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Abstract 
We consider, compare, and contrast various aspects of aerodynamic and bal-
listic flight. We compare the energy efficiency of aerodynamic level flight at a 
given altitude versus that of ballistic flight beginning and ending at this same 
altitude. We show that for flights short compared to Earth’s radius, aerody-
namic level flight with lift-to-drag ratio 2L D >  is more energy-efficient 
than ballistic flight, neglecting air resistance or drag in the latter. Smaller 
L D  suffices if air resistance in ballistic flight is not neglected. For a single 
circumnavigation of Earth, we show that aerodynamic flight with 4πL D >  
is more energy-efficient than minimum-altitude circular-orbit ballistic space-
flight. We introduce the concept of gravitational scale height, which may in 
an auxiliary way be helpful in understanding this result. For flights traversing 
N circumnavigations of Earth, if 1N   then even minimum-altitude circu-
lar-orbit ballistic spaceflight is much more energy-efficient than aerodynamic 
flight because even at minimum circular-orbit spaceflight altitude air resis-
tance is very small. For higher-altitude spaceflight air resistance is even 
smaller and the energy-efficiency advantage of spaceflight over aerodynamic 
flight traversing the same distance is therefore even more pronounced. We 
distinguish between the energy efficiency of flight per se and the energy effi-
ciency of the engine that powers flight. Next we consider the effects of air 
density on aerodynamic level flight and provide a simplified view of drag and 
lift. We estimate the low-density/high-altitude limits of aerodynamic level 
flight (and for comparison also of balloons) in Earth’s and Mars’ atmos-
pheres. Employing Mars airplanes and underwater airplanes on Earth (and 
hypothetically also on Mars) as examples, we consider aerodynamic level 
flight in rarefied and dense aerodynamic media, respectively. We also briefly 
discuss hydrofoils. We appraise the optimum range of air densities for aero-
dynamic level flight. We then consider flights of hand-thrown projectiles that 
are unpowered except for the initial throw. We describe how aerodynamically 
efficient ones (i.e., with large L D ) such as Frisbees, Aerobies, and boome-
rangs not only can traverse record horizontal distances, but (along with discus-
es) also can—since lift exceeds weight at achievable throwing speeds—maintain 
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altitude farther if thrown horizontally against the wind than with it. Then we 
compare the energy efficiency of surface transportation versus that of both 
aerodynamic and ballistic flight. 
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Aerodynamic Flight, Ballistic Flight, Lift, Drag, Lift-to-Drag Ratio, Air  
Density, Energy Efficiency 

 

1. Introduction 

We consider, compare, and contrast various aspects of aerodynamic and ballistic 
flight. In Section 2 we compare the energy efficiency of aerodynamic level flight 
at a given altitude versus that of ballistic flight beginning and ending at this same 
altitude. We show that for flights short compared to Earth’s radius, aerodynamic 
level flight with lift-to-drag ratio 2L D >  is more energy-efficient than ballis-
tic flight, neglecting air resistance or drag in the latter. If air resistance in ballistic 
flight is not neglected, then smaller L D  suffices for short aerodynamic level 
flight to be more energy-efficient than short ballistic flight. For a single circumna-
vigation of Earth (the longest possible flight whose purpose is to reach a destina-
tion on Earth, with the destination being the starting point after a round-the-world 
trip), we show that aerodynamic flight with 4πL D >  is more energy-efficient 
than minimum-altitude single-circular-orbit ballistic spaceflight, neglecting the 
very small air resistance in the latter. We introduce the concept of gravitational 
scale height, which may in an auxiliary way be helpful in understanding this re-
sult. If the very small air resistance at minimum circular-orbit spaceflight alti-
tude is not neglected, then L D  very slightly smaller than 4π  suffices for sin-
gle-circumnavigation aerodynamic flight to be more energy-efficient than min-
imum-altitude single-circular-orbit ballistic spaceflight. For flights traversing N 
circumnavigations of Earth, owing to air resistance or drag being very small even 
at minimum circular-orbit ballistic spaceflight altitude, L D  must exceed 
4πN  for aerodynamic flight to be more energy-efficient than minimum-altitude 
circular-orbit ballistic spaceflight. But 100L D ≈  may represent the practicable 
limit that can be achieved even with the most advanced aerodynamic technolo-
gy. Hence if 1N   even minimum-altitude circular-orbit ballistic spaceflight is 
much more energy-efficient than aerodynamic flight. For higher-altitude 
spaceflight drag is even smaller and the energy-efficiency advantage of space-
flight over aerodynamic flight traversing the same distance is therefore even 
more pronounced. In Section 2.4 we distinguish between the energy efficiency of 
flight per se and the energy efficiency of the engine that powers flight. In Section 
3 we consider the effects of air density on aerodynamic level flight and provide a 
simplified view of drag and lift. We estimate the low-density/high-altitude limits 
of aerodynamic level flight (and for comparison also of balloons) in Earth’s and 
Mars’ atmospheres. Employing Mars airplanes and underwater airplanes on 
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Earth (and hypothetically also on Mars) as examples, we consider aerodynamic 
level flight in rarefied and dense aerodynamic media, respectively. We also 
briefly discuss hydrofoils. We appraise the optimum range of air densities for 
aerodynamic level flight. In Section 4 we consider flights of hand-thrown pro-
jectiles that are unpowered except for the initial throw. We describe how 
aerodynamically efficient ones (i.e., with large L D ) such as Frisbees, Aero-
bies, and boomerangs not only can traverse record horizontal distances, but 
(along with discuses) also can—since lift exceeds weight at achievable throwing 
speeds—maintain altitude farther if thrown horizontally against the wind than 
with it. In Section 5 we compare the energy efficiency of surface transportation 
versus that of both aerodynamic and ballistic flight. Brief concluding remarks 
are given in Section 6. Footnotes provide supporting references and some aux-
iliary information. Supplementary Notes, providing more comprehensive aux-
iliary information concerning topics discussed in the main text and/or in the 
cited references including some additional supporting references, are given in 
the Appendix. 

In this paper we define “aircraft” as any type of aerodynamic flying ma-
chine—for example man-made airplane or sailplane, bird, or flying insect in 
forward or hovering flight, including hand-thrown aircraft (e.g., discus, Frisbee, 
Aerobie, boomerang, etc.). Underwater airplanes, which we will briefly consider 
in Section 3.3.2, and hydrofoils, which we will briefly consider in Section 3.4, 
should be classified as aircraft because their lift obtains aerodynamically rather 
than via buoyancy, even though the density of their aerodynamic medium (wa-
ter) is ≈ 800 times that of air at sea level. By lifting the hull out of water into air, 
drag on the hull of a hydrofoil at any given speed is reduced ≈ 800 times; only 
the wings need suffer water resistance as opposed to air resistance. Except for a 
few very brief parenthetical remarks concerning hovering flight, in this paper we 
consider only aircraft that obtain their lift by virtue of their translational forward 
motion, i.e., translational-lift aircraft—for example man-made airplanes and 
sailplanes, birds and insects that obtain their lift by virtue of their translational 
forward motion, underwater airplanes, hydrofoils, and hand-thrown transla-
tional-lift aircraft (e.g., discuses, Frisbees, Aerobies, boomerangs, etc.). Except 
for a brief consideration of underwater airplanes in Section 3.3.2, and a brief 
consideration in Section 3.4 and occasional other even briefer remarks concern-
ing hydrofoils, from among translational-lift aircraft we consider only aerial 
translational-lift aircraft, which obtain their lift by virtue of their translational 
forward motion through air—for example man-made airplanes and sailplanes, 
birds and insects that obtain their lift by virtue of their translational forward 
motion, and hand-thrown translational-lift aircraft (e.g., discuses, Frisbees, 
Aerobies, boomerangs, etc.).1 

 

 

1Most typically in translational motion an aircraft moves through air. But of course air can be moved 
past an aircraft, as in a wind tunnel. Also air moved past an aircraft can impart electroaerodynamic 
propulsion: see Haofeng, X., Yiou, H., Strobel, K.L., Gilmore, C.K., Kelley, S.P., Hennick, C.C., Se-
bastion, T., Woolston, M.R., Perreault, D.J., and Barrett, S.R.H. (2018) Flight of an aeroplane with 
solid-state propulsion. Nature, 563, 532-535. 
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In this paper our main goal is to elucidate more conceptually than mathemat-
ically some fundamental ideas concerning energy efficiency and a number of 
other aspects of aerodynamic versus ballistic flight, and to provide comparison 
with surface transportation. Some elucidations of this type have, of course, been 
provided elsewhere. But to the best knowledge of the author, this paper provides 
a range of such elucidations, and some new ones, not found elsewhere, at least 
not in a single work. We do not attempt the mathematically complex and de-
tailed fully-quantitative analyses based on rigorous application of fluid dynam-
ics, e.g., computational fluid dynamics, as is required in the actual design of air-
craft, or the analyses required in the actual design of spacecraft or surface ve-
hicles. Thus our analyses are qualitative to semiquantitative. 

2. Energy Efficiency of Aerodynamic Versus Ballistic Flight 
2.1. Short Flights: Aerodynamic Flight Wins 

We compare the energy efficiency of aerodynamic level flight at a given altitude 
versus that of ballistic flight beginning and ending at this same altitude, at first 
neglecting air resistance or drag in the case of ballistic flight. We define a short 
flight as one traversing horizontal distance X much smaller than Earth’s radius 

6370 kmR  . [The dot-equal sign (  ) means “very nearly equal to”.] Hence for 
a short flight Earth’s curvature can be neglected. Let Ah  be the altitude above 
mean sea level of aerodynamic level flight, and also the beginning or initial alti-
tude ,initialB Ah h=  and ending or final altitude ,finalB Ah h=  of ballistic flight. 
(The subscript A denotes aerodynamic flight and the subscript B denotes ballis-
tic flight.) Hence this altitude is at radial distance A Ar R h= +  from Earth’s cen-
ter. For simplicity we let Ah R  as is the case for all aerodynamic flight and 

Bh R  as is the case for low-altitude short ballistic flight (and even for mini-
mum-altitude circular-orbit ballistic spaceflight). 

By elementary Newtonian mechanics [1], a short ballistic flight of a projectile 
of mass m and weight mg, beginning and ending at altitude ,initial ,finalB B Ah h h= =  
and traversing horizontal distance X much smaller than Earth’s radius R, costs 
energy [1] 

,short
1 .
2BE mgX=                         (1) 

The local acceleration due to gravity is g and drag is neglected. 
An aerodynamic level flight of an aircraft of mass m and weight mg subject to 

aerodynamic lift L and aerodynamic drag D traversing any horizontal distance 
X, short or long, costs energy 

.A
D D mgXE DX LX mgX
L L L D

= = = =                (2) 

Of course, for any flight, short or long, “level” and “horizontal” mean that Ah  
and therefore A Ar R h= +  is constant, a long flight following the curvature of 
Earth. 
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The first step of Equation (2) is justified because to maintain aerodynamic 
level flight through horizontal distance X air resistance (most generally, fluid re-
sistance) or drag D must be overcome through distance X. The third step of Eq-
uation (2) is justified because to maintain aerodynamic level flight lift L must 
equal the weight mg of an aircraft [2]-[15].2 The lift-to-drag ratio L D  of a 
translational-lift aircraft is the ratio (horizontal distance traversed) ÷ (altitude 
lost) in gliding flight without engine power relative to the air (also relative to the 
ground if the wind is calm) [2]-[15].2 For any translational-lift aircraft L D  is 
maximized if the aircraft is flown at its most energy-efficient angle of attack. In 
this paper unless otherwise noted we always assume L D  to be thus max-
imized. [For auxiliary information, which may also be helpful in some cases 
wherein Refs. [2]-[15]2 are cited later in this paper, see Supplementary Notes 1-6. 
Also, we discuss these points more thoroughly in Section 3. Wherever helpful, 
refer to Decker, J.S. (2014) See How It Flies at https://www.av8n.com/how/.]  

Comparing Equations (1) and (2), if 2L D > , then ,shortA BE E< . Hence 
short aerodynamic level flight with 2L D >  is more energy-efficient than 
short ballistic flight beginning and ending at the same altitude, neglecting air re-
sistance in the latter. This requirement 2L D >  is met by practically all air-
craft (including all birds and flying insects), even by aerodynamically inefficient 
ones [2]-[15]. Thus short aerodynamic level flight is practically always more 
energy-efficient—in most cases considerably more energy-efficient—than short 
ballistic flight, even neglecting air resistance in the latter. But air resistance is not 
always negligible for short ballistic flight, especially in the lower atmosphere. If it 
is not neglected, then the requirement is even milder, namely 2L D n>  with 

1n < . Hence not neglecting air resistance in short ballistic flight, short aerody-
namic level flight is all the more energy-efficient than short ballistic flight. 

By Equations (1) and (2), if air resistance in short ballistic flight can be neg-
lected, then both ,shortBE  and AE  are directly proportional to mg. Hence re-
ducing mg reduces the energy cost of both short ballistic flight and short aero-
dynamic level flight traversing given horizontal distance X equally and in direct 
proportion to the reduction in mg, but does not alter the ratio of energy costs 
between these two modes of flight. If air resistance in short ballistic flight cannot 
be neglected, then reducing mg reduces the energy cost of short ballistic flight 
less than in direct proportion to the reduction in mg. 

Most typically, mg is reduced by reducing m. But we can also consider 
reduction of g. Two examples: (i) Aerodynamic level flight on Mars is at lower g. 
(Of course, for Mars 3390 kmR  .) (ii) An aircraft of mass m a fraction f 
( 0 1f< < ) of whose weight mg is offset by buoyancy can be construed as either 
being of effective mass ( )1m f−  in a gravitational field g or as being of mass m 
in a gravitational field of effective strength ( )1g f− . Such partial offset of 
weight by buoyancy obtains, for example, for a dirigible or blimp that relies on 
buoyancy for only part of its lift, with the balance obtaining aerodynamically, or 
for a hydrofoil that cruises so slowly that it must rely on buoyancy for a 

 

 

2For more technical complements to Ref. [9] see Refs. [10] [45]. 
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non-negligible part of its lift. 
For numerical examples, consider a 5100 km 10 m=  aerodynamic level 

flight at a given altitude Ah  (within the troposphere) with 20L D =  versus a 
5100 km 10 m=  ballistic flight launched at a 45˚ angle, beginning and ending at 

this same altitude ,initial ,finalB B Ah h h= = . Let the mass of both the aerodynamic 
and ballistic craft be 1000 kg. Assume that the engines powering both the aero-
dynamic and ballistic craft are 25% efficient. Neglect air resistance in the ballistic 
flight. Then by elementary Newtonian mechanics [1] the ballistic flight will peak 
at an altitude 425 km 2.5 10 m= ×  above Ah , low enough that our ballistic 
craft, as our aerodynamic craft, can be powered by air-breathing engines. Taking 

29.8 m sg =  and accounting for the 25% efficiency of the engines, by Equation 
(1), which is applicable because 100 km 6370 kmR  , 

,short 5 91 1 J 2 J 2 1000 9.8 10 1.96 10 .
0.25

J J
2

BE
mgX mgX= × = = × × × = ×


 

And by Equation (2), 

5
81 4 1000 9.8 10 J J J 1.96 10 J.

0.25 20 5
AE mg mg

D
X

L
X × ×

= × = = = ×


 

Since typical hydrocarbon aviation fuels yield 74.4 10 J kg≈ × ,3 ≈ 45 kg of 
fuel would be required for the ballistic flight, and ≈ 4.5 kg of fuel would be re-
quired for the aerodynamic level flight. (This yield of 74.4 10 J kg≈ ×  is per kg 
of fuel alone, not counting the O2 required to burn it.) Not neglecting air resis-
tance in the ballistic flight, the energy-efficiency advantage of the aerodynamic 
level flight would exceed this 10:1 ratio. Engine efficiency is discussed in more 
detail, and distinguished from the energy efficiency of flight per se, in Section 
2.4. In any case, as per the numerical examples given immediately above, the 
energy that must be supplied to an engine whose efficiency is   in order to fa-
cilitate aerodynamic flight requiring energy AE  is of course AE  . And like-
wise in the case of ballistic flight it is of course BE  . 

2.2. Intermediate-Length Flights (Including Single  
Circumnavigation): Aerodynamic Flight Still Usually  
Wins, But It’s Closer 

Now let us consider the longest possible flight whose purpose is to reach a desti-
nation on Earth—a single circumnavigation of Earth. The destination is thus the 
starting point after a round-the-world trip. For circumnavigation 2πX r= , X 
being the horizontal distance traversed given flight at constant h and hence also 

 

 

3See the following article (most recently revised in 2019) at https://www.wikipedia.org: “Aviation 
fuel”. [Note: All Wikipedia articles have Talk pages, wherein strengths and weaknesses of the ar-
ticles, along with suggestions for their improvement, are discussed. Wikipedia articles are typically 
revised frequently. Almost all, if not all, Wikipedia articles cited in this paper have been most re-
cently revised in 2019 as of this writing. So all Wikipedia articles cited in this paper are denoted with 
(most recently revised in 2019).] 
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at constant r R h= + , following Earth’s curvature. 
In this case, by elementary Newtonian mechanics minimum-energy ballis-

tic spaceflight obtains at the lowest-altitude circular orbit at which air resis-
tance or drag is negligible, i.e., at 100 mi 160 kmBh ≈ ≈  or equivalently at 

6370 km 160 km 6530 kmB Br R h= + ≈ + = .4 By elementary Newtonian me-
chanics a circular orbit requires speed ( )1 2

orbit Bv GM r= , where M is Earth’s 
mass (not to be confused with the mass m of a spacecraft).4 Also by elementary 
Newtonian mechanics the energy of a spacecraft of mass m at rest at Earth’s sur-
face is its gravitational potential energy ( )potE R GMm R= − . Its gravitational 
potential energy at B Br R h= +  is ( ) ( )pot B BE h GMm R h= − + , its orbital kinet-
ic energy at B Br R h= +  is ( ) ( ) 2

kin,orbit orbit2 2B BE h GMm R h mv= + =   , and its 
total (potential + kinetic) energy in circular orbit at B Br R h= +  is 

( ) ( )total 2B BE h GMm R h= − +   .4 In this Section 2.2 we consider only mini-
mum-altitude ( 100 mi 160 kmBh ≈ ≈ ) circular spaceflight orbits for which 

Bh R  and hence ( ) ( )1 2 1 2
orbit BGM rv GM R=  . If Bh R , then by ele-

mentary Newtonian mechanics the total energy cost of establishing orbit and 
hence of ballistic circumnavigation of Earth at B Br R h= +  is4 

( ) ( )

( )

total ,circumnavigation 2

2 2 1

11 1 1
2 2
1 11
2 2 2 2

11
2 2 2

B B
B

BB

B B

B B

B

GMm GMmE h E
R h R

GMm GMm GMm GMm
hR R h R R
R

GMm GMm h GMm h
R R R R R

GMm h GMm h
R R R R

GMm h GMm m
R R R

 = = − − − +  

= − = −
+  + 

 
    − − = − −        

   = − + = +   
   
 = + = × 
 



 2

1 1 2π 2π .
2 2 2π 4π 4π

GM R
R

mg R mg R mgXmgR

×

× ×
= = 

        (3) 

The first step in the last line of Equation (3) is justified because at all r R≥ , 
2g GM r= , and specifically at r R= , 2g GM R= . (We are primarily inter-

ested in the magnitude of g, so we always take g as positive.) 
For all r R≥  circular orbital speed at r is ( )1 2

orbitv GM r=  and escape ve-
locity from r is ( )1 2

escape 2v GM r= .4 Thus energy cost for escape from r to in-
finity can be written as4 

2
escape escape 2

1 1 2 at all
2 2

at .

GM GM GME mv m m m r mgr r R
r r r

mgR r R

= = = = = ≥

= =
  (4) 

The energy cost establishing of circular orbital speed at r, which equals the 
circular-orbital kinetic energy at r, is half as great:4 

 

 

4See also Ref. [1] Chap. 13. 
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2
kin,orbit orbit 2

1 1 1 1 at all
2 2 2 2
1 at .
2

GM GME mv m m r mgr r R
r r

mgR r R

= = = = ≥

= =
   (5) 

Thus at all r R≥ , escapeE  from radial distance r from Earth’s center to infinity 
equals the energy required for lifting through vertical distance r from radial dis-
tance r to radial distance 2r from Earth’s center if g had remained constant and 
equal to its value at r rather than decreasing with increasing distance from Earth. 
And kin,orbitE  for circular orbit at r is half as great. Hence also at all r R≥  the 
free-fall velocity through vertical distance r from radial distance 2r to radial dis-
tance r from Earth’s center if g had been constant and equal to its value at r 
equals the escape velocity from radial distance r from Earth’s center. Thus the 
“gravitational scale height” at all r R≥  is equal to r itself—specifically, at 
r R=  it is equal to R itself [16] [17] [18].4  

The “ 0r =  gravitational scale height” corresponding to escape through a 
borehole from the center 0r =  of a spherical gravitator of uniform density 
(which Earth is not) is 3/2 times that from R. Hence the energy cost for escape 
through a borehole from the center 0r =  of a spherical gravitator of uniform 
density is 3/2 times that from R. This is perhaps most easily understood if one 
observes that within a uniform-density spherical gravitator, i.e., at 0 r R≤ ≤ , 
g r∝ . Therefore the average value of ( )g r  within R equals ( ) 2g R . Thus 
the portion of an escape trip from 0r =  within R contributes 2R  to the 
“ 0r =  gravitational scale height”, the portion at and beyond R contributes R 
itself, total 3 2R . Thus the portion of an escape trip from 0r =  within R 
costs 1/2 as much energy (1/3 of the total) as the portion at and beyond R (2/3  

of the total). Thus ( ) ( )escape escape
30
2

E r E r R= = = . Escape velocity from R is 

( )1 22GM R ;4 since 1 2
escape escapev E∝  escape velocity through a borehole from the 

center 0r =  of a spherical gravitator of uniform density is 

( ) ( ) ( )
1 2

1
escape escape

23  0 3
2

v r v r R GM R = = = = 
 

.  

Of course M can be construedas the mass of any spherically-symmetrical 
gravitator for which Newtonian gravitational theory is sufficiently accurate and 
Einstein’s General Relativity is not required, not necessarily Earth (the spheri-
cally-symmetrical gravitator taken to be necessarily of uniform density only in 
our discussion of 0r =  gravitational scale height). But in this Section 2.2 our 
main focus is on comparison of single-circumnavigation aerodynamic flight versus 
single-circumnavigation minimum-altitude circular-orbit ballistic spaceflight 
about Earth. (For auxiliary information concerning the concept of scale height 
see Supplementary Note 7.) 

Since even minimum-altitude circular-orbit ballistic spaceflight must be above 
any appreciable atmosphere, B Br R h= +  for a single-orbit spaceflight must ex-
ceed A Ar R h= +  for a single-circumnavigation aerodynamic flight. But since 
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for simplicity we let the spaceflight orbit be a minimum-altitude circular one, 

Bh R  and hence slightly more strongly not only Ah R  but also 

B A B Ah h r r R− = −  . The concept of gravitational scale height introduced in 
the immediately preceding paragraph may help clarify why the strong inequality 

Bh R  ensures that the result derived for ( )total ,circumnavigationB BE h E=  in Equa-
tion (3) is sufficiently accurate for our purposes.4 

Thus if Bh  is minimum-orbital altitude then B A B Ah h r r− = −  can be 
neglected compared to R, slightly more so compared to A Ar R h= + , and 
slightly more so yet compared to B Br R h= + . Hence with negligible error we 
can set ( ) 2A B A Br r r r r R+ =   . Then for the longest possible (sin-
gle-circumnavigation) aerodynamic level flight at altitude A Ah r R= −  
( A Bh h R<  ) whose purpose is to reach a destination (the starting point after 
a round-the-world trip) on Earth, Equation (2) remains valid if we set 

2π 2πAX r R=  . Hence 

,circumnavigation
2π 2π .A

A
mg rmgX mg

L D L D L
RE

D
× ×

= =               (6) 

Comparing Equations (3) and (6), if 4πL D >  then  

,circumnavigation ,circumnavigationA BE E< . Hence single-circumnavigation aerodynamic 
level (fixed-altitude) flight with 4πL D >  is more energy-efficient than sin-
gle-circumnavigation minimum-altitude circular-orbit ballistic spaceflight, neg-
lecting the very small air resistance in the latter. This requirement 4πL D >  is 
met by many, perhaps most, but not all aircraft. It is met by soaring birds such as 
albatrosses [2]-[15]. It is very easily met by sailplanes [2]-[15]. Thus the longest 
possible (single-circumnavigation) aerodynamic level flight whose purpose is to 
reach a destination (the starting point after a round-the world trip) on Earth is 
in many, perhaps most, but not all cases more energy-efficient than the corres-
ponding (single-circumnavigation) minimum-altitude circular-orbit ballistic 
spaceflight. This requirement 4πL D >  neglects air resistance in mini-
mum-altitude circular-orbit ballistic spaceflight; if it is not neglected, then the 
requirement is weakened to 4πL D n>  with 1n < . But it is weakened only 
very slightly, because air resistance even at minimum circular-orbit spaceflight 
altitude is very small. (Since if 2πX R=  minimum-energy ballistic spaceflight 
is a circular orbit just above appreciable atmosphere at altitude Bh , it cannot 
begin and end at the altitude Ah  of aerodynamic level flight, but B Ah Rh−  .) 

Neglecting air resistance in minimum-altitude ballistic spaceflight, for flights 
of intermediate length (X ranging from much smaller than R to approaching 
2πR ), the minimum value that L D  must exceed for aerodynamic level flight 
at altitude Ah R  to be more energy-efficient than ballistic flight beginning 
and ending at this same altitude ,initial ,finalB B Ah h h= =  increases monotonically 
from 2 towards 4π  as X increases from very small values towards 2πR . Not 
neglecting air resistance in ballistic flight, for flights of intermediate length (X 
ranging from much smaller than R to approaching 2πR ), the minimum value 
that L D  must exceed for aerodynamic level flight at altitude Ah R  to be 
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more energy-efficient than ballistic flight beginning and ending at this same 
altitude ,initial ,finalB B Ah h h= =  increases monotonically from ( )2n X  towards 

( )4πn X  as X increases from very small values towards 2πR : ( ) 1n X <  but 
increases monotonically towards very nearly 1 as X increases from very small 
values towards 2πR . Air resistance is very small in minimum-altitude circu-
lar-orbit ballistic flight ( 2πX R= ), and hence also ( )1 n X−  is very small, i.e., 
( )n X  is very nearly 1 if 2πX R= . (Since if 2πX R=  minimum-energy bal-

listic spaceflight is a circular orbit just above appreciable atmosphere at altitude 

Bh , it cannot begin and end at the altitude Ah  of aerodynamic level flight, but 
.B Ah h R−  ) 

Generalizing the third-to-last paragraph of Section 2.1 in light of this Section 
2.2, by Equations (1)-(3) and (6), if air resistance in ballistic flight can be neg-
lected, then for flights traversing any given horizontal distance X, short or long, 
both BE  and AE  are directly proportional to mg. (Of course, a long horizontal 
flight follows Earth’s curvature at fixed altitude above mean sea level.) Hence re-
ducing mg reduces the energy cost of both ballistic flight and aerodynamic level 
flight traversing any given horizontal distance X, short or long, equally and in di-
rect proportion to the reduction in mg, but does not alter the ratio of energy costs 
between these two modes of flight. If air resistance in ballistic flight cannot be 
neglected, then reducing mg reduces the energy cost of any ballistic flight, short or 
long, less than in direct proportion to the reduction in mg. (The second-to-last 
paragraph of Section 2.1 requires no modification in light of Section 2.2.) 

2.3. Long Flights (Multicircumnavigation and Beyond): Ballistic 
Flight Wins—Big-Time 

For an N-circular-orbit minimum-altitude ballistic spaceflight traversing dis-
tance ( )2π 2π 2πB BX r N R h N RN= = +  , whose purpose is typically scientific 
study of Earth as opposed to reaching a destination on Earth, in almost all cases 

1N  . Also ( )2π 2π 2πA AX r N R h N RN= = +   for N-circumnavigation 
aerodynamic level (fixed-altitude) flight. By Equation (2), for N-circumnavigation 
aerodynamic level (fixed-altitude) flight, AE  increases linearly with 

( )2π 2π 2πA AX r N R h N RN= = +  . By contrast, for minimum-altitude circu-
lar-orbit ballistic spaceflight, irrespective of  

( )2π 2π 2πB BX r N R h N RN= = +  , BE  remains fixed at the value given by 
Equation (3) for 1N = . For, even at minimum-orbital spaceflight altitude, air 
resistance is almost negligible, i.e., space is almost frictionless; thus the energy 
cost of launching a spacecraft is one-time. Hence for flights traversing N cir-
cumnavigations of Earth L D  must exceed 4πN  if aerodynamic level 
(fixed-altitude) flight is to be more energy-efficient than minimum-altitude cir-
cular-orbit ballistic spaceflight. But for even the best currently existing sailplanes 
L D  values are between 70 and 80 [2]-[15], and 100L D ≈  may represent the 
practicable limit that can be achieved even with the most advanced aerodynamic 
technology [2]-[15]. Hence even minimum-altitude ( Bh R ) ballistic 
N-circular-orbit ( 1N  ) spaceflight about Earth is incomparably more ener-
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gy-efficient than N-circumnavigation aerodynamic level (fixed-altitude) flight 
within Earth’s atmosphere. This is even more strongly true with respect to 
high-altitude spaceflight for which air resistance is even more negligible, even 
with the one-time energy cost of launch being larger than for minimum-altitude 
circular-orbit spaceflight (recall Section 2.2).4 In return for a one-time energy 
expenditure, spaceflight 2πX R →∞  even for minimum-altitude circular-orbit 
spaceflight, spaceflight 2πX R →∞  even more strongly for high-altitude, say geo-
synchronous, circular-orbital spaceflight, and spaceflight 2πX R →∞  even more 
strongly yet for spaceflight exceeding escape velocity. This of course is simply 
owing to space being essentially frictionless, and increasingly frictionless with 
increasing altitude, thus allowing spacecraft but not aircraft to take full advan-
tage of Newton’s first law of motion (inertia).5 The energy cost of speed in space-
flight is one-time; the energy cost of speed in aerodynamic flight is nev-
er-ending.5 Spaceflight is thus the only mode of transportation that can achieve 

mi gal km l∞ = ∞  of fuel (or the equivalent thereof)—Spaceship Earth (whose 
fuel for its orbital and rotational motions was part of the solar nebula’s kinetic 
energy) is a good example.5 To save time in spaceflight continuous energy ex-
penditure can be employed, for example employing solar, laser, or on-board 
nuclear energy. But in spaceflight continuous energy expenditure buys accelera-
tion; in aerodynamic flight it buys only (constant) speed.5 

2.4. Flight Energy Efficiency versus Engine Energy Efficiency 

The energy efficiency of flight per se should not be confused with the energy ef-
ficiency of the engine that powers flight. If an aircraft engine is a heat engine 
operating in a cycle with heat input at temperature hotT  and heat exhaust at 
temperature coldT , then its thermodynamic efficiency even assuming perfect re-
versibility is limited by the Carnot bound ( )cold hot1 T T− .6 Of course any real 
cyclic heat engine is less than perfect and hence its actual thermodynamic effi-
ciency is less than the Carnot6 bound. But the actual thermodynamic efficiency 
of any real cyclic heat engine under any given conditions, while less than the 
Carnot bound ( )cold hot1 T T−  for any given cold hotT T , nonetheless, all other 
things being equal, like the Carnot6 bound increases monotonically with de-
creasing cold hotT T . For example, the Curzon-Ahlborn efficiency at maximum 
power output assuming endoreversibility (irreversible heat flows directly pro-
portional to finite temperature differences but otherwise reversible operation), 

( )1 2
cold hot1 T T−  [19] [20],7 like the Carnot efficiency ( )cold hot1 T T− ,6 increases 

monotonically with decreasing cold hotT T  [19] [20].6,7 Both the Carnot and 
Curzon-Ahlborn [19] [20] efficiencies are upper bounds.6,7 Unlike the Carnot ef-
ficiency, the Curzon-Ahlborn [19] [20] efficiency does not neglect irreversible 
heat flows (assumed directly proportional to finite temperature differences), 
but both efficiencies neglect all other losses, e.g., friction, energy wasted as 

 

 

5See Ref. [1], Sect. 5-1. 
6See Ref. [1], Chaps. 18 and 20. 
7See also the following article (most recently revised in 2019) at https://www.wikipedia.org: “Endo-
reversible thermodynamics”. 

https://doi.org/10.4236/ojfd.2019.94023
https://www.wikipedia.org/


J. Denur 
 

 

DOI: 10.4236/ojfd.2019.94023 357 Open Journal of Fluid Dynamics 
 

sound, etc. (While Curzon and Ahlborn derived the Curzon-Ahlborn efficiency 
independently [19], it had been derived previously [20].7) Thus if an aircraft en-
gine is a cyclic heat engine, then this engine will operate most efficiently at the 
altitude where the atmosphere is coldest, most typically at or near the tropo-
pause, but commonly as close to the surface as is safe in polar regions in winter. 
This of course assumes that the engine, if air-breathing and operating at altitude, 
is supercharged, and that the supercharger requires only a very small fraction of 
the engine's power output. The oxygen available to an air-breathing engine is of 
course directly proportional to air density ρ , so intuitively it would seem that 
so would be the engine’s power output. But actually with increasing altitude Ah  
the power output of an unsupercharged air-breathing engine decreases slightly 
faster than ρ .8 Even a decrease in power output directly proportional to ρ  in 
almost all cases more than offsets any increase in power output owing to in-
creased thermodynamic efficiency on account of lower temperatures that typi-
cally obtain at higher altitudes.6,7 (A real cyclic heat engine may be difficult to 
start in cold weather, and its efficiency immediately at starting may be reduced 
by the high viscosity of still-cold lubricants, but upon attaining steady-state it 
will operate more efficiently than in hot weather.) In any case, the energy that 
must be supplied to an engine whose efficiency is   in order to facilitate aero-
dynamic flight requiring energy AE  is of course AE  . And likewise in the 
case of ballistic flight it is of course BE  . 

Of course, neither nonheat engines such as electric motors and birds’ flight 
muscles nor noncyclic (necessarily single-use) heat engines such as rockets are 
limited ultimately by the Carnot bound, nor are they limited at maximum power 
output assuming endoreversibility by the Curzon-Ahlborn bound. (Even if a 
rocket engine is refurbished, each launch represents a separate single use.) Their 
Carnot efficiencies and even their Curzon-Ahlborn efficiencies can in principle 
approach 100% irrespective of cold hotT T  and indeed of temperature at all. But, 
more often than not, in practice these engines face other limitations. Electric 
motors typically in practice rather than merely in principle exceed 90% efficien-
cy. But birds’ flight muscles are in practice typically considerably less efficient, 
typically in the range of 25% to 40%. And even if noncyclic, single-use rocket 
heat engines can in practice rather than merely in principle approach 100% effi-
ciency irrespective of cold hotT T  and indeed of temperature at all, typically most 
of their work output must be expended in accelerating exhaust gases, with only a 
small fraction available for accelerating payloads.9 

We should note that: (a) Even if rocket heat engines operated in a cycle, owing 

 

 

8See Ref. [10], Sections XIII.1-XIII.2 and Chap. XIV (in Chap. XIV see especially pp. 389-394 and 
Sections XIV.4-XIV.5); also Ref. [13], pp. 19-20 and Chaps. VI-IX (especially Chap. VI and pp. 
69-70, 76-78, and 80-81; most especially compare unsupercharged engine power versus air density as 
a function of altitude via Table III on p.19 and Figure 37 on p. 63). 
9Information concerning spacecraft propulsion is provided in the following articles (all most recent-
ly revised in 2019) at https://www.wikipedia.org: “Tsiolkovsky rocket equation”, “Spacecraft       
propulsion”, “Rocket engine”, Rocket propellant, “Rocket”, “Specific Impulse”, “Electrically powered 
spacecraft propulsion”, “Liquid rocket propellant”, “Solar sail”, “Electric sail”, “Magnetic sail”, and 
“RF resonant cavity thruster”. See also: Scoles, S. (August 2019) The Good Kind of Crazy. Sci. Am. 
321 (2), 58-65. 
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to their very small cold hotT T  ratio their Carnot and even Curzon-Ahlborn bound 
would be nearly 100%. But it would still obtain that typically most of their work 
output must be expended in accelerating exhaust gases, with only a small fraction 
available for accelerating payloads.9 (b) Not all rocket engines are heat engines, not 
even noncyclic ones. For example, ion-drive rocket engines are not heat engines, not 
even noncyclic ones, and hence (like noncyclic heat engines) are not limited ulti-
mately by the Carnot bound, nor at maximum power output assuming 
endoreversibility by the Curzon-Ahlborn bound. Because of their high exhaust 
speeds less mass need be exhausted to achieve a given spacecraft speed, and hence 
less of their work output need be expended on the exhaust.9 (c) Nonrocket spacecraft 
propulsion,9 e.g., via solar sails or laser sails, or via the EM, MEGA or related drives if 
they are verified,9 is not limited ultimately by the Carnot bound, nor at maximum 
power output assuming endoreversibility by the Curzon-Ahlborn bound. 

As an aside, we mention that the ratio of the Curzon-Ahlborn efficiency to the 
Carnot efficiency, ( ) ( )1 2

cold hot cold hot1 1T T T T   − ÷ −   , decreases monotonically 
with increasing cold hotT T  from unity in the limit cold hot 0T T →  to 1/2 in the 
limit cold hot 1T T → . Thus this ratio is never greater than 1 or less than 1/2. The 
former limit is obvious. The latter limit is most easily verified by setting 

cold hot 1T T δ= − : in the limit cold hot 1 0T T δ→ ⇔ →  with the help of the  

binomial theorem ( ) ( )1 2 1 1 11 1 1 1 1 1
2 2 2

δ δ δ δ δ δ   − − ÷ − − = − − ÷ = ÷ =         
. 

Of course, determination of how closely any given engine approaches to its 
theoretical maximum efficiency requires detailed analyses of the properties of 
that particular engine (e.g., bypass ratio of jet engines, battery and circuit design 
for electric motors, metabolic chemistry of birds’ flight muscles, etc.) We have 
not considered such detailed analyses in this Section 2.4. 

3. Air Density and Aerodynamic Level Flight 
3.1. A Simplified View of Drag and Lift 

3.1.1. The Paramount v2ρ  Functional Dependency 

Drag is given by [2]-[15] 

2 2
frontal,geom frontal,eff

1 1 ,
2 2DD C A v A vρ ρ= =               (7) 

where DC  is the coefficient of drag, frontal,geomA  is an aircraft’s geometrical 
frontal cross-sectional area, frontal,effA  is its effective frontal cross-sectional area 
(the frontal cross-sectional area that it effectively presents with respect to air re-
sistance or drag), ρ  is the air density, and v is the airspeed (also the ground 
speed if the wind is calm) of flight. [Note: The symbol A denoting surface area 
should not be confused with the subscript A, introduced in the first paragraph of 
Section 2.1, denoting aerodynamic flight (as opposed to ballistic flight, denoted 
by the subscript B).] Thus the coefficient of drag DC  is given by 

frontal,eff

frontal,geom

.D

A
C

A
=                           (8) 
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(See Supplementary Note 8.) 
But more complete definitions of frontal,effA  and hence of DC  are required. 

The drag owing to an aircraft’s frontal cross-sectional area per se is pressure 
drag. Pressure drag times frontal cross-sectional area is the force that an air-
craft must impart to push air in front out of its way, and to overcome the pull 
of the partial vacuum behind it ensuing because adjacent air cannot move in 
behind it instantaneously. But there are two other components of drag: in-
duced drag—a penalty that must be paid for lift (see Supplementary Notes 6 
and 9), and skin-friction drag—owing to the viscosity of air rubbing against 
surfaces parallel to the airflow (see Supplementary Note 10). The contributions 
of induced drag and skin-friction drag are included along with that of pressure 
drag within frontal,effA  and hence within DC . Thus our more complete defini-
tions of frontal,effA  and hence of DC : frontal,effA  is an aircraft’s effective frontal 
cross-sectional area—the frontal cross-sectional area that it would effectively 
present with respect to total air resistance or drag—as if total drag had been 
subsumed within pressure drag, i.e., as if induced drag and skin-friction drag 
had been converted to and incorporated within pressure drag. Since frontal,geomA  
is fixed for any given aircraft flying at any given angle of attack, by Equations (7) 
and (8) thus construing induced drag and skin-friction drag as incorporated 
within pressure drag modifies DC  in direct proportion to the modification of 

frontal,effA  from its value with respect to pressure drag alone. Accordingly, we 
thus construe Equations (7) and (8) as if induced drag and skin-friction drag are 
converted to and incorporated within pressure drag. Drag is a complex pheno-
menon [2]-[15]. Other classifications of drag are sometimes used. (See Supple-
mentary Note 8.10) But regardless of classification scheme we construe frontal,effA  
and hence DC  as noted immediately above, i.e., as if all drag is subsumed 
within pressure drag. This implies subsuming all of the complexities within DC : 
with that understood, Equations (7) and (8) are correct as written. With good 
aerodynamic design, at or near the angle of attack at which L D  is maximized, 

1DC   and hence frontal,eff frontal,geom frontal,geomDA C A A=   (see Supplementary 
Notes 4 and 5). (In the case of hovering flight, as of a helicopter, or of a hovering 
hummingbird or insect, even if the aircraft executes no horizontal motion the 
revolving airfoils do and hence experience drag. The revolving airfoils’ geome-
trical area frontal,geomA  with respect to drag is their geometrical frontal 
cross-sectional area, their effective area frontal,effA  with respect to drag is their 
effective frontal cross-sectional area; v with respect to drag is the root-mean- 
square average, taken over the geometrical frontal cross-sectional area of the 
airfoils, of airspeeds of the airfoils, be they blades of a helicopter, or wings of a 
hovering hummingbird or insect. Of course, if a hovering-flight aircraft also ex-
ecutes horizontal motion then its entire structure contributes to both frontal,geomA  

 

 

10See the following articles: “Drag (physics)”, “Drag equation”, and “Drag coefficient” (all most recently re-
vised in 2019) at https://www.wikipedia.org, and other Wikipedia articles concerning drag that are cited 
therein. See also “Drag” (most recently revised in 2017) and “AP4ATCO - Drag - Types and Effects” (most 
recently revised in 2015) at https://www.skybrary.aero/index.php/Main_Page, and other SKYbrary articles 
concerning drag that are cited therein. 
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and frontal,effA .) 
Similarly (see Supplementary Notes 1-6 and 8), lift [2]-[15] is given by 

2 2
wing,geom wing,eff

1 1 ,
2 2LL mg C A v A vρ ρ= = =              (9) 

where LC  is the coefficient of lift, wing,geomA  is an aircraft’s geometrical wing 
area, and wing,effA  is its effective wing area—the area that it effectively presents 
with respect to downward deflection of air required by Newton’s third law of 
motion11 as the price for the upward force that is its lift. The first step of Equa-
tion (9) recognizes that to maintain aerodynamic level flight L must equal the 
weight mg of an aircraft. We use “wing area” as shorthand for an aircraft’s entire 
lifting-surface area. A typical airplane obtains most but not all of its lift from its 
wings; its fuselage and elevators contribute some lift. The spectrum of airplane 
design ranges from flying wings with little or no fuselage to lifting bodies that 
are fuselage with little or no wing.12 Flying wings are based on the principle that 
the wing has a higher L D  ratio than any other part of an airplane, while lift-
ing bodies seek to avoid structural stresses on wings, especially at high air-
speeds.12 Thus the coefficient of lift LC  is given by 

wing,eff

wing,geom

.L

A
C

A
=                            (10) 

Lift is a complex phenomenon, perhaps even more so than drag [2]-[15]. 
There seems to be no universal agreement concerning which explanation or 
combinations of explanations of lift is most correct [2]-[15]. (See also Supple-
mentary Notes 1-6.) Equations (9) and (10) thus imply subsuming all of the 
complexities within LC . But irrespective of the complexities, the bottom line is 
that Newton’s third law of motion11 must be obeyed. With that understood, Eq-
uations (9) and (10) are correct as written. (There does seem to be universal 
agreement that some elements of explanations of lift are incorrect, e.g., the 
“equal-transit-time” element: see Supplementary Note 1.) With good aerody-
namic design, at or near the angle of attack at which L D  is maximized, LC  
is usually at least a significant fraction of unity and in some cases only a little 
smaller than unity, and hence wing,eff wing,geomLA C A=  is usually at least a signifi-
cant fraction of wing,geomA  and in some cases almost as large as wing,geomA  (see 
Supplementary Notes 4 and 5). At larger angles of attack LC  not uncommonly 
exceeds unity, but at the expense of smaller L D  (see the last four paragraphs 
of Section 3.1.2 and Supplementary Notes 6 and 9). [In the case of hovering 
flight, as of a helicopter, or of a hovering hummingbird or insect, the wings are 

 

 

11See Sect. 5-3 of Ref. [1] for general discussions concerning Newton’s third law of motion. For per-
haps the most concise explanations pertaining to Newton’s third law of motion as the bottom line 
with respect to aerodynamic lift, see pp. 27-29 of Ref. [13] and Section 3.1 of Decker, J.S. (2014) See 
How It Flies. https://www.av8n.com/how/. See also pp. 305-306 of Ref. [3] and Supplementary Notes 
1 and 2. 
12See the following articles (all most recently revised in 2019) at https://www.wikipedia.org: “Flying 
wing”, “List of flying wings”, and “Lifting body”. 
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the revolving airfoils. The revolving airfoils’ geometrical area with respect to 
lift is their geometrical wing (not frontal) area, their effective area with respect 
to lift is their effective wing (not frontal) area; v with respect to lift is the 
root-mean-square average, taken over the geometrical wing area of the airfoils, 
of airspeeds of the airfoils, be they blades of a helicopter, or wings of a hovering 
hummingbird or insect.] 

The forms of Equations (7)-(10), in particular the 2vρ  functional depen-
dency in Equations (7) and (9) that is paramount for both drag and lift, can per-
haps in some measure be most easily physically understood via the following 
very simplified qualitative to semiquantitative arguments. First, note that both 
drag and lift are forces, and that 2v Aρ  is the only combination of ρ , v, and A 
that has dimensions of force, or equivalently that 2vρ  is the only combination 
of ρ  and v that has dimensions of force per unit area (= pressure). Construe, 
as discussed three paragraphs previously, induced drag and skin-friction drag as 
converted to and incorporated within pressure drag, so that total drag is con-
strued as pressure drag. Pressure drag times effective frontal cross-sectional area 

frontal,effA  in aerodynamic level flight is the horizontal force—the horizontal 
momentum per unit time t—that an aircraft must impart to push air in front out 
of its way, and to pull air into the trailing partial vacuum behind it. Per unit time 
t a volume of air frontal,eff~ vtA  and hence a mass of air frontal,eff~ vtAρ  must thus 
be given speed typically comparable to v, but at any rate at least approximately 
proportional to v. Thus to maintain constant horizontal forward airspeed v in 
the face of drag D an aircraft must impart to air horizontal force equal to D, in 
accordance with11 

( )

( )frontal,eff 2 2
frontal,eff frontal,geom

horizontal force imparted to air
horizontal momentum imparted to air per unit time 
mass of air given speed ~  per unit time 

~

~ ~ .D

D
t

v t v
t

vtA v
A v C A v

t
ρ

ρ ρ

=
=

×

×
=

      (11) 

The upward force of lift L is by Newton’s third law of motion11 equal to the 
downward force—the downward momentum per unit time t—that an aircraft’s 
wings must impart to air. By similar reasoning as we employed with respect to 
drag, the wings must impart to air downward force equal to L, in accordance 
with11 

( )

( )wing,eff 2 2
wing,eff wing,geom

downward force imparted to air
downward momentum imparted to air per unit time
mass of air impelled downward per unit time

~

~ ~ .L

L mg
t

t v
t

vtA v
A v C A v

t

ρ
ρ ρ

= =
=

×

×
=

      (12) 

The first step of Equation (12) recognizes that to maintain aerodynamic level 
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flight L must equal the weight mg of an aircraft [2]-[15]. Note that the first two 
lines of Equations (11) and (12) are, essentially, statements of Newton’s third law 
of motion11, and hence are rigorously correct. Approximations are employed 
only in the last two lines of Equations (11) and (12). 

If LC  is independent of ρ  and of v, as is typically approximately true at or 
near the most energy-efficient angle of attack and hence at or near airspeeds v 
corresponding to maximization of L D , then induced drag, as pressure drag, is 
approximately proportional to 2vρ , and hence can be incorporated within Eq-
uations (7) and (8) via a simple approximately additive contribution to DC  (see 
Supplementary Notes 4, 5, 6, and 9, especially Supplementary Note 9). But 
skin-friction drag is in general not even approximately proportional to 2vρ : 
skin-friction drag is a function of the coefficient of viscosity µ  as well as of 
ρ , v, and A, and hence has dimensions of force even though it is not expressible 
as the combination 2v Aρ , or equivalently dimensions of force per unit area (= 
pressure) even though per unit area it is not expressible as the combination 2vρ  
(see Supplementary Note 10). But skin-friction drag is nevertheless typically in-
corporated within Equations (7) and (8) via a contribution to the functional de-
pendence of DC  on ρ  and on v. This is in accordance with Equations (7) and 
(8) being construed as if both induced drag and skin-friction drag are converted 
to and incorporated within pressure drag, as discussed in the second paragraph 
of this Section 3.1.1. 

Thus for both drag and lift the 2vρ  functional dependency is paramount 
[2]-[15], because DC , LC , and also the maximum value of the ratio L DC C  
corresponding to the most energy-efficient angle of attack are typically slowly 
varying functions of ρ  (and hence of aerodynamic flight altitude Ah ) and of v 
[2]-[15]. Thus by Equations (2) and (7)-(10) the maximum value of L D  is 
typically at least approximately independent of air density ρ  (and hence of 

Ah ) and of v. Hence by Equation (2) so is the minimum energy AE  required 
for an aerodynamic level flight traversing given horizontal distance X. Thus 
since given aerodynamic level flight the maximum value of L D  is approx-
imately independent of ρ  and L mg=  must be maintained strictly indepen-
dent of ρ , by Equation (2) D is at least approximately independent of ρ  (and 
hence of Ah ): higher airspeed v required to maintain L mg=  despite smaller 
ρ  increases D as much as smaller ρ  itself decreases D. 

But this minimum energy AE  must be expended faster and hence the power 

AP  required for maximally energy-efficient aerodynamic level flight increases 
with decreasing ρ  (and hence with increasing Ah ), because it is necessary to 
fly at faster v in thinner air to maintain L equal to the weight mg of an aircraft 
and hence to maintain aerodynamic level flight despite smaller ρ . By differen-
tiating Equation (2) with respect to time t [or simply dividing Equation (2) by t 
given steady aerodynamic level flight], we obtain, for the power AP  required to 
maintain aerodynamic level flight at speed v of an aircraft of mass m and weight 
mg subject to aerodynamic lift L and aerodynamic drag D: 
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instantaneously

given steady flight.

A
A

A

E X D D mgvP D Dv Lv mgv
t t L L L D

E DX D D mgvDv Lv mgv
t t L L L D

∂ ∂
= = = = = =

∂ ∂

= = = = = =
    (13) 

The fifth steps of both lines of Equation (13) recognize that to maintain aero-
dynamic level flight L must equal the weight mg of an aircraft [2]-[15]. Note that 

AP  is the power required for aerodynamic level flight, not to be confused with 
the power available.13 Obviously aerodynamic level flight is possible if and only if 
the maximum available power exceeds, or at the very least equals, the required 
power AP .13 Minimum required power A AP E t=  allows an aircraft to main-
tain aerodynamic level flight for the maximum possible time (maximum endur-
ance); maximum energy efficiency A AE X P v=  (which we always assume in 
this paper unless otherwise noted) allows an aircraft executing aerodynamic level 
flight to traverse the maximum possible distance. (See Supplementary Notes 5 
and 6, and the references cited therein.) 

Because it is necessary to fly at faster v in thinner air to maintain L equal to 
the weight mg of an aircraft and hence to maintain aerodynamic level flight de-
spite smaller ρ , an aerodynamic level flight traversing given horizontal dis-
tance X requires less time t X v=  in thinner air, so the energy cost 

A A AE P t P X v= =  of aerodynamic level flight traversing given X, or equiva-
lently AE  per given X, i.e., A AE X P v= , is at least approximately indepen-
dent of ρ  (and hence of Ah ). Focusing on the paramount 2vρ  functional 
dependency of aerodynamic lift and drag [2]-[15], by Equation (9) the airspeed v 
required for aerodynamic lift L to equal the weight mg of an aircraft and hence 
for maintenance of aerodynamic level flight is proportional to 1 2ρ− . Thus by 
Equations (2), (7), and (9) 2D vρ∝  is independent of ρ  (and hence of Ah ) 
if L is to equal the weight mg of an aircraft: higher 2v  required for L to equal 
mg despite smaller ρ  increases D as much as smaller ρ  itself decreases D. 
Hence to maintain aerodynamic level flight the required power AP , as the re-
quired airspeed v, is proportional to 1 2ρ− : ( )33 1 2 1 2

AP Dv vρ ρ ρ ρ− −= ∝ ∝ = . 
But flight time 1 2 1 2t X v X ρ ρ−= ∝ ∝ . Therefore in accordance with Equa-
tions (2) and (13) A A AE P t P X v= =  and thus A AE X P v=  is independent 
of ρ  (and hence of Ah ). Thus, focusing on the paramount 2vρ  functional 
dependency of aerodynamic lift and drag [2]-[15], the maximum value of 

L DC C  and thus of L D , and hence by Equation (2) the minimum energy 
cost or equivalently the maximum energy efficiency of aerodynamic level flight, 
is approximately independent of ρ  (and hence of Ah ). Thus if v is the air-
speed of aerodynamic level flight required for L to equal the weight mg of an 
aircraft given air density ρ , then 2vρ  is approximately a conserved quantity, 
approximately independent of ρ  (and hence of Ah ). 

In the four immediately preceding paragraphs we did not explicitly consider the 
effects of changing mg. But (recall the third-to-last and second-to-last paragraphs 

 

 

13See Ref. [10], Chaps. XIV-XVI; and Ref. [13], pp. 69-70 and Chaps. VIII, IX, and XII. 
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of Section 2.1 and the last paragraph of Section 2.2) this should be explicitly con-
sidered. Irrespective of the value of mg, it is still true, in accordance with Equa-
tion (2), that ( )AE DX mgX L D= = ÷ , and in accordance with Equation (13), 
that ( )A AP E t mgv L D= = ÷ . Thus, all other things being equal, AE  is di-
rectly proportional to mg. But, all other things being equal, AP  is not directly 
proportional to mg, because the airspeed v required to maintain aerodynamic 
level flight increases with increasing mg. By Equations (9), (12), and (13) we 
have for aerodynamic level flight 

( )
( )

1 2
2

1 2

3 2

1 2 .A

mgv mg v

mgmg
mgmgvP

L D L D L D

ρ
ρ

ρ
ρ

 
∝ ⇒ ∝  

 

 
 
 ⇒ = ∝ =

              (14) 

We note that Equation (14) is consistent with AE  being directly proportional 
to mg in accordance with Equation (2). For in accordance with Equation (14) 

( )A A AE P t P X v mgX L D= = = ÷ , in agreement with Equation (2). 

3.1.2. Exceptions to the Paramount v2ρ  Functional Dependency 

Lift and drag are in general not exactly proportional to 2vρ , because LC  and 

DC  are in general not strictly constant [2]-[15]. Induced drag, if not exactly 
proportional to 2vρ , and skin-friction drag, which in general is not even ap-
proximately proportional to 2vρ , contribute to nonconstancy of DC  and 
hence of L DC C . [Induced drag, like pressure drag, is typically approximately 
proportional to 2vρ . But skin-friction drag is in general not even approximately 
proportional to 2vρ : skin-friction drag is a function of the coefficient of viscos-
ity µ  as well as of ρ , v, and A, and hence has dimensions of force even 
though it is not expressible as the combination 2v Aρ , or equivalently dimen-
sions of force per unit area (= pressure) even though per unit area it is not ex-
pressible as the combination 2vρ . (See Supplementary Notes 4, 5, 6, 9, and 10.) 
But again at or near the most energy-efficient angle of attack and thus at air-
speeds v at or near that corresponding to maximization of L DC C  and hence 
of L D , typically these contributions to nonconstancy are small. Also for pres-
sure drag the proportionality to 2vρ  is usually approximate rather than exact. 
Thus in general LC  and DC  vary with ρ  (and hence with Ah ) and with v, 
and hence with Reynolds number [2]-[15] and with Mach number [2]-[15], and 
furthermore in general not at exactly the same rate, so also their ratio L DC C  
is not strictly constant [2]-[15]. In general these variations are typically small 
compared with the paramount 2vρ  functional dependency (see Supplementary 
Notes 4, 5, 6, 9, and 10). But three major exceptions, wherein there are large de-
partures from constancy of LC , DC , and in some cases also L DC C , should be 
noted: (a) For aircraft, especially those with short wingspans, trying to maximize 
L at the slowest possible v well below that corresponding to maximization of L D  
by trying to maximize LC  whatever the cost in DC , for example in trying to 
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land at the slowest possible v, induced drag is likely the largest component of the 
total drag D. In such cases, owing to large induced drag, total drag D is likely 
considerably larger than would typically be expected for given 2vρ  (see Sup-
plementary Notes 6 and 9). In regards to reducing induced drag, we should 
mention wingtip devices [21] [22] (see also the second paragraph of Supplemen-
tary Note 9). (b) As v increases through the typically small range of values corres-
ponding to the transition from laminar to turbulent flow, the onset of turbulence 
helps to fill the trailing partial vacuum, thereby greatly reducing pressure drag and 
hence DC . This decrease in DC  owing to the reduction in pressure drag is often 
sufficient to more than offset not only the increase in DC  owing to the onset of 
turbulence itself, but over this typically small range of values of v also the increase 
in pressure drag and indeed in total drag D proportional to 2v  if DC  had re-
mained constant. Hence, over this typically small range of values of v, DC  often 
manifests a net decrease with increasing v faster than 2v  increases, so 

2 2DD C vρ=  decreases with increasing v (see Supplementary Note 11). Golf 
balls have dimples to facilitate laminar-to-turbulent flow transition at airspeeds 
low enough for golfers to achieve [23] [24] [25] [26]. Not only do the dimples de-
crease drag [23] [24] [25] [26], but they also increase lift [23] [24] [25] [26]. Thus 
they enhance golf balls’ L DC C  ratio and hence L D  ratio not only via de-
creased D but also via increased L [23] [24] [25] [26]. Assists for lami-
nar-to-turbulent transition are also employed, for example, in fluid-dynamic mod-
eling and in small aircraft (see Supplementary Note 11). (c) As Mach 1 (the speed 
of sound) is approached from below, DC  typically manifests a sharp peak, fol-
lowed by a sharp dip at values of v slightly above Mach 1. The extra drag due to 
shock waves at and in the vicinity of Mach 1 is referred to as shock-wave drag 
(or sometimes simply as wave drag). (See Supplementary Note 12.) 

It should be noted that, in the design of aircraft, even departures from the pa-
ramount 2vρ  functional dependency of lift and/or drag smaller than those 
discussed in Items (a), (b), and (c) of the immediately preceding paragraph can 
yield modest but still significant improvements in aircraft energy efficiency [27] 
[28]:14 See the two immediately following paragraphs. 

Not uncommonly, aerodynamic level flight at a given v is more ener-
gy-efficient at lower ρ  and hence at higher Ah . This can obtain despite the 
required increase in angle of attack to above that which maximizes L DC C  and 
hence L D , consequently decreasing L DC C  and hence L D , as the penalty 
for increasing LC  itself and hence L itself sufficiently to maintain L mg=  in 
the face of decreased ρ  at fixed v [recall Equations (9) and (10)]: up to a limit, 

L DC C  and hence L D  decreases more slowly with the required increase in 

 

 

14See also the following articles: “Fuel economy in aircraft” (most recently revised in 2019) at 
https://www.wikipedia.org, and “AP4ATCO - Factors Affecting Aircraft Performance During 
Cruise” (most recently revised in 2013) at https://www.skybrary.aero/index.php/Main_Page. (The 
latter article is under construction at the time of this writing.) Not uncommonly, up to some limit-
ing altitude, less power is required to maintain the same airspeed at higher altitudes than at lower 
ones: see Ref. [10], Sections XIV.4-XIV.5 (especially Figs. 297-300 and the associated discussions in 
Section XIV.5); also Ref. [13], pp. 49-53 and Chaps. VIII-IX. 
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angle of attack than ρ  decreases.14 Of course this obtains only up to a limit: 
with continued increase in angle of attack L DC C  and hence L D  decreases 
ever more rapidly until stalling occurs. Higher-altitude aerodynamic level flight 
while maintaining the (smaller) angle of attack that maximizes L D  would be 
at sufficiently faster v to decrease the flight time t more than it increases the re-
quired power AP , and hence would increase energy efficiency  

A A AE X P t X P v= =  even more. But the engine(s) may not be capable of the 
required increase in AP . Even if they are, in some cases increased v may be de-
trimental [e.g., owing to encountering shock-wave drag if Mach 1 is approached 
too closely (see Supplementary Note 12), or to excessive aerodynamic heating]. 
A specific example of this (owing to encountering shock-wave drag if Mach 1 is 
approached too closely) is discussed in the immediately following paragraph. 

As a specific example, the energy efficiency (distance X per unit of fuel relative 
to the air, also relative to the ground if the wind is calm) of older commercial jet 
airliners was ≈43% higher at 35,000 ft to 40,000 ft (≈5 mi/100 lb fuel) than at 
20,000 ft (≈3.5 mi/100 lb fuel) [27]. Assuming Curzon-Ahlborn [19] [20] engine 
efficiency7 ( )1 21 C HT T−  and an atmosphere if not identical with then at least 
close to the U. S. Standard Atmosphere [29] [30] [31] [32] [33] (see Supplemen-
tary Note 13), only an ≈7% increase in energy efficiency can reasonably be attri-
buted to lower atmospheric temperatures and hence to higher engine efficiency 
  at 35,000 ft to 40,000 ft than at 20,000 ft (see Section 2.4). [Assuming Carnot 
engine efficiency6 ( )1 C HT T−  the figure is only ≈5%, but the Curzon-Ahlborn 
[19] [20] engine efficiency7 is a more realistic estimate for real-world engines.] 
Thus improved aerodynamic efficiency rather than improved engine efficiency 
must have contributed a factor of ≈1.43/1.07 ≈ 1.34 to the improved energy effi-
ciency at 35,000 ft to 40,000 ft over and above that at 20,000 ft. Perhaps im-
proved L D  ratios at given angles of attack at lower ρ  and hence at higher 

Ah  might contribute somewhat. But the major contribution to this improved 
energy efficiency—the only contribution if, as is usually at least approximately 
true, L D  ratios at given angles of attack are independent of ρ  and hence of 

Ah —is the reduced power AP  and hence reduced energy AE  required to tra-
verse a given distance X at a given v at lower ρ  and hence at higher Ah . This 
is not uncommon, despite the required increase in angle of attack to above that 
which maximizes L DC C  and hence L D , consequently decreasing L DC C  
and hence L D , as the penalty for increasing LC  itself and hence L itself suffi-
ciently to maintain L mg=  in the face of decreased ρ  at fixed v [recall Equa-
tions (9) and (10)]: up to a limit, L DC C  and hence L D  decreases more 
slowly with the required increase in angle of attack than ρ  decreases.14 Of 
course this obtains only up to a limit: with continued increase in angle of at-
tack L DC C  and hence L D  decreases ever more rapidly until stalling oc-
curs. Higher-altitude aerodynamic level flight while maintaining the (smaller) 
angle of attack that would ordinarily maximize L D  would ordinarily also be 
at sufficiently faster v to decrease the flight time t more than it increases the 
required power AP , and hence would ordinarily increase energy efficiency 
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A A AE X P t X P v= =  even more. But the engine(s) may not be capable of the 
required increase in AP . Even if they are, in this case increased v would be suf-
ficiently close to Mach 1 to encounter shock-wave drag and consequently in-
creased D and thus decreased L D  even at the optimum angle of attack, and 
hence also an increase in AP  required to overcome the shock-wave drag over 
and above that owing to increased v. [See Item (c) of the first paragraph of this 
Section 3.1.2 and Supplementary Note 12.] 

But, again, in this paper we focus mainly on the paramount 2vρ  functional 
dependency of both lift and drag, which is the first-order dependency upon ρ  
and upon v. Considerations of departures from the first-order 2vρ  functional 
dependency [27] [28], whether the large departures as per Items (a), (b), and (c) 
discussed in the first paragraph of this Section 3.1.2, or the smaller departures 
that can yield modest but still significant improvements in aircraft energy effi-
ciency [27] [28] discussed in the second, third, and fourth paragraphs thereof 
(see also Supplementary Notes 5, 6, 8-12, and 14), require mathematically com-
plex and detailed fully-quantitative analyses based on rigorous application of 
fluid dynamics, e.g., computational fluid dynamics. Such analyses are of course 
essential in the actual design of aircraft [2]-[15] [27] [28],14 but we do not at-
tempt them in this paper: our analyses are qualitative to semiquantitative. Thus 
we conceal the difficult and complex physics underlying departures from the 
first-order 2vρ  functional dependency [27] [28] within DC  and LC , specifi-
cally, within departures of DC  and LC  from constancy. Despite the three 
major exceptions (a), (b), and (c) discussed in the first paragraph of this Section 
3.1.2, and also despite ones that are more minor (but still essential in the actual 
design of aircraft [2]-[15] [27] [28])14 such as discussed in the second, third, and 
fourth paragraphs thereof (see also Supplementary Notes 5, 6, 8-12, and 14), the 

2vρ  functional dependency of both drag and lift is the paramount, first-order, 
functional dependency [2]-[15] [27] [28]. 

3.2. The Low-Density/High-Altitude Limit of Aerodynamic Level 
Flight in Earth’s Atmosphere 

If ρ  is so small that even the minimum airspeed required for aerodynamic 
level flight equals or exceeds the speed 

( ) ( ) 3
orbit ,Earth Earth Earth Earth

1 2 1 2 8 10 m sv GM r GM R= ≈ ×  required for mini-
mum-altitude circular-orbit ballistic spaceflight about Earth,4 then all flight 
about Earth must be ballistic rather than aerodynamic. We now estimate how 
small ρ  must be and how high the altitude in Earth’s atmosphere must be 
for this to obtain. As discussed in Section 3.1, aerodynamic forces of lift and 
drag are typically, at least approximately, proportional to 2vρ  [2]-[15]. Thus 
if ( )min 0,Earthv ρ  is the minimum airspeed at which an aircraft can maintain 
L mg=  and hence aerodynamic level flight at sea-level air density 

3
0,Earth 1 kg mρ ≈  (maximizing L may require flight at less-than-maximum L D : 

see Section 3.1.2 and Supplementary Notes 5, 6, and 9), then even neglecting all 
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practical considerations—the most obvious and most general of practical con-
siderations being power requirements and frictional aerodynamic heating—the 
absolute minimum air density min,abs,Earthρ  at which it can maintain L mg=  
and hence aerodynamic level flight at  

( ) 3
min min,abs,Earth orbit ,Earth 8 10 m sv v vρ< ≈ ≈ ×  is15 

( ) ( )2 2

min 0,Earth min 0,Earth
min,abs,Earth 0,Earth 0,Earth 3

orbit,Earth

.
8 10 m s

v v
v

ρ ρ
ρ ρ ρ

   
≈ ≈   

×      
    (15) 

The minimum airspeeds ( )min 0,Earthv ρ  required for aerodynamic level flight 
at sea-level air density 3

0,Earth 1 kg mρ ≈  of any aircraft obtain for the lightest 
unmanned model airplanes, which are limited to indoor flights, and to outdoor 
flights only if the wind is calm. (For hovering flight these minimum airspeeds 
are the root-mean-square average, taken over the geometrical area of the airfoils, 
of airspeeds of the airfoils, be they blades of a helicopter, or wings of a hovering 
hummingbird or insect.) These minimum airspeeds ( )min 0,Earthv ρ  at sea-level 
air density 3

0,Earth 1 kg mρ ≈  are somewhat less than 1 m/s, or ≈10−4 of 

 

 

15At ground speed v, in level flight a fraction ( )2

orbit ,xv v  of an aircraft's weight xmg  is offset by 

centrifugal force about the center of a gravitating body (in particular about Earth's center or Mars' 
center). (In this Footnote 15, the subscript x can refer to any gravitating body with an atmosphere 
wherein aerodynamic flight is possible, but we focus on Earth and Mars.) Thus, as per pp. 29-30 of 
Ref. [45], the boundary between aerodynamic flight and spaceflight can be construed at half of an 
aircraft's weight mgx being offset by centrifugal force. This obtains at ground speed orbit

2
,x

12v . Since 

orbit ,xv , or even orbit
2

,x
12v , is much faster than any winds on either Earth or Mars, in this Footnote 

15 we can neglect any differences between ground speed and airspeed and refer simply to speed v. 
Bear in mind the paramount 2vρ  functional dependency of aerodynamic lift as per Section 3.1 and 

hence that variation of LC  (at any given angle of attack) with ρ  and with v, if any, is typically 

small. To maintain level flight with half of an aircraft’s weight 
x

1
2

mg  offset by centrifugal force as 

per pp. 29-30 of Ref. [45], if the other half is to be offset by aerodynamic lift given min,abs,half ,xρ ρ=  

flight speed must be orbit
2

,x
12v  as per Equations (9) and (10): 

( )2

x wing,geom min,abs,half ,x orbit ,x

2
wing,geom min,abs,half

1

,x orb

2

it ,x

1 1 1 2
2 2 4

1
8

L

L

L mg C A v

C A v

ρ

ρ

= =

=
 (employing notation as per Section 3.2 and the last 

three paragraphs of Section 3.3.1). Neglecting the contribution of centrifugal force about Earth's 
center or Mars' center as per Sections 3.2 and 3.3.1, and hence requiring all of an aircraft's weight 

xmg  to be offset by aerodynamic lift given min,abs,all,xρ ρ= , by Equations (9) and (10) flight speed 

must be orbit ,xv : 

2
x wing,geom min,abs,all,x orbit ,x

1 .
2 LL mg C A vρ= =  

Thus within the approximation that 2vρ  is a conserved quantity, independent of ρ  (and hence 

of flight altitude on either Earth or Mars) and of v, min,abs,half ,x min ,abs,all,x4ρ ρ= : with the help of centri-

fugal force the absolute lower limit of air density min,abs,xρ  for aerodynamic level flight is 4 times 
that without its help. Thus within this approximation as per the last six paragraphs of Section 3.1.1 
the power required for aerodynamic level flight at the absolute lower limit of air density min,abs,xρ , 
and hence also (since this power must be frictionally dissipated) the consequent frictional aerody-
namic heating, is less by a factor of (1/4)1/2 = 1/2 with the help of centrifugal force than without its 
help. But, at any rate, in Section 3.2 and the last three paragraphs of Section 3.3.1, we give only 
in-the-ballpark estimates. 
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3
orbit,Earth 8 10 m sv ≈ ×  required for minimum-altitude circular-orbit ballistic 

spaceflight about Earth,4 say, ( )min 0,Earth 0.8 m sv ρ ≈ . [By Equations (9) and 
(10), if 1LC ≈ , taking 3

0,Earth 1 kg mρ ρ= ≈  and 29.8 m sg = ,  
4

orbit,Earth10 0.8 m sv v−≈ ≈  corresponds to a wing loading of 
2 2 2 2

wing,geom 0,Earth
1 1 1 0.8 N m 0.3 N m
2 2

mg A vρ  ≈ ≈ × × ≈ 
 

 or 

2
wing,geom 0.03 kg mm A ≈ . Thus, putting ( )min 0,Earth 0.8m sv ρ ≈  in Equation  

(15), if ( )24 8 8 3
min,abs,Earth 0,Earth 0,Earth10 10 10 kg mρ ρ ρ ρ− − −≈ = ≈ , correspond-

ing to altitudes ,max,abs,Earth 130 km 430000 ftAh h ≈ ≈  above sea level in Earth’s 
atmosphere [29]-[34] (see also Supplementary Note 13), then the minimum air-
speeds required for aerodynamic level flight of even these lightest unmanned 
model airplanes equal or exceed 3

orbit,Earth 8 10 m sv ≈ ×  required for mini-
mum-altitude circular-orbit ballistic spaceflight about Earth.15 Hence all flight 
about Earth must then be ballistic rather than aerodynamic.15 

This estimate of the low-density/high-altitude limit for aerodynamic level 
flight about Earth is an ultimate limit that neglects all practical difficulties. To 
re-emphasize, the most obvious and most general of practical difficulties are the 
required power AP  and especially the consequent frictional aerodynamic heat-
ing, the latter being equal to AP  because AP  is ultimately thermally dissipated 
via frictional aerodynamic heating. Other practical difficulties, which we do not 
consider, include the reduction of the power available from air-breathing en-
gines with decreasing ρ  and hence with increasing Ah  (obviously aerody-
namic level flight is possible if and only if the maximum available power ex-
ceeds, or at the very least equals, the required power AP ),13 and practical diffi-
culties that are specific for given types of aircraft, e.g., maximum airspeeds for 
propeller airplanes,16 and minimum and maximum airspeeds for various types of 
jets.17 By the last five paragraphs of Section 3.1.1, AP , and hence also the con-
sequent frictional aerodynamic heating and the required rate of heat dissipation, 
is, at least approximately, proportional to 1 2ρ−  [2]-[15]. Thus the practical 
low-density/high-altitude limit of aerodynamic level flight is considerably more 
conservative than the ultimate limit. The altitude record for aerodynamic level 
flight in Earth’s atmosphere as of this writing, 124000 ft 38 km≈ ≈ , corres-
ponds to ρ  slightly smaller than 2 2 3

0,Earth10 10 kg mρ− −≈ .18 Perhaps a rea-
sonable estimate of the practical low-density/high-altitude limit of aerody-
namic level flight in Earth’s atmosphere, even if attainable only by the lightest 

 

 

16See Ref. [14], pp. 81-82. 
17See Ref. [9], pp. 176-177; Ref. [14], pp. 82-86 and 146-150; the following articles at 
https://www.skybrary.aero/index.php/Main_Page: “Jet Engine” (most recently revised in 2017), 
“Turboprop Engine” (most recently revised in 2017), “Turbojet Engine” (most recently revised in 
2017), “Turbofan Engine” (most recently revised in 2016), “Geared Turbofan Engine" (most recently 
revised in 2017), “Ramjet” (most recently revised in 2017), and “Scramjet” (most recently revised in 
2017); and the following articles (all most recently revised in 2019) at https://www.wikipedia.org: 
“Jet engine”, “Jet engine performance”, “Turboprop”, “Turbojet”, “Turbofan”, “Ramjet”, “Scramjet”, 
and “Shcramjet”. 
18See also the following article (most recently revised in 2019) at https://www.wikipedia.org: “Flight 
altitude record”. 

https://doi.org/10.4236/ojfd.2019.94023
https://www.skybrary.aero/index.php/Main_Page
https://www.wikipedia.org/
https://www.wikipedia.org/


J. Denur 
 

 

DOI: 10.4236/ojfd.2019.94023 370 Open Journal of Fluid Dynamics 
 

unmanned model airplanes, is 3 3 3
min,prac,Earth 0,Earth10 10 kg mρ ρ− −≈ ≈ , corres-

ponding to an altitude of ,max,prac,Earth 180000 ft 55 kmAh ≈ ≈ . (This is also ap-
proximately the practical low-density/high-altitude limit of balloons in Earth’s 
atmosphere as of this writing.18) 

Note that, by Equation (2) and the last six paragraphs of Section 3.1.1 (neg-
lecting exceptions to the paramount 2vρ  functional dependency as per Section 
3.1.2), the energy AE  required for aerodynamic level flight of an aircraft of 
weight mg traversing given distance X is not greater at the practical—or even the 
ultimate—low-density/high-altitude limit of aerodynamic level flight than at sea 
level. Difficulties arise only because AE  must be expended faster and hence 
thermally dissipated faster (frictional aerodynamic heating!) in thinner air—

1 2
A AP E t ρ−= ∂ ∂ ∝ . 

3.3. Level Flight in Rarefied and Dense Aerodynamic Media: Mars 
Airplanes and Underwater Airplanes 

3.3.1. Mars Airplanes 
Atmospheric density at low altitudes on Mars, ( ) 3

0,Mars 1 70 kg mρ ≈ , is ≈1/70 
of 3

0,Earth 1kg mρ ≈  as obtains on Earth [35] [36] [37] (see also Supplementary 
Note 14). But this density is nevertheless substantial enough for Mars airplanes 
to be within the practical, not merely ultimate, limit of aerodynamic level flight, 
especially given that Mars’ surface gravity is only ≈0.38 that of Earth. By the last 
six paragraphs of Section 3.1.1, if all other things except ρ  were equal (e.g., 
same airplane, same angle of attack, etc.), then a Mars low-altitude airplane must 
fly ( ) 1 2 1 21 70 70 8.4−≈ = ≈  times faster than an identical Earth low-altitude 
airplane and requires ( ) 1 2 1 21 70 70 8.4−≈ = ≈  times as much power to sustain 
aerodynamic level flight. Even this is within the practical, not merely ultimate, 
limit of aerodynamic level flight. But we must still consider one important factor 
that is unequal in favor of Mars—Mars’ weaker gravity: g on Mars is only ≈0.38 
of g on Earth [35] [36] [37]. Thus by the first line of Equation (14), all other 
things except ρ  and g being equal (e.g., same airplane, same angle of attack, 
etc.), to maintain aerodynamic level flight airspeed ( )1 2v mg ρ∝  is required. 
Hence a Mars low-altitude airplane need fly only  

( ) ( )1 2 1 20.38 1 70 0.38 70 5.2≈ ÷ = × ≈    times faster than an identical Earth 
low-altitude airplane and requires only ( )1 23 2 3/2 1 20.38 1 70 0.38 70 2.0≈ ÷ = × ≈  
times as much power to sustain aerodynamic level flight. This is certainly not 
merely within, but well within, the practical, not merely ultimate, limit of aero-
dynamic level flight. Moreover, by Equation (2), the last six paragraphs of Sec-
tion 3.1.1, and the last paragraph of Section 3.2, all other things except g being 
equal (e.g., same airplane, same angle of attack, etc.), a Mars airplane of mass m 
requires only ≈0.38 as much energy AE  as an identical Earth airplane of the 
same mass m to traverse a given horizontal distance X. Thus with respect to AE  
aerodynamic level flight is easier by a factor of ≈0.38 on Mars than on Earth. 
Note that this greater ease by a factor of ≈0.38 with respect to AE  of aerody-
namic level flight on Mars than on Earth is due solely to g on Mars being ≈0.38 
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of g on Earth [35] [36] [37]: it obtains at all atmospheric densities and hence at 
all aerodynamic flight altitudes. Corresponding to given ρ , say, comparing 
high-altitude aerodynamic level flight on Earth with otherwise-identical 
low-altitude aerodynamic level flight on Mars, by Equation (14) a Mars airplane 
need fly only 1 20.38 0.62≈ ≈  as fast as an identical Earth airplane and requires 
only 3 20.38 0.23≈ ≈  as much power to sustain aerodynamic level flight. 

Recalling the third and fourth paragraphs of Section 3.1.2, we also note that 
aerodynamic level flight at a given v can be more energy-efficient at lower ρ  as 
on Mars. This can obtain despite the required increase in angle of attack to 
above that which maximizes L DC C  and hence L D , consequently decreasing 

L DC C  and hence L D , as the penalty for increasing LC  itself and hence L 
itself sufficiently to maintain L mg=  in the face of decreased ρ  [recall Equa-
tions (9) and (10)]: up to a limit, L DC C  and hence L D  decreases more 
slowly with the required increase in angle of attack than ρ  decreases.14 Of 
course this obtains only up to a limit: with continued increase in angle of attack 

L DC C  and hence L D  decreases ever more rapidly until stalling occurs. 
Aerodynamic level flight at lower ρ  as on Mars while maintaining the (small-
er) angle of attack that maximizes L D  would be at sufficiently faster v to de-
crease the flight time t more than it increases the required power AP , and hence 
would increase energy efficiency A A AE X P t X P v= =  even more. But the 
engine(s) may not be capable of the required increase in AP . Even if they are, in 
some cases increased v may be detrimental (recall the third and fourth para-
graphs of Section 3.1.2). 

What is more, owing to Mars’ weaker gravity, atmospheric density decreases 
more slowly with increasing altitude on Mars than on Earth, even in the face of 
the higher molecular weight and lower temperature of Mars’ atmosphere. The 
scale height [29]-[37] in Earth’s atmosphere, corresponding to an e-fold decrease 
in atmospheric density, is ≈8.5 km. In Mars’ atmosphere it is ≈11 km. Since, at 
low altitudes, density in Mars’ atmosphere is ≈1/70 of that in Earth’s atmosphere 
[35] [36] [37] (see also Supplementary Note 14), the ratio   of density in 
Mars’ atmosphere to that in Earth’s atmosphere at altitude h is 

 km 1 1km km11 km8.5 11 37
  km

8.5

1 e 1 1= e e .
70 70 70

e

h
hh

h

−−  
− 

 

−−
≈ ≈          (16) 

At 157 kmh ≈ , 1≈ , i.e., density is approximately equal in Mars’ and 
Earth’s atmospheres. At all higher altitudes, Mars’ atmosphere is denser than 
Earth’s, and in increasing ratio   with increasing altitude h. 

Thus the practical low-density limit of aerodynamic level flight in Earth’s at-
mosphere 3 3 3

min,prac,Earth 0,Earth10 10 kg mρ ρ− −≈ ≈  corresponds (solving 
3 11 km110 e

70
h− −≈ ) to an altitude of 29 km 95000 fth ≈ ≈  in Mars’ atmosphere.  

This is also approximately the practical low-density/high-altitude limit of bal-
loons in Mars’ atmosphere. The practical low-density limit of buoyant flight 
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3 310 kg mρ −≈  is equal in Earth’s and Mars’ atmospheres because lower g on 
Mars reduces both weight and buoyancy by the same factor of ≈0.38. Indeed for 
this reason it is 3 310 kg mρ −≈  in any atmosphere of any planet. This is strict-
ly true for buoyant flight via vacuum airships, which obtain buoyant lift equal to 
atmospheric density ρ  per unit volume of (essentially) perfect vacuum, or 
( )1 ρ−  per unit volume of imperfect or partial vacuum (e.g., hot-air balloons) 
of density ρ  (of course 0 1< < ). Depressurized (as opposed to hot-air) 
vacuum airships are more practicable on Mars than on Earth: owing to the 
higher molecular weight and lower temperature of Mars’ atmosphere, its ratio of 
pressure to density is smaller than that of Earth’s atmosphere. See: Clarke, J.-P.; 
Rimoli, J.; Gloyd, J. T.; Logarzo, H.; Kraus, J. (2018) Evacuated Airship for Mars 
Missions (Georgia Tech Air Transportation Laboratory) at  
https://ntrs.nasa.gov/search.jsp?R=20180006789 (left-click on “View Docu-
ment”) and Vacuum airship (most recently revised in 2019) at  
https://www.wikipedia.org. For buoyant flight via lifting gas of density ρ  (of 
course 0 1< < ) buoyant lift equals ( )1 ρ−  per unit volume of lifting gas. 
Since for a lifting gas   equals the ratio of the molecular weight of the lifting 
gas to that of the ambient atmosphere, unlike for vacuum airships (or par-
tial-vacuum airships such as hot-air balloons)   is larger for a given lifting 
gas in a higher-molecular-weight atmosphere such as Mars’ atmosphere than in 
a lower-molecular-weight one such as Earth’s. (Obviously, 0 1<   is re-
quired if the practical low-density limit of buoyant flight 3 310 kg mρ −≈  is to 
be attained.) 

But the practical high-altitude limit ,max,prac,MarsAh  of aerodynamic level flight 
on Mars is much higher than this, because we still must consider one important 
thing that is unequal in favor of Mars—Mars’ weaker gravity: g on Mars is ≈0.38 
of g on Earth. By Equation (14) the power ,MarsAP  required for aerodynamic 
level flight in Mars’ atmosphere at the altitude where 

( )1 23 2 1 2 3 2 1 2 1 2 3 3
min,prac,Mars min,prac,Earth min,prac,Earth0.38 1 1 1 10 kg mρ ρ ρ −= = ≈ , i.e.,  

where 3 3 3 3 5 3
min,prac,Mars min,prac,Earth0.38 0.38 10 kg m 5 10 kg mρ ρ − −= ≈ × ≈ × ,  

equals the power ,EarthAP  required for aerodynamic level flight in Earth’s at-
mosphere at the altitude ,max,prac,Earth 180000 ft 55 kmAh ≈ ≈  where  

3 3
min,prac,Earth 10 kg mρ ρ −≈ ≈ , our estimate of the practical  

low-density/high-altitude limit of aerodynamic level flight in Earth’s atmosphere 
(recall the third paragraph of Section 3.2). Thus probably a reasonable estimate 
of the practical low-density/high-altitude limit of aerodynamic level flight in 
Mars’ atmosphere, even if attainable only by the lightest unmanned model air-
planes (recall Section 3.2), is 5 3

min,prac,Mars 5 10 kg mρ −≈ × , which corresponds 

(solving ,max ,prac,Mars 11 km5 15 10 e
70

Ah−−× ≈ ) to an altitude of 

,max,prac,Mars 62 km 204000 ftAh ≈ ≈  in Mars’ atmosphere—slightly higher than 

,max,prac,Earth 180000 ft 55 kmAh ≈ ≈ . Low g on Mars, ≈0.38 of g on Earth, implies a 
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reasonable estimate of min,prac,Marsρ  being lower than min,prac,Earthρ . This lower 
required density, combined with g on Mars ≈ 0.38 of g on Earth rendering the 
scale height [29]-[37] being ≈11/8.5 ≈ 1.3 times greater in Mars’ atmosphere 
than in Earth’s atmosphere even in the face of the higher molecular weight and 
lower temperature of Mars’ atmosphere, contributes to ,max,prac,MarsAh  being 
slightly higher than ,max ,prac,EarthAh  despite Martian low-altitude air density being 
only ≈1/70 of that on Earth [35] [36] [37] (see also Supplementary Note 14). 
This practical low-density/high-altitude limit considers AP  and consequent 
frictional aerodynamic heating: AP  must be thermally dissipated. (Note that 
while the practical high-altitude limits of aerodynamic level flight and of 
buoyant flight are approximately equal in Earth’s atmosphere,18 the former is 
considerably higher than the latter in Mars’ atmosphere. As noted in the imme-
diately preceding paragraph, the practical high-altitude limit of buoyant flight 
corresponds to 3 310 kg mρ −≈  on Mars as on Earth because lower g on Mars 
reduces both weight and buoyancy by the same factor of ≈0.38—indeed for this 
reason it is 3 310 kg mρ −≈  in any atmosphere of any planet.) 

Now let us consider the ultimate, as opposed to the practical, 
low-density/high-altitude limit of aerodynamic level flight in Mars’ atmos-
phere—corresponding to the speed of aerodynamic level flight of the lightest 
unmanned model airplanes equaling minimum-altitude circular-orbital speed 
on Mars, neglecting all practical considerations, the most obvious and most 
general of which are power requirements and frictional aerodynamic heating. 
Consider indoor flight of the lightest unmanned model airplanes on Mars with 
indoor air density maintained equal to that at sea level on Earth, i.e., 

3
0,Earth 1 kg mρ ≈ . Since g on Mars is ≈0.38 of g on Earth, by the first line of 

Equation (14) the speed required to maintain indoor aerodynamic level flight of 
the lightest unmanned model airplanes on Mars at indoor air density 

3
0,Earth 1kg mρ ≈  is ( ) 1 2

min,Mars 0,Earth 0.38 0.62v ρ ≈ ≈  of the ≈0.8 m/s required 
on Earth, i.e., ≈0.5 m/s. The speed  

( ) ( )1 2
orbit ,Mars Mars M

1
ars M r

2
a s 3.6 km sv GM r GM R= ≈ ≈  required for  

minimum-altitude circular-orbit ballistic spaceflight on Mars is ≈0.45 times 
3

orbit,Earth 8 10 m sv ≈ × .4 Thus for Mars’ atmosphere, applying and slightly mod-
ifying Equation (15) yields15 

( ) ( )

( )
( )

2 2

min,Mars 0,Earth min,Earth 0,Earth
min,abs,Mars 0,Earth 0,Earth

orbit,Mars orbit,Earth

2
2

4
0,Earth 0,Earth3

8
0,Earth

0.62
0.45

0.62 0.8m s 0.62 10
0.450.45 8 10 m s

1.9 10

v v
v v

ρ ρ
ρ ρ ρ

ρ ρ

ρ

−

−

   
≈ ≈   

      

    ≈ ≈ ×  ×   
≈ × ≈ 8 3

6
min,abs,Earth 0,Mars

1.9 10 kg m

1.9 1.3 10 .ρ ρ

−

−

×

≈ ≈ ×

 (17) 

Solving ,max,abs,Mars 11 km61.3 10 e Ah−−× ≈  yields ,max,abs,Mars 149 km 490000 ftAh ≈ ≈
—slightly higher than ,max,abs,Earth 130 km 430000 ftAh ≈ ≈ . The two reasons for 
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this high value ,max,abs,Mars 149 km 490000 ftAh ≈ ≈  on Mars are g on Mars being 
≈0.38 of g on Earth and Mars’ atmospheric scale height [29]-[37] (≈11 km) be-
ing ≈11/8.5 ≈ 1.3 times larger than Earth’s (≈8.5 km). Indeed only owing to the 
first reason does the second reason obtain even in the face of the higher molecu-
lar weight and lower temperature of Mars’ atmosphere [35] [36] [37] (see also 
Supplementary Note 14). 

It is perhaps worthwhile to re-emphasize that, by Equation (2), the last six pa-
ragraphs of Section 3.1.1, the last paragraph of Section 3.2, and the first para-
graph of this Section 3.3.1 (neglecting exceptions to the paramount 2vρ  func-
tional dependency as per Section 3.1.2), the energy ,MarsAE  required for aero-
dynamic level flight of an aircraft of mass m traversing given distance X is not 
greater at the practical—or even ultimate—low-density/high-altitude limit of 
aerodynamic level flight on Mars than at low altitudes on Mars: ,Mars 0.38AE ≈  
of ,EarthAE  required to traverse X at sea level or any higher altitude on Earth. 
Difficulties arise only because AE  must be expended faster and hence thermally 
dissipated faster (frictional aerodynamic heating!) in thinner air on Mars as on 
Earth as anywhere— 1 2

A AP E t ρ−= ∂ ∂ ∝ . 

3.3.2. Underwater Airplanes on Earth and (Hypothetically) on Mars 
Now let us consider, even if only hypothetically as a thought experiment, a ful-
ly-submerged underwater airplane on Earth, even though no such craft actually 
exists and one is extremely unlikely to ever be built. (An underwater airplane, 
which cruises fully submerged, should not be confused with a hydrofoil, which 
typically except for its wings cruises above water.) Let our underwater airplane 
be of density ( ) 3 31 10 kg m+ ×N , the volume of all of its solid parts be V m3, 
and hence its mass be ( ) 31 10 kgm V= + ×N . Let us compare our underwater 
airplane to a standard (atmospheric) airplane on Earth, of identical size and 
shape, but of density 3 310 kg m×N  and hence of mass 310 kgm V= ×N . Our 
underwater airplane’s extra 103 kg/m3 of density offsets the buoyancy provided 
by water ( 3

water
310 kg mρ ≈ ), so that its underwater flight can be evenhandedly 

compared with atmospheric flight of our standard (atmospheric) airplane. Thus 
our underwater airplane’s extra 103 kg/m3 of density renders water its aerody-
namic medium as opposed to its buoyant medium, consistently with air being 
our standard (atmospheric) airplane’s aerodynamic medium. This facilitates an 
evenhanded comparison between our standard (atmospheric) airplane’s aero-
dynamic level flight in air and our underwater airplane’s aerodynamic level 
flight in water. We take N  sufficiently larger than the density of air at sea level, 

3
0,Earth 1 kg mρ ≈ , that the buoyancy provided by air for our standard (atmos-

pheric) airplane can be neglected (this easily obtains, because all solids are hun-
dreds to thousands of times as dense as air at sea level), and we assume high 
enough Reynolds numbers for both airplanes that skin-friction drag is small 
compared to pressure drag for both airplanes (see Supplementary Note 10). Wa-
ter is ≈ 800 times as dense as air at sea level. Thus, by the last six paragraphs of 
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Section 3.1.1, our underwater airplane need fly only 1 2800 1 28−≈ ≈  as fast as 
our standard (atmospheric) airplane at or near sea level to sustain level flight, 
and by Equation (14) requires only 1 2800 1 28−≈ ≈  as much power to sustain 
level flight as our standard (atmospheric) airplane at or near sea level. But our 
underwater airplane takes 1 2800 28≈ ≈  times as long to traverse a given hori-
zontal distance X as our standard (atmospheric) airplane. Hence by Equation (2) 
and the last six paragraphs of Section 3.1.1, our Earth underwater airplane re-
quires the same energy AE  as our standard (atmospheric) Earth airplane to 
traverse a given horizontal distance X. 

Recalling the last six paragraphs of Section 3.1.1 and that g on Mars is ≈0.38 of 
g on Earth, if atmospheric pressure on Mars was high enough for liquid water to 
exist, then both the required flight speed and the required power for aerody-
namic flight of a Mars underwater airplane would by Equation (14) be 

1 20.38 0.62≈ ≈  of the values required for an identical Earth underwater air-
plane, both underwater airplanes being of density ( ) 3 31 10 kg m+ ×N  and 
mass ( ) 31 10 kgm V= + ×N . (Atmospheric pressure on Mars was high enough 
for liquid water to exist in the past [37] but perhaps by a smaller margin than 
generally believed [38].19) Also, by Equation (2) and the last six paragraphs of 
Section 3.1.1, a Mars underwater airplane requires the same energy ,MarsAE  to 
traverse given horizontal distance X as a standard (atmospheric) Mars airplane 
identical except for being of density 3 310 kg m×N  and hence of mass 

310 kgm V= ×N . By Equation (2) and comparison with Section 3.3.1, this ener-
gy ,MarsAE  is ≈0.38 times ,EarthAE  required to traverse the same horizontal dis-
tance X by an identical Earth underwater airplane of density  
( ) 3 31 10 kg m+ ×N  and mass ( ) 31 10 kgm V= + ×N , or by a standard (atmos-
pheric) Earth airplane identical except for being of density 3 310 kg m×N  and 
hence of mass 310 kgm V= ×N . 

3.4. Dual-Density Flight: Hydrofoils 

Hydrofoils should be classified as aircraft because their lift obtains primarily if 
not essentially entirely aerodynamically rather than via buoyancy, even though 
the density ρ  of their aerodynamic medium (water) is ≈800 times that of air at 
sea level. By lifting the hull out of the water into the air, drag on the hull at any 
given speed is reduced ≈800 times; only the wings need suffer water resistance as 
opposed to air resistance. (We define “hull” as incorporating all parts of a hy-
drofoil that are lifted out of the water, e.g., including most or all of the struts.) 
Thus, probably uniquely among aircraft, for hydrofoils two values of aerody-
namic-medium density ρ  are pertinent: dragρ , the density pertinent to drag, 
and liftρ , the density pertinent to lift. Also, probably uniquely among aircraft 
other than hovercraft, for hydrofoils unless there is neither wind nor water cur-
rent two values of velocity v are pertinent: dragv , the velocity pertinent to drag, 

 

 

19Our knowledge of Mars is increasing rapidly. See in addition to Ref. [38] itself relevant articles that 
cite Ref. [38]. For an overview, see the following article (most recently revised in 2019) at 
https://www.wikipedia.org: “Mars”. 
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and liftv , the velocity pertinent to lift. Let airρ  be the density of air, waterρ  be 
the density of water, airv  be the velocity of a hydrofoil relative to the air, waterv  
be the velocity of a hydrofoil relative to the water, ( )2 2

air airair
v vρ ρ= , and 

( )2 2
water waterwater

v vρ ρ= . Drag on a hydrofoil probably can be construed most 
simply via 2

drag
vρ , the average with respect to drag of 2vρ , as follows: 

( ) ( )

( ) ( )

2 2
frontal,eff,hull frontal,eff,wing2 air water

drag
frontal,eff,hull frontal,eff,wing

2 2
frontal,eff,hull frontal,eff,wingair water

frontal,eff,total

.

A v A v
v

A A

A v A v

A

ρ ρ
ρ

ρ ρ

+
=

+

+
=

      (18) 

This average value 2

drag
vρ  can be employed in Equation (7). Note that, in 

Equation (18), frontal,eff,wingA  is the effective frontal cross-sectional area of a hy-
drofoil’s wings with respect to drag as per the first two paragraphs of Section 
3.1.1, not the effective surface area of its wings with respect to lift as per the third 
and fourth paragraphs of Section 3.1.1. Since typical speeds of hydrofoils are ~5 
times typical wind speeds,20 waterv  and airv  by and large differ by ~20%. (Wa-
ter currents are usually much slower than winds.) In contrast with Equation (7) 
for drag, Equation (9) for lift requires no reinterpretation for hydrofoils other 
than setting waterρ ρ=  and waterv v= . 

Because water is ≈800 times as dense as air at sea level, the wings of a hydro-
foil need only have ≈1/800 of the surface area with respect to lift as the wings of 
a (low-speed) airplane in order to obtain the same lift (if LC  is the same for 
both the hydrofoil and the airplane, and if waterv  for the hydrofoil equals airv  
for the airplane). 

Any surface watercraft experiences an additional form of drag that we do not 
consider in this paper: wave drag, the energy cost of generating waves (of course 
not to be confused with shock-wave drag experienced by aircraft at and in the 
vicinity of Mach 1).21 But, because only the wings and at most only the lower 
part of the struts of a hydrofoil, which have minimal surface area, intersect the 
surface of the water, this form of drag is minimal for a hydrofoil if, as we as-
sume, it cruises at sufficient speed to lift all but its wings and at most the lower 
part of its struts completely out of the water. 

For hydrofoils, as for other aircraft, the energy cost AE  for traversing given 
horizontal distance X is directly proportional to mg. Hence reducing mg reduces 
the energy cost of aerodynamic level hydrofoil flight traversing given horizontal 
distance X equally and in direct proportion to the reduction in mg. Thus, for 
example, since g on Mars is ≈0.38 of g on Earth, if atmospheric pressure on Mars 
were high enough for liquid water to exist, then ,MarsAE  for aerodynamic level 
flight of a hydrofoil of given mass m traversing given horizontal distance X on 
Mars would be ≈0.38 of ,EarthAE  required on Earth. (As mentioned in the 
second paragraph of Section 3.3.2, atmospheric pressure on Mars was high 
enough for liquid water to exist in the past [37], but perhaps by a smaller margin 
than generally believed [38].19) 
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3.5. The Optimum Range of Air Densities for Aerodynamic Level 
Flight 

Hydrofoils excepted, the range of aerodynamic-medium (air) densities on Earth, 
from ≈1 kg/m3 at sea level to ≈10−3 kg/m3 at the approximate practical (as op-
posed to ultimate) high-altitude limit of aerodynamic level flight, seems to be 
optimum for aerodynamic level flight, indeed for any aerodynamic flight. Much 
denser aerodynamic media, such as water in the case of underwater airplanes 
discussed in Section 3.3.2, allow aerodynamic level flight with much less power, 
but owing to the great resistance of a very dense medium such as water the speed 
of aerodynamic level flight will then be relatively slow. (Even hydrofoils are 
much slower than most airplanes.) Much more rarefied aerodynamic media al-
low higher speeds but entail difficulties of large required power and consequent 
dissipation of this power via equally large frictional aerodynamic heating, as 
discussed in Section 3.2 and the last paragraph of Section 3.3.1. As discussed in 
Section 3.3.1, lower g such as on Mars reduces the practical low-density limit 
somewhat from ≈10−3 kg/m3 as obtains on Earth. But if g is too small, apprecia-
bly smaller than on Mars, then an atmosphere cannot be retained at all, thus 
precluding aerodynamic level flight, indeed precluding any aerodynamic flight 
(except in pressurized indoor facilities). 

The considerations of the immediately preceding paragraph are modified in 
the case of hydrofoils, because they obtain lift via a dense medium (water) but 
the vast majority of their frontal cross-sectional area (both geometrical and ef-
fective) suffers resistance or drag only from a much more rarefied one (air). Of 
course, if g is too small, then an atmosphere cannot be retained, and with va-
nishing atmospheric pressure liquid water—indeed any liquid—cannot exist 
(except in pressurized indoor facilities). 

4. Farther against the Wind Than with it 

All flights of hand-thrown projectiles that are unpowered except for the initial 
throw are obviously short flights as defined in Section 2.1. Thus it is not surpris-
ing that the record traversed horizontal distances for hand-thrown projectiles 
obtain for those executing aerodynamic flight, e.g., Frisbees, Aerobies, and boo-
merangs, as opposed to those executing flight that is at least primarily ballistic, 
e.g., sports balls [23] [24] [25] [26] [39] [40] and even more so javelins [41] (see 
also Supplementary Note 15). For all flights of hand-thrown projectiles: (a) the 
flight distance assumes that the flight is above a horizontal (level) surface, most 
typically level ground but possibly a smooth water surface, and (b) the flight dis-
tance is taken as the total horizontal distance traversed along the flight path, not 
the straight-line distance between the beginning and ending points of the flight. 
The latter can be short (or even zero) even for a long return-boomerang flight. 

From among hand-thrown projectiles, we define as hand-thrown aircraft 

 

 

20See the following articles (all most recently revised in 2019) at https://www.wikipedia.org: “Hydro-
foil”, “Human-powered hydrofoil”, “Sailing hydrofoil”, “Vestas Sailrocket”, and “America’s Cup”. 
21See Ref. [2], pp. 103-108 and Ref. [11], Sect. 7.9. 
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those (e.g., Frisbees, Aerobies, and boomerangs) that are capable of aerodynamic 
flight—of flight with aerodynamic lift exceeding weight—at achievable throwing 
speeds. The record horizontal flight distances for hand-thrown aircraft as of this 
writing include 427.2 m = 1402 ft for boomerangs, 406.3 m = 1333 ft for Aero-
bies, and 338.00 m = 1108 ft 11.1 in for Frisbees. Moreover (unlike primarily bal-
listic hand-thrown projectiles) aerodynamic Frisbees, Aerobies, and boomerangs 
can—since lift exceeds weight at achievable throwing speeds—traverse longer 
distances against the wind than with it. Hand-thrown projectiles such as sports 
balls (e.g., golf balls, baseballs, etc.) [23] [24] [25] [26] [39] [40] and to a lesser 
extent javelins [41] can obtain some help from aerodynamics (see also Supple-
mentary Note 15). But their flights are at least primarily ballistic because, at 
achievable throwing speeds, aerodynamic lift cannot equal, let alone exceed, 
weight. Record hand-thrown flight distances as of this writing are 

1170 yd 510 ft 155 m
2

= =  for golf balls, 445 ft 10 in = 135.89 m for baseballs, 

and 
3104.80 m 343 ft 9 in
4

=  for javelins. Sports balls (e.g., golf balls, baseballs,  

etc.) can achieve, via the Magnus effect22, more aerodynamic lift than javelins, 
though still not nearly enough to equal, let alone exceed, their weights at 
achievable throwing speeds. Hence the hand-thrown distance records even for 
sports balls, while exceeding those for javelins, still fall far short of those 
achieved by Frisbees, let alone by Aerobies and boomerangs. And hence also ja-
velins and even sports balls cannot in any case traverse longer distances against 
the wind than with it. 

We should also mention the discus [42] [43] and hand-thrown (e.g., paper or 
balsa) gliders [44]. The discus is a hand-thrown aircraft, whose aerodynamic lift 
can equal or exceed its weight at achievable throwing speeds [42] [43], even 
though because discuses are considerably more massive than Frisbees, Aerobies, 
and boomerangs their distance records are much less. Indeed their distance 
records are less than those of sports balls and even of javelins. As of this writing,  

the official discus-throw flight-distance records are 
174.08 m 243 ft 0 in
2

=  for 

the men’s 2-kg-discus throw and 
176.80 m 251 ft 11 in
2

=  for the women’s  

1-kg-discus throw; the unofficial discus-throw flight-distance record is 78.14 m 
= 256 ft 4.4 in for the women’s 1-kg-discus throw. The discus, like the Frisbee, 
Aerobie, and boomerang, can traverse longer distances against the wind than 
with it [42] [43]. (See also Supplementary Note 15.) Hand-thrown (e.g., paper or 
balsa) gliders are hand-thrown aircraft, whose aerodynamic lift can equal or ex-
ceed weight at achievable throwing speeds [44]. As of this writing, the official 
distance record for paper gliders is 226 ft 10 in = 69.14 m [44]. Flight distances 
of discuses are limited by their large masses; flight distances of paper gliders are 
limited by their small masses and hence their small inertias. [Note: We use the 
term “paper glider” rather than “paper airplane” (or “paper plane” for short) 
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because such hand-thrown aircraft are unpowered except for the initial throw 
and hence are gliders, not airplanes.] 

We now describe what may be the simplest example of how a hand-thrown 
aircraft capable of flight with aerodynamic lift exceeding weight at achievable 
throwing speeds, such as a discus, Frisbee, Aerobie, or boomerang, can maintain 
its altitude farther if thrown horizontally against the wind than with it. Let a 
discus, Frisbee, Aerobie, or boomerang of mass m and weight mg be thrown ho-
rizontally in calm air ( wind 0v = ) at altitude ,0Ah  and at ground speed 

ground air,minv v= , the minimum airspeed required for aerodynamic lift L to equal 
its weight mg at the angle of attack at which it is thrown. Since the air is calm, its 
airspeed airv  also equals air,minv  at the instant of being thrown. Thus with calm 
air at the instant of being thrown air ground air,minv v v= = . Reiterating, at the instant 
of being thrown aerodynamic lift L equals its weight mg at the angle of attack at 
which it is thrown, i.e., L mg=  at this angle of attack: thus air,minv  is the 
minimum airspeed required for aerodynamic level flight at this angle of attack. 
(To avoid confusion, in this paragraph and the next we employ subscripts to dis-
tinguish between airv , groundv , and windv .) [For maximum horizontal flight dis-
tance, the angle of attack must of course be that which maximizes L DC C  and 
hence L D . With increased angle of attack (up to a stall) LC  increases and 
hence L mg=  obtains at a slower air,minv . But at these increased angles of at-
tack DC  increases faster with increasing angle of attack than LC , so L DC C  
and thus L D  decreases, and hence horizontal flight distance is diminished.] 
Since a hand-thrown aircraft such as a discus, Frisbee, Aerobie, or boomerang is 
unpowered except for the initial throw, immediately after being thrown aerody-
namic drag D will have reduced airv  (and given calm air also groundv ) to less 
than air,minv  and hence lift L to less than weight mg. Thus immediately after 
being thrown it begins to lose altitude. Thus it can maintain altitude ,0A Ah h=  
only at the very instant when it is thrown and hence for only infinitesimal hori-
zontal distance 0X = . Now let the discus, Frisbee, Aerobie, or boomerang be 
thrown horizontally at altitude ,0Ah  and at ground speed ground air,min windv v v= ≥  
with a tail wind of speed windv . (The restriction to the speed range 

ground air,min windv v v= ≥  is for simplicity, so that we can focus on the main points. 
The speed range ground air,min wind0 v v v≤ = <  is discussed in Supplementary Note 
16.) Thus at the instant of being thrown its airspeed is  

air ground wind air,min wind air,minv v v v v v= − = − < . Thus even at the instant of being 
thrown L mg< . Thus it cannot maintain altitude ,0A Ah h=  even at the instant 
of being thrown and hence not even for infinitesimal horizontal distance 

0X = . Now let the discus, Frisbee, Aerobie, or boomerang be thrown horizon-
tally at altitude ,0Ah  at and at ground speed ground air,minv v=  against a head wind 
of speed windv . At the instant of being thrown its airspeed is 

air air,min wind air,minv v v v= + > . Thus at the instant of being thrown L mg> . Thus 
it gains altitude until drag D reduces airv  to air,minv  and hence L to mg, by 

 

 

22See Ref. [9], pp. 31-40; and the following article (most recently revised in 2019) at 
https://www.wikipedia.org: “Magnus effect”. 
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which time it will have ascended to its peak altitude ,peak ,0A Ah h> . Thereafter 
L mg<  and it begins to lose altitude, soon descending past ,0Ah . But it will 
have traversed finite horizontal distance 0X >  while maintaining altitude

,0  A Ah h>  and attaining peak altitude ,peak ,0A Ah h>  if thrown horizontally at 

ground air,minv v=  against the wind, as opposed to infinitesimal horizontal distance 
0X =  and even that barely at altitude ,0A Ah h=  if thrown horizontally at 

ground air,minv v=  with no wind, and not even infinitesimal horizontal distance 
0X =  barely at altitude ,0A Ah h=  if thrown horizontally at 

ground air,min windv v v= ≥  with the wind. By Section 3.1.1, especially Equations (7) 
and (8) and the associated discussions, typically D is greater for a discus, Frisbee, 
Aerobie, or boomerang thrown against the wind than with it by a ratio 

( ) ( ) 2

drag ground wind ground windv v v v ≈ + ÷ −  . But drag  is a finite number, typically 
only moderately larger than unity. Moreover, by Equations (9) and (10) and the 
associated discussions, typically L is also greater for a discus, Frisbee, Aerobie, or 
boomerang thrown against the wind than with it by a comparable ratio 

( ) ( ) 2

lift ground wind ground windv v v v ≈ + ÷ −  . Therefore typically L D  and hence 

L DC C  is at least approximately equal with the wind and against the wind (and 
also with no wind). Hence drag  typically being moderately larger than unity 
does not contravene our result that it is possible for a discus, Frisbee, Aerobie, or 
boomerang to maintain altitude farther against the wind than with it. In our 
specific examples, altitude is maintained for finite horizontal distance 0X >  
against the wind, as opposed to infinitesimal horizontal distance 0X =  with 
no wind and not even infinitesimal horizontal distance 0X =  with the 
wind—in all three cases the initial horizontal throw being at ground air,minv v= . In-
deed, untypically [23] [24] [25] [26], as per Item (b) in the first paragraph of 
Section 3.1.2, drag  can be smaller than unity. Since, by Equations (9) and (10) 
and the associated discussions, lift  is always greater than unity, untypically 
[23] [24] [25] [26] L D  and hence L DC C  can be enhanced both via in-
creased L and via decreased D against the wind as opposed to with it. (See also 
Supplementary Note 11.) 

Two auxiliary points: (i) The scenario in the immediately preceding para-
graph, of a discus, Frisbee, Aerobie, or boomerang thrown at  

ground air air,minv v v= = , i.e., corresponding to L mg= , at a given angle of attack 
given calm air, was chosen for simplicity. But of course discuses, Frisbees, Aero-
bies, and boomerangs can easily be thrown considerably faster than this. They 
can easily be thrown fast enough so that L mg>  in calm air, i.e., at 

ground air air,minv v v= > , or even so that L mg>  with a light or moderate tail wind, 
i.e., at ground wind air,min air ground wind air,min=v v v v v v v> >−+ ⇔ . (ii) If the wind speed 
exceeds maximum achievable throwing speeds, then a discus, Frisbee, Aerobie, 
or boomerang cannot maintain altitude farther against the wind than with it—at 

 

 

23See the following websites: “Saffir-Simpson Hurricane Wind Scale” [Updated 2 January 2019 to in-
clude central North Pacific examples: left-click on “About the Saffir-Simpson Hurricane Wind Scale 
(PDF)”] at https://www.nhc.noaa.gov/aboutsshws.php, and “Enhanced F Scale for Tornado Damage” 
(Update implemented on 1 February 2007) at https://www.spc.noaa.gov/faq/tornado/ef-scale.html. 
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least not relative to the ground. For example, consider throwing a discus, Fris-
bee, Aerobie, or boomerang into a Category 5 extreme-hurricane-force or an 
EF5 extreme-tornado-force head wind.23 It will still traverse finite horizontal 
distance 0X >  at altitude ,0A Ah h>  (peaking at altitude ,peak ,0A Ah h> ) if 
thrown horizontally against the wind—but relative to the air, not relative to the 
ground. Such an extreme wind will reverse the hand-thrown aircraft’s direction 
of motion relative to the ground almost instantaneously, well before it traverses 
this finite horizontal distance 0X >  (peaking at altitude ,peak ,0A Ah h> ) relative 
to the ground. 

By contrast, hand-thrown projectiles whose flights are primarily ballistic, such 
as javelins [41] or even sports balls (e.g., golf balls, baseballs, etc.) [23] [24] [25] 
[26] [39] [40], cannot maintain altitude farther against the wind than with it at 
achievable throwing speeds, irrespective of wind speed. For upon such primari-
ly-ballistic hand-thrown projectiles, air imposes drag but, at achievable throwing 
speeds, provides at best insufficient lift to equal, let alone exceed, weight and 
perhaps in some cases no lift at all (see also Supplementary Note 15). 

Thus far in this Section 4, we considered hand-thrown projectiles on Earth. 
Let us now briefly consider them on Mars. Maximum achievable throwing 
speeds are the same on Mars as on Earth, g on Mars is ≈0.38 of g on Earth, and 
low-altitude air density on Mars is ≈1/70 of that on Earth [35] [36] [37] (see also 
Supplementary Note 14). Thus, by the first line of Equation (14), required 
throwing speeds for aerodynamic flight of hand-thrown projectiles, i.e., for 
aerodynamic lift L to equal projectile weight, on Mars are  

( ) ( )1 2 1 20.38 1 70 0.38 70 5.2≈ ÷ = × ≈    times that for identical hand-thrown 
projectiles on Earth. Thus aerodynamic flight of hand-thrown discuses, Fris-
bees, Aerobies, and boomerangs is at the very least much more difficult to 
achieve on Mars than on Earth, and may be impossible to achieve on Mars. In 
order for low-altitude achievable throwing speeds of hand-thrown discuses, 
Frisbees, Aerobies, and boomerangs on Mars to equal those on Earth, by the 
first line of Equation (14) their masses would have to be reduced by a factor of 

( )0.38 1 70 0.38 70 27≈ ÷ = × ≈  while still maintaining their same aerodynamic 
lifting areas and hence their same sizes and shapes as on Earth. Thus, with re-
spect to hand-thrown aircraft, lower g on Mars is insufficient to compensate for 
lower air density there. 

5. Energy Efficiency of Surface Transportation versus That 
of Flight 

It may be of interest to compare the energy efficiency of both aerodynamic level 
flight and ballistic flight with that of horizontal surface (land and/or water) 
transportation. If the frictional force opposing horizontal motion of a surface 
vehicle of mass m is a fraction F of its weight mg, then the energy cost of its tra-
versing horizontal distance X is 

.SE mgFX=                               (19) 
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(The subscript S denotes surface transportation.) 
Thus F plays the same role in surface transportation that D L  plays in 

aerodynamic level flight, or, equivalently, 1 F  plays the same role in surface 
transportation that L D  plays in aerodynamic level flight. For one circumnavi-
gation at Earth’s surface 2πX R=  and 2πSE RmgF= ; for N circumnavigations 
at Earth’s surface 2πX RN=  and 2πSE RmgFN= . (A single-circumnavigation 
journey is the longest possible one whose purpose is to reach a destination on 
Earth, with the destination being the starting point after traveling around the 
world.) 

Typical values of the coefficient of surface friction SC  for land vehicles range 
from ≈0.01 to ≈1 for sliding friction (≈0.005 for some maglev trains), and as low 
as ≈0.001 for rolling friction of hard wheels on hard surfaces—for example 
low-speed to moderate-speed traditional (not maglev) railroad transportation. 
For land vehicles at speeds low enough that air resistance is small compared to 
surface (e.g., sliding, rolling, or maglev) friction, SF C=  and is at least ap-
proximately independent of speed. For land vehicles at higher speeds 

SF C D mg= + , D being given by Equation (7) with ρ  being the density of 
air. (While traditional railroad transportation is more energy-efficient at low to 
moderate speeds, maglev trains almost completely abolish wear on the tracks, 
owing to their lack of mechanical contact with the tracks.) See Supplementary 
Note 17. 

Since even minimum-altitude circular-orbit ballistic spaceflight must be above 
any appreciable atmosphere, Br  for even minimum-altitude circular-orbit bal-
listic spaceflight must exceed R. But for simplicity, as in Section 2.2, we let the 
orbit be a minimum-altitude circular one, for which B Bh r R R= −   and 
hence can be neglected in comparison with R. (For surface transportation at sea 
level 0Sh =  and hence Sr R= .) Identically as in the case of aerodynamic 
flight, in order for surface transportation to be more energy-efficient than ballis-
tic transportation, neglecting air resistance in the latter, we require 1 2F <  for 
short journeys ( 2πX R ) and 1 4πF <  for single-circumnavigation jour-
neys ( 2πX R= ). For journeys of intermediate length (X ranging from much 
smaller than R to approaching 2πR ), the value that F cannot equal or exceed if 
surface transportation is to be more energy-efficient than ballistic transporta-
tion, neglecting air resistance in the latter, decreases monotonically from 1/2 
towards 1 4π  as X increases from very small values towards 2πR . (Since if 

2πX R=  minimum-energy ballistic spaceflight is a circular orbit just above 
appreciable atmosphere at altitude Bh , it cannot begin and end at the altitude 

sh  of surface transportation, but B sh h R−  .) 
The requirement 1 2F <  for short ( 2πX R ) surface journeys to be more 

energy-efficient than short ballistic journeys neglects air resistance in ballistic 
flight. But air resistance is not always negligible in short ballistic flights, especially 
in the lower atmosphere. If it is not neglected, then the requirement is weakened to 

1 2F n<  with 1n < . The requirement 4πF <  for single-circumnavigation 
surface journeys to be more energy-efficient than single-circumnavigation 
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minimum-altitude circular-orbit ballistic journeys neglects air resistance in 
minimum-altitude circular-orbit ballistic spaceflight; if it is not neglected, then 
the requirement is weakened to 1 4πF n<  with 1n < . But it is weakened only 
very slightly, because air resistance even at minimum-circular-orbit spaceflight 
altitude is very small. Not neglecting air resistance in ballistic flight, for journeys 
of intermediate length (X ranging from much smaller than R to approaching 
2πR ), the value that F cannot equal or exceed if surface transportation is to be 
more energy-efficient than ballistic flight decreases monotonically from 

( )1 2n X  towards ( )1 4πn X  as X increases from very small values towards 
2πR : ( ) 1n X <  but increases monotonically towards very nearly 1 as X in-
creases from very small values towards 2πR . Air resistance in mini-
mum-altitude circular-orbit ballistic flight is very small and hence also ( )1 n X−  
is very small, i.e., ( )n X  is very nearly 1, if 2πX R= . (Since then mini-
mum-energy ballistic spaceflight is a circular orbit just above appreciable at-
mosphere at altitude Bh , it hence cannot begin and end at the altitude Sh  of 
surface transportation, but B Sh h R−  .) 

By Equation (19) the energy cost SE  of surface transportation increases li-
nearly with increasing X and hence for N-circumnavigation journeys also with 
increasing N, identically as with aerodynamic flight by Equation (2) and Section 
2.3. By contrast, for minimum-altitude circular-orbit ballistic spaceflight, irres-
pective of X and hence also of N, BE  remains fixed at the value given by Equa-
tion (3) for 1N = . For, even at minimum-circular-orbit altitude, air resistance 
is almost negligible, i.e., space is almost frictionless; thus the energy cost of 
launching a spacecraft is one-time. Thus for multi-circumnavigation 
( 2πX RN= , 1N  ) journeys, the energy efficiency of even minimum-altitude 
circular-orbit ballistic spaceflight surpasses that of surface transportation by an 
arbitrarily large margin, just as it does that of aerodynamic flight by an arbitra-
rily large margin, the margin being even larger if spaceflight is high-orbit and 
even larger yet if it exceeds escape velocity. With respect to both aerodynamic 
flight and surface transportation the reason is that stated in Section 2.3: Space is 
essentially frictionless, and increasingly frictionless with increasing altitude, thus 
allowing spacecraft but neither aircraft nor surface vehicles to take full advantage 
of Newton’s first law of motion (inertia).5 The energy cost of speed in spaceflight 
is one-time; the energy cost of speed in aerodynamic flight and in surface trans-
portation is never-ending.5 Spaceflight is thus the only mode of transportation 
that can achieve mi gal km l∞ = ∞  of fuel (or the equivalent thereof)— 
Spaceship Earth (whose fuel for its orbital and rotational motions was part of the 
solar nebula’s kinetic energy) is a good example.5 To save time in spaceflight 
continuous energy expenditure can be employed, for example employing solar, 
laser, or on-board nuclear energy. But in spaceflight continuous energy expend-
iture buys acceleration; in aerodynamic flight and in surface transportation it 
buys only (constant) speed.5 

We note that lighter-than-air craft, for example dirigibles and blimps, should 
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be included within the category of surface transportation rather than within the 
category of aerodynamic flight, because their lift obtains typically at least pri-
marily and often entirely via buoyancy rather than via aerodynamics. Similarly 
the lift for surface (land and/or water) transportation vehicles obtains via sup-
port of the ground for land surface vehicles and via buoyancy for ships and 
submarines, rather than via aerodynamics. In this regard, we construe maglev 
and air-cushion vehicles as being surface (land and/or water) transportation ve-
hicles rather than aircraft, because their lift obtains via support of the surface 
through the intermediary of a magnetic-repulsion or an air cushion. [Aircraft 
very near the ground obtain some extra lift from the air-cushion “ground effect” 
(see Supplementary Note 18).] For a dirigible or blimp in level flight F is the ra-
tio of air resistance to the unbuoyed weight of the dirigible or blimp, i.e., 
F D mg= , D being given by Equation (7) with ρ  being the density of air at 
flight altitude. For a fully-submerged submarine F is the ratio of water resistance 
to the unbuoyed weight of the submarine, i.e., F D mg= , D being given by 
Equation (7) with ρ  being the density of water. For a ship or surface-cruising 
submarine, or for a hydrofoil, F is the ratio of combined water and air resistance 
to the unbuoyed weight of the vehicle, i.e., F D mg= , D being given by Equa-
tion (7) with 2

drag
vρ  taken as for hydrofoils as per Section 3.4 [see especially 

Equation (18) and the associated discussions]. (F for land vehicles was discussed 
in the third paragraph of this Section 5.) By contrast, as previously noted [see 
especially Section 3.4 but also the second paragraph of Section 1, the second pa-
ragraph following that containing Equation (2), and Section 3.5], hydrofoils 
should be classified as aircraft, because their lift obtains primarily if not essen-
tially entirely aerodynamically rather than via buoyancy, even though the density 
ρ  of their aerodynamic medium (water) is ≈800 times that of air at sea level. 
(By lifting the hull out of water into air, drag on the hull at any given speed is 
reduced ≈800 times; only the wings need suffer water resistance as opposed to 
air resistance.) Any surface-cruising watercraft experiences wave drag, i.e., the 
energy cost of generating waves (of course not to be confused with shock-wave 
drag experienced by aircraft at and in the vicinity of Mach 1),21 which we have 
not considered in this paper. Wave drag is minimal for a hydrofoil cruising at 
sufficient speed to lift its hull completely out of the water, but for ships and sur-
face-cruising submarines it is typically the largest component of drag.21 

While this is obvious, perhaps it is worthwhile to note that there is a mini-
mum flight speed for any (nonhovering) aircraft, but no minimum speed for 
land vehicles, dirigibles, ships, or submarines. Increased induced drag is im-
posed on (nonhovering) aircraft at minimum flight speed (see Supplementary 
Notes 6 and 9). By contrast: (a) For land vehicles, as speed is reduced to zero, 

SF C=  remains at least approximately constant. (b) For dirigibles, for ships, 
and for both fully-submerged and surface-cruising submarines, as speed is re-
duced to zero, D and hence also F D mg=  is reduced to zero. 

Of course, the remarks of the last paragraph of Section 2.1, and especially the 
remarks of Section 2.4, distinguishing between the energy efficiency of aerody-
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namic or ballistic flight per se and the energy efficiency of the engine that pow-
ers aerodynamic or ballistic flight apply equally in distinguishing between the 
energy efficiency of surface transportation per se and the energy efficiency of the 
engine that powers surface transportation. The energy that must be supplied to 
an engine whose efficiency is   in order to facilitate surface transportation re-
quiring energy SE  as per Equation (19) is of course SE  . 

Generalizing the third-to-last paragraph of Section 2.1 and the last paragraph 
of Section 2.2 in light of this Section 5, if air resistance in ballistic flight and in 
surface transportation can be neglected, then for traversal of any given horizon-
tal distance X, short or long, all three quantities BE , AE , and SE  are directly 
proportional to mg. Hence reducing mg reduces the energy cost of ballistic 
flight, aerodynamic level flight, and surface transportation traversing any given 
horizontal distance X equally and in direct proportion to the reduction in mg, 
but does not alter the ratio of energy costs between these three modes of trans-
portation. If air resistance in ballistic flight or in surface transportation cannot 
be neglected, then reducing mg reduces the energy cost of ballistic flight or of 
surface transportation, respectively, less than in direct proportion to the reduc-
tion in mg. 

Generalizing the second-to-last paragraph of Section 2.1 in light of this Sec-
tion 5, most typically, mg is reduced by reducing m. But we can also consider 
reduction of g. Two examples: (i) Aerodynamic and ballistic flight, as well as 
surface transportation, on Mars is at lower g. (ii) An aircraft, watercraft, or sur-
face vehicle of mass m a fraction f ( 0 1f< < ) of whose weight mg is offset by 
buoyancy can be construed as either being of effective mass ( )1m f−  in a gra-
vitational field g or as being of mass m in a gravitational field of effective 
strength ( )1g f− . Such partial offset of weight by buoyancy obtains, for exam-
ple, for a dirigible or blimp that relies on buoyancy for only part of its lift, with 
the balance obtaining aerodynamically, for a hydrofoil that cruises so slowly that 
it must rely on buoyancy for part of its lift, or for an underwater surface vehicle 
that is denser than water. Because all solids are hundreds to thousands of times 
as dense as air at sea level, f is negligible for surface vehicles on land as it is for 
aerodynamic vehicles (aircraft) in air. But f is not negligible for underwater sur-
face vehicles (and for underwater airplanes as discussed in Section 3.3.2) that are 
denser than water, because even the densest solids are little more than 20 times 
as dense as water. [An evenhanded comparison, in Section 3.3.2, between a 
standard (atmospheric) airplane’s aerodynamic level flight in air and an under-
water airplane’s aerodynamic level flight in water was facilitated by an extra 103 
kg/m3 of density for the latter to offset the buoyancy provided by water.] 

In this paper in general we have not considered the energy cost of building 
and maintaining vehicles. In this Section 5 in particular we also have not con-
sidered the energy cost of building and maintaining pathways for surface 
transportation. Concerning the latter, we have not, for example, considered the 
energy cost of building and maintaining roads, railroads, and canals. Of course, 
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for transportation that does not require artificially-built pathways, such as 
transportation in air, on or in water (except via canal), on land and/or water via 
hovercraft or other surface vehicles that do not require roads, or via spaceflight, 
this latter energy cost is zero. 

6. Brief Concluding Remarks 

Hopefully, we have provided at least somewhat helpful insights concerning 
energy efficiency in aerodynamic versus ballistic flight, concerning aerodynamic 
lift and drag, concerning selected aspects and examples of flight, in distinguish-
ing between the energy efficiency of flight per se and the energy efficiency of the 
engine that powers flight, and via considering the relation between the density of 
an aerodynamic medium and aerodynamic level flight. Also, hopefully, our 
comparison with the energy efficiency of surface transportation and our discus-
sion of surface transportation have been helpful. 

While we have focused mostly on Earth, with some consideration of Mars, our 
results are easily generalizable to any planet or other astronomical bodies on 
which aerodynamic flight and/or surface travel is possible, i.e., to any planet or 
other astronomical bodies with an atmosphere, and/or a solid and/or liquid sur-
face. Also, they are valid irrespective of the values of M, R, g, m, ρ , and (except 
as for simplicity we assume A Bh h R<  ) of Ah , A Ar R h= + , Bh , and 

B Br R h= +  [2]-[15]. 
We should emphasize the limitations of this present work. In this paper our 

main goal was to elucidate more conceptually than mathematically some fun-
damental ideas concerning energy efficiency and a number of other aspects of 
aerodynamic versus ballistic flight, and to provide comparison with surface 
transportation. We did not attempt the mathematically complex and detailed 
fully-quantitative analyses based on rigorous application of fluid dynamics, e.g., 
computational fluid dynamics, as is required in the actual design of aircraft, or 
the analyses required in the actual design of spacecraft or surface vehicles. We 
also neglected many details required in the actual operation of vehicles: to men-
tion just one example of many, we neglected reduction of vehicle mass m as fuel 
is consumed. Moreover, we focused mainly on the paramount 2vρ  functional 
dependency of lift and drag, which is the first-order dependency upon ρ  and 
upon v. Considerations of departures from the first-order 2vρ  functional de-
pendency [27] [28], whether the large departures as per Items (a), (b), and (c) 
discussed in the first paragraph of Section 3.1.2, or the smaller departures that 
can yield the modest but still significant improvements in aircraft energy effi-
ciency [27] [28] discussed in the second, third, and fourth paragraphs thereof 
and in the second paragraph of Section 3.3.1 (see also Supplementary Notes 5, 6, 
8-12, and 14), require mathematically complex and detailed fully-quantitative 
analyses based on rigorous application of fluid dynamics, e.g., computational 
fluid dynamics. Such analyses are of course essential in the actual design of air-
craft14 [2]-[15] [27] [28] and even sports balls [23] [24] [25] [26] (see also Sup-
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plementary Note 15). But we did not attempt them in this paper: our analyses 
were qualitative to semiquantitative. We thus gave only limited considerations of 
departures from the first-order 2vρ  functional dependency of lift and drag. 
Thus we concealed the difficult and complex physics underlying these depar-
tures within DC  and LC , specifically, within departures of DC  and LC  
from constancy. Thus again our analyses were qualitative to semiquantitative. 
But hopefully they may still have been helpful. 

In closing, we note that, even given all of the advances in aerodynamics, new 
discoveries are still being made, e.g., see Ref. [46]. 

Acknowledgements 

I thank Dr. Donald H. Kobe for very helpful discussions concerning fluid dy-
namics (especially aerodynamic drag), and for very insightful general scientific 
discussions over very many years. I am very grateful to my father Amnon Denur 
for giving me Refs. [13] and [34], and to my grandfather Moe Levin for giving 
me Ref. [14]: these three works introduced me to the science of flight in the 
1960s. I also thank Robert H. Shelton and Adam Shelton for very helpful discus-
sions several years ago concerning hand-thrown aircraft, Robert H. Shelton for 
recent thought-provoking discussions concerning aerodynamics in general, fo-
cusing in particular on highly-streamlined dirigibles both in neutral-buoyancy 
flight and assisted by aerodynamic lift, and Robert H. Shelton also for reading 
this manuscript and for very helpful advice concerning diction. I am very grate-
ful to Dr. S. Mort Zimmerman and to Dr. Stan Czamanski for very insightful 
general scientific discussions over many years. Additionally, I thank Dan Zim-
merman, Dr. Kurt W. Hess, and Robert H. Shelton for very insightful general 
scientific discussions at times (especially those with Dr. Kurt W. Hess concern-
ing fluid dynamics), including brief yet very interesting discussions relevant to 
this paper. 

Conflicts of Interest 

The author declares no conflicts of interest regarding the publication of this 
paper. 

References 
[1] Walker, J., Halliday, D. and Resnick, R. (2018) Fundamentals of Physics. 11th Edi-

tion, John Wiley & Sons, Hoboken, NJ. 

[2] Macmahon, T.A. and Bonner, J.T. (1983) On Size and Life. Scientific American 
Books, New York, Chapter 3-6. 

[3] Adams, J.A. (2006) Mathematics in Nature, Third Printing, and First Paperback 
Printing, with a New Preface. Princeton University Press, Princeton, NJ. 

[4] Norman, F. and Smith, N.F. (1972) Bernoulli and Newton in Fluid Mechanics. The 
Physics Teacher, 10, 451-455. https://doi.org/10.1119/1.2352317 

[5] Weltner, K. (1987) A Comparison of Explanations of the Aerodynamic Lifting 
Force. American Journal of Physics, 55, 50-54. https://doi.org/10.1119/1.14960 

https://doi.org/10.4236/ojfd.2019.94023
https://doi.org/10.1119/1.2352317
https://doi.org/10.1119/1.14960


J. Denur 
 

 

DOI: 10.4236/ojfd.2019.94023 388 Open Journal of Fluid Dynamics 
 

[6] Auerbach, D. (1988) On the Problem of Explaining Lift. American Journal of Phys-
ics, 56, 853. https://doi.org/10.1119/1.15444 

[7] Weltner, K. (1988) Response to “On the Problem of Explaining Lift” [Am. J. Phys. 
56, 853 (1988)]. American Journal of Physics, 56, 853.  
https://doi.org/10.1119/1.15445 

[8] Waltham, C. (1998) Lift without Bernoulli. The Physics Teacher, 36, 457-462.  
https://doi.org/10.1119/1.879927 

[9] von Kármán, T. (2004) Aerodynamics: Selected Topics in the Light of Their Histor-
ical Development. Dover, Mineola, ‎New York. 

[10] von Mises, R. (2004) Theory of Flight. Dover, New York. 

[11] Granger, R.A. (1995) Fluid Mechanics. Dover, New York. 

[12] Darlington, A. (2003) Virtuous Circle—The Development of Composite Fibre Sail-
planes. Ingenia, 15, 26-29. https://www.ingenia.org.uk/Ingenia/Contents/Issue15  

[13] Jones, B. (1947) Aerodynamics for Pilots. United States Government Printing Of-
fice, Washington DC. 

[14] Stever, H.G. and Haggerty, J.J. (1965) Flight. Time Inc., New York, Chapter 3. 

[15] Allen, R.C.S. (1969) Theory of Flight for Glider Pilots. 2nd Edition, Oliver and 
Boyd, Edinburgh. 

[16] Bohren, C.F. and Albrecht, B.A. (1998) Atmospheric Thermodynamics. Oxford 
University Press, New York, 65. 

[17] Wallace, J.M. and Hobbs, P.V. (2006) Atmospheric Science. 2nd Edition, Academic 
Press, Amsterdam. 

[18] Holton, J.R. and Hakin, G.J. (2013) An Introduction to Dynamic Meteorology. 5th 
Edition, Academic Press, Amsterdam. 

[19] Curzon, F.L. and Ahlborn, B. (1975). Efficiency of a Carnot Engine at Maximum 
Power Output. American Journal of Physics, 43, 22-24.  
https://doi.org/10.1119/1.10023 

[20] Vaudrey, A., Lanzetta, F. and Feidt, M. (2014) H. B. Reitlinger and the Origins of the 
Efficiency at Maximum Power Formula for Heat Engines. Journal of Non-Equilibrium 
Thermodynamics, 39, 199-203. https://doi.org/10.1515/jnet-2014-0018 

[21] McLean, D. (2005) Wingtip Devices: What They Do and How They Do It. 2015 
Boeing Performance and Flight Operations Engineering Conference, Seattle, WA, 
1-20. https://www.smartcockpit.com/docs/Wingtip_Devices.pdf   

[22] Neal, L., Harrison, N. and Mujezinovic, D. (2004) Wingtip Devices.  
https://www.dept.aoe.vt.edu/~mason/Mason_f/WingtipDevicesS04.pdf 

[23] Jargodzi, C.P. and Potter, F. (2001) Mad About Physics. John Wiley & Sons, New 
York, 267-268. 

[24] Erlichson, H. (1983) Maximum Projectile Range with Drag and Lift, with Particular 
Application to Golf. American Journal of Physics, 51, 357-362.  
https://doi.org/10.1119/1.13248 

[25] MacDonald, W.M. and Hanzely, S. (1991) The Physics of the Drive in Golf. Ameri-
can Journal of Physics, 59, 213-218. https://doi.org/10.1119/1.16564 

[26] Jorgensen, T.P. (1999) The Physics of Golf. 2nd Edition, Springer, New York, 
Chapter 8.  

[27] Riehl, H. (1972) Introduction to the Atmosphere. 2nd Edition, McGraw-Hill, New 

https://doi.org/10.4236/ojfd.2019.94023
https://doi.org/10.1119/1.15444
https://doi.org/10.1119/1.15445
https://doi.org/10.1119/1.879927
https://www.ingenia.org.uk/Ingenia/Contents/Issue15
https://doi.org/10.1119/1.10023
https://doi.org/10.1515/jnet-2014-0018
https://www.smartcockpit.com/docs/Wingtip_Devices.pdf
https://www.dept.aoe.vt.edu/%7Emason/Mason_f/WingtipDevicesS04.pdf
https://doi.org/10.1119/1.13248
https://doi.org/10.1119/1.16564


J. Denur 
 

 

DOI: 10.4236/ojfd.2019.94023 389 Open Journal of Fluid Dynamics 
 

York, Chapter 13, 435-442. 

[28] Ohrn, K.E. (2007) Aircraft Energy Use. In: Capehart, B.L., Ed., Encyclopedia of 
Energy Engineering and Technology, CRC Press, Boca Raton, FL, 24-31.  

[29] Champion, K.S.W., Cole, A.E. and Kantor, A.J. (2003) Standard and Reference At-
mospheres. In: Zdyb, G.J., Ed., Handbook of Geophysics and the Space Environ-
ment, NOAA, Washington DC, Chapter 14.  
https://www.cnofs/Handbook_of_Geophysics_1985/Chptr14.pdf 
http://www.cnofs.org/Handbook_of_Geophysics_1985/ 

[30] Gringorten, I.I., Kantor, A.J., Izumi, Y., Tattelman, P.I. and Cole, A.E. (2003) At-
mospheric Temperatures, Density and Pressure. In: Zdyb, G.J., Ed., Handbook of 
Geophysics and the Space Environment, NOAA, Washington DC, Chapter 15.  
https://www.cnofs/Handbook_of_Geophysics_1985/Chptr15.pdf 
http://www.cnofs.org/Handbook_of_Geophysics_1985/ 

[31] Grantham, D.D., Gringorten, I.I., Kantor, A.J., Dyer, R.M., Tattelman, P., Barnes, 
A.A., Bertoni, E.A., Cohen, I.D., Glass, C.M., Hardy, K.R., Izumi, Y., Metcalf, J.I., 
Brown, H.A. and Kunkel, B.A. (2003) Water Vapor, Precipitation, Clouds and Fog 
In: Zdyb, G.J., Ed., Handbook of Geophysics and the Space Environment, National 
Oceanic and Atmospheric Administration (NOAA), Washington DC, Chapter 16.  
https://www.cnofs/Handbook_of_Geophysics_1985/Chptr16.pdf 
http://www.cnofs.org/Handbook_of_Geophysics_1985/ 

[32] Champion, K.S.W., O’Sullivan, W.J. and Teweles, S. (1962) U.S. Standard Atmos-
phere, 1962.  
https://www.ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19630003300.pdf  

[33] McCartney, E.J. (1976) Optics of the Atmosphere. John Wiley & Sons, New York. 

[34] Haynes, B.C. (1943) Meteorology for Pilots. 2nd Edition, United States Government 
Printing Office, Washington DC, Chapter 4, 22-29. 

[35] Williams, D.R. (2018) Mars Fact Sheet. NASA (National Space Science Data Cen-
ter). https://nssdc.gsfc.nasa.gov/planetary/factsheet/marsfact.html   

[36] Williams, D.R. (2019) Earth Fact Sheet. NASA (National Space Science Data Cen-
ter). https://nssdc.gsfc.nasa.gov/planetary/factsheet/earthfact.html   

[37] Malin, M.C., Belton, M.J.S. and Carr, M.H. (Note: The order of these three authors 
changes frequently.) (2019) Mars. https://www.britannica.com/place/Mars-planet  

[38] Hu, R., Cass, D.M., Ehlmann, B.L. and Yung, Y.L. (2015) Tracing the Fate of Car-
bon and the Atmospheric Evolution of Mars. Nature Communications, 6, Article 
No. 10003. https://doi.org/10.1038/ncomms10003 

[39] Nathan, A.M. (2008) The Effect of Spin on the Flight of a Baseball. American Jour-
nal of Physics, 76, 119-124. https://doi.org/10.1119/1.2805242 

[40] Mehta, R.D. and Pallis, J.M. (2001) Sports Ball Aerodynamics: Effects of Velocity, 
Spin and Surface Roughness. In: Froes, F.H. and Haake, S.J., Eds., Materials and 
Science in Sports, TMS, Warrendale, ‎Pennsylvania, PA, 185-197. 

[41] Bartlett, R.M. (2009) The Aerodynamics of Javelin Flight—A Re-Evaluation.  
https://ojs.ub.uni-konstanz.de/cpa/article/viewFile/2340/2206  

[42] Seo, K., Shimoyoma, K., Ohta, K., Ohgi, Y. and Kimura, Y. (2012) Aerodynamic 
Behavior of a Discus. Procedia Engineering, 34, 92-97. 
https://doi.org/10.1016/j.proeng.2012.04.017 

[43] Maheras, A. (2016) Long Distance: Basic Aerodynamics and Flight Characteristics 
in Discus Throwing. Techniques for Track & Field and Cross Country, 9, 8-20. 

https://doi.org/10.4236/ojfd.2019.94023
https://www.cnofs/Handbook_of_Geophysics_1985/Chptr14.pdf
http://www.cnofs.org/Handbook_of_Geophysics_1985/
https://www.cnofs/Handbook_of_Geophysics_1985/Chptr15.pdf
http://www.cnofs.org/Handbook_of_Geophysics_1985/
https://www.cnofs/Handbook_of_Geophysics_1985/Chptr16.pdf
http://www.cnofs.org/Handbook_of_Geophysics_1985/
https://www.ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19630003300.pdf
https://nssdc.gsfc.nasa.gov/planetary/factsheet/marsfact.html
https://nssdc.gsfc.nasa.gov/planetary/factsheet/earthfact.html
https://www.britannica.com/place/Mars-planet
https://doi.org/10.1038/ncomms10003
https://doi.org/10.1119/1.2805242
https://ojs.ub.uni-konstanz.de/cpa/article/viewFile/2340/2206
https://doi.org/10.1016/j.proeng.2012.04.017


J. Denur 
 

 

DOI: 10.4236/ojfd.2019.94023 390 Open Journal of Fluid Dynamics 
 

[44] Paper Plane (2019) https://www.wikipedia.org  

[45] von Kármán, T. and Pai, S.I. (1963) From Low-Speed Aerodynamics to Astronau-
tics. Macmillan and Pergamon, New York. 

[46] Domel, A.G., Saadat, M., Weaver, J.C., Haj-Harari, H., Bertoldi, K. and Lauder, 
G.V. (2018) Shark Skin-Inspired Designs That Improve Aerodynamic Performance. 
Journal of the Royal Society Interface, 15, 201700828.  
https://doi.org/10.1098/rsif.2017.0828  

 
 
  

https://doi.org/10.4236/ojfd.2019.94023
https://www.wikipedia.org/
https://doi.org/10.1098/rsif.2017.0828


J. Denur 
 

 

DOI: 10.4236/ojfd.2019.94023 391 Open Journal of Fluid Dynamics 
 

Appendix: Supplementary Notes 

The Supplementary Notes in this Appendix provide auxiliary information con-
cerning topics discussed in the text and/or in the cited references. 

Supplementary Note 1: A succinct discussion of aerodynamic lift and drag is 
provided in Chap. Thirteen of Ref. [3]. The relation of aerodynamic lift to Ber-
noulli’s principle, which is often oversimplified in elementary textbooks, is syn-
opsized on pp. 304-308. (Note: Lift does not become arbitrarily large with in-
creasing arbitrarily chosen height and/or width of the near-rectangular region in 
Fig. 13.4 on p. 306 of Ref. [3]. If this region is arbitrarily chosen larger, then the 
wing occupies a smaller fraction of it, so that the average angle α at which the 
wing can deflect air within the region downward decreases in compensation.) 
For more detailed discussions concerning these points see Refs. [4] [5] [6] [7] 
[8]; relevant material in Refs. [1] [2] [9]-[15], and [45]; and the following ar-
ticles: “Lift (force)”, “Lift coefficient”, and “Lift-to-drag ratio” (all most recently 
revised in 2019) at https://www.wikipedia.org, and other Wikipedia articles 
concerning lift that are cited therein; and “Lift” (most recently revised in 2017) 
at https://www.skybrary.aero/index.php/Main_Page, and other SKYbrary articles 
concerning lift that are cited therein. [Reference [14] is included in our citations 
mainly as a historical source. As is the case with many books written for laymen, 
its explanation of lift based on Bernoulli’s principle (on pp. 53-54) is an over-
simplification. One element of this explanation of lift implies that air must take 
the same time to traverse the upper and lower surfaces of an airplane wing. This 
“equal-transit-time” element is incorrect: the path traversing the upper surface 
of an airplane wing is typically, say, ≈5% to ≈10% longer than that traversing the 
lower surface, but air traversing the upper surface typically can move up to ≈2 
times the free-stream velocity, and hence up to more than ≈2 times faster than 
that traversing the lower surface: See Decker, J.S. (2014) See How It Flies. 
https://www.av8n.com/how/ (most especially Section 3.2 thereof). But other-
wise Ref. [14] in general, and the explanations of aerodynamics in Chap. 3 
thereof in particular, seem to be qualitatively correct. Reference [15] is in-
cluded in our citations because, even though introductory, unlike our other 
cited references it concentrates on gliding flight and hence provides a different 
perspective. 

Supplementary Note 2: An example of differences of viewpoint in explaining 
aerodynamic lift is provided in the exchange of ideas in Refs. [5] [6] [7]. (Refer-
ence [5] is cited in the discussions of Ref. [3] mentioned in Supplementary Note 
1.) 

Supplementary Note 3: Reference [10] probably covers considerably more 
material, and in considerably greater depth, than is sufficient for this present 
paper. 

Supplementary Note 4: Information concerning the Eta glider is accessible 
in Ref. [12]. Additional information concerning the Eta glider and related 
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gliders is accessible at https://www.leichtwerk.de. The Eta glider probably has 
the highest L D  ratio of any sailplane built thus far. For additional related 
information see the following articles (all most recently revised in 2019) at 
https://www.wikipedia.org: “Lift-to-drag ratio”, “Lift coefficient”, “Drag coeffi-
cient”, “Gliding flight”, and “Eta (glider)”. 

Supplementary Note 5: The most energy-efficient angle of attack for aerody-
namic flight, which maximizes L D , is always assumed in this present paper 
unless otherwise noted. Angle of attack is defined on pp. 114-115 and 139-140 of 
Ref. [10], and on pp. 30-33 of Ref. [13]. Various aspects of maximization of 
energy efficiency of aerodynamic flight via this choice of angle of attack are dis-
cussed on pp. 172-176 and 203-209 of Ref. [2], pp. 60-67 of Ref. [9], Chap. VII 
of Ref. [10], Section 12.11 of Ref. [11], and Chaps. VIII, IX, and XI of Ref. [13]. 
Graphs of LC , DC , and L D  versus angle of attack, and related discussions, 
are provided for dragonfly flight on pp. 206-208 of Ref. [2], for one airfoil on 
p. 44 of Ref. [9], for numerous airfoils in Chap. VII of Ref. [10], for one airfoil 
on pp. 649-651 of Ref. [11], and for a few airfoils in Chap. IV of Ref. [13]. 

Note that, as per Section XVI.1 of Ref. [10], and as per the simpler examples 
provided in Table VII on p. 75 (in Chap. VIII) and Table IX on p. 80 (in Chap. 
IX) of Ref. [13], the angle of attack corresponding to minimum energy cost AE  
per unit traversed distance X in aerodynamic level flight is somewhat smaller, 
and the flight speed v corresponding thereto is somewhat larger, than the values 
corresponding to minimum required power AP . [Both X and v are relative to 
the air (also relative to the ground if the wind is calm).] For a faster flight tra-
versing distance X requires less time t than a slower one; thus  

A A AE P t P X v= =  and hence A AE X P v=  is minimized at a somewhat larger 
v and at a somewhat smaller angle of attack than is A AP E t= . From among the 
entries in Table VII and in the first two columns of Table IX of Ref. [13] perti-
nent to flight at sea level, AP  is minimized at 14.0 hp, at an angle of attack of 
12˚, and at 45.0 mi hv = , with  

( )14.0 hp 45.0mi h 0.311 hp h miA AP v E X= = = ⋅ . But with 14.6 hpAP = , at 
an angle of attack of 8˚, and at 50.9 mi hv = ,  

( )14.6 hp 50.9mi h 0.287 hp h miA AP v E X= = = ⋅ , the minimum value of  

A AP v E X=  from among the tabular entries. From among the entries in the 
last two columns of Table IX of Ref. [13] pertinent to flight at 5000 ft, AP  is 
minimized at 15.1 hp, at an angle of attack of 12˚, and at 48.5 mi hv = , with 

( )15.1 hp 48.5mi h 0.311 hp h miA AP v E X= = = ⋅ . But with 15.7 hpAP = , at 
an angle of attack of 8˚, and at 54.8 mi hv = , 

( )15.7 hp 54.8mi h 0.286 hp h miA AP v E X= = = ⋅ , the minimum value of  

A AP v E X=  from among the tabular entries. This is true in general: In aero-
dynamic level flight energy cost per unit distance AE X  is minimized and 
L D  is maximized at a smaller angle of attack and at a higher airspeed v than 
corresponds to minimization of A AP E t= . Minimum required power  

A AP E t=  allows an aircraft to maintain aerodynamic level flight for the max-
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imum possible time (maximum endurance); maximum energy efficiency 

A AE X P v=  (which we always assume in this present paper unless otherwise 
noted) allows an aircraft executing aerodynamic level flight to traverse the 
maximum possible distance. In gliding flight without engine power, i.e., po-
wered only by loss of gravitational potential energy Amgh  ( d dA AP mg h t= ),  

d dA AE X mg h X=  is minimized and L D  is maximized at the same angle 
of attack and (neglecting the weight of the fuel) at the same airspeed v at which 
L D  is maximized and A AE X P v=  is minimized in powered level flight; 
and sinking speed d dAh t  is minimized at the same angle of attack and (neg-
lecting the weight of the fuel) at the same airspeed v at which A AP E t=  is mi-
nimized in powered level flight. Thus in gliding flight minimization of 

A AP v E X=  corresponds to maximum gliding range X, and minimization of 

A AP E t=  corresponds to minimum sinking speed d dAh t , i.e., to maximum 
endurance or maximum time t until all of the initial altitude ,initialAh  and all of 
the initial potential energy ,initialAmgh  have been lost. (See pp. 404-405 and Sec-
tion XVI.1 of Ref. [10], and Chap. XI of Ref. [13].) 

Supplementary Note 6: The most energy-efficient angle of attack, which 
maximizes L D  and which we always assume in this present paper unless oth-
erwise noted, is not the optimum angle of attack for all facets of flight. As per 
Supplementary Note 5, maximum endurance in engine-powered level flight and 
minimum sinking speed in gliding flight without engine power obtain at a larger 
angle of attack and less-than-maximum L D . In this Supplementary Note 6 we 
consider landing. In order to land at the slowest possible speed, a still larger an-
gle of attack than that corresponding to maximum endurance in en-
gine-powered level flight and minimum sinking speed in gliding flight without 
engine power is optimal, namely the maximum practicable angle of attack, as 
near to a stall as is safe, which maximizes L for a given airspeed v at the ex-
pense of more-than-minimum sinking speed and even-lesser-than-maximum 
L D . (The angle of attack should not be too near a stall, especially close to the 
ground, because there is not sufficient altitude to recover if an aircraft stalls 
too close to the ground.) See Ref. [2], pp. 178-180 and 208-209; Ref. [9], pp. 
46-48, 54, and 156-157; Ref. [10], pp. 139-141, and Sects. X.1-X.2, XIV.4, XV.2, 
and XVI.4; Ref. [11], pp. 649-651; Ref. [12], pp. 26-27; Ref. [13], Chap. XVI; 
and Ref. [14], pp. 52, 54-55, and 72-75. It may be helpful to refer back to this 
Supplementary Note 6 when Supplementary Notes 9 and 10 concerning in-
duced drag and skin-friction drag, respectively, especially the former, are en-
countered. 

Supplementary Note 7: In Ref. [16] the concept of gravitational scale 
height (without the actual term being used) is stated specifically with respect 
to Earth’s radius R, whereas in this present paper it is stated with respect to 
general r R≥  (and also considering a borehole with respect to 0r =  in a 
spherical gravitator of uniform density). The term “gravitational scale 
height” is analogous to “atmospheric scale height”, the height of the top of 
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an atmosphere if atmospheric density remained constant and did not decrease 
with increasing altitude. Atmospheric scale height is discussed, for example, in 
Sects. 2.2-2.3 of Ref. [16] and in Refs. [17] and [18]. There are also other scale 
heights, for example the scale height for boiling as discussed on pp. 203-204 of 
Ref. [16]. 

Supplementary Note 8: Drag and lift are often most fundamentally expressed 
as functions of Reynolds number and Mach number. See, for example, Ref. [2], 
Chap. 3, especially pp. 69-70, 89-99, and 108; also, in Chap. 5, pp. 165-181, and 
in Chap. 6, pp. 203-209. Especially relevant discussions concerning Mach num-
ber are provided on pp. 69-70 and 108, concerning Reynolds number on pp. 
89-99 and 171, and concerning drag on pp. 172-176. Excellent explanations of 
Reynolds number are also provided on pp. 73-87 of Ref. [9] and in Sects. 
IV2-IV3 of Ref. [10], and of Mach number on pp. 77-78 and 106-107 of Ref. 
[9] and pp. 277-278 of Ref. [10]. General discussions concerning lift and drag 
are provided in Ref. [3], Chap. Thirteen; Ref. [9], especially Chaps. II-IV; Ref. 
[10], Chaps. V-VII; Ref. [11], Sects. 7.9-7.11, 12.11, and 14.10; and Ref. [13], 
Chaps. III-V. There are various classifications of drag, some classifications in-
cluding, for example, interference drag, parasite drag, and shock-wave drag. 
(See the following articles: “Drag” (most recently revised in 2017) and 
“AP4ATCO - Drag - Types and Effects” (most recently revised in 2015) at  
https://www.skybrary.aero/index.php/Main_Page, and other SKYbrary articles 
concerning drag that are cited therein; also, “Drag (physics)”, “Drag equation”, 
and “Drag coefficient” (all most recently revised in 2019) at  
https://www.wikipedia.org, and other Wikipedia articles concerning drag that 
are cited therein. For simplicity, we construe these to be subsumed within pres-
sure drag. A similar approach is taken, for example, on pp. 108-109 of Ref. [10] 
concerning interference drag, where interference is mentioned, but not classified 
as a separate type of drag. [Shock-wave drag (discussed in Chap. IV of Ref. [9], 
on p. ix of Ref. [10], and on pp. 58-60 and 182-183 of Ref. [14]), due to shock 
waves at and in the vicinity of Mach 1, does not occur for aircraft that do not 
reach speeds approaching Mach 1.] 

Supplementary Note 9: Induced drag is a penalty that must be paid for lift. By 
Newton’s third law of motion, a wing’s action must be to deflect air downward 
in order to obtain the upward reaction of lift. The horizontal component of air-
flow encountered by an aircraft by virtue of its level (horizontal) aerodynamic 
flight is added vectorially to this downward component of airflow. Hence the 
direction of the lift force is not exactly vertical but instead is aligned at a (typi-
cally small) angle backward. This (typically small) backward component is the 
induced drag. According to the Prandtl-Munk formula, the minimum induced 
drag that a wing of span b subject to airflow at speed v must pay to generate lift L 
is 2 2 2

induced,min 2 πD L v bρ= . See Chaps. II-III (especially pp. 61-67) in Ref. [9], 
Chap. VI in Ref. [10], and the Wikipedia article “Lift-to-drag ratio” (most re-
cently revised in 2019). Thus applying Equations (9) and (10): 
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where c is the average chord of an elliptically-shaped wing as is required for 

induced induced,minD D=  [see Ref. [2], pp. 72-74 (especially p. 72); Ref. [9], pp. 65-67; 
and Ref. [10], Chap. IX (especially Sections IX.5-IX.7)], wing,geomA bc= , the 
wing’s aspect ratio is b c≡AR , and the last equality is justified because 
L mg=  in aerodynamic level flight. (Span, chord, and aspect ratio are defined 
at pp. 112-114 and 134-135 of Ref. [10] and pp. 55-58 of Ref. [13].) Typically at 
airspeeds v at or near that corresponding to maximization of L D , LC  is 
approximately independent of air density ρ  and of v. But for an airplane or 
bird, especially one with short wingspan b and small aspect ratio AR , trying 
to land at the slowest possible speed v well below that corresponding to max-
imization of L D  and hence trying to maximize L in the face of this slow v 
whatever the cost in total drag D, induced drag inducedD  is likely the largest 
component of the total drag D. In such cases, owing to large inducedD , total 
drag D is likely considerably larger than would typically be expected for the 
given 2vρ . Recall Supplementary Note 6 and references mentioned in Sup-
plementary Note 6. A simple qualitative explanation of induced drag, as well as 
its importance for birds with short wingspans especially if trying to land at the 
slowest possible speed, is provided on pp. 172-174 of Ref. [2]. For additional 
discussions concerning induced drag and related topics see additional relevant 
material in Refs. [2]-[15] and Supplementary Notes 1-6, and in references cited 
in Supplementary Notes 1-6.  

In regards to reducing induced drag, we should mention wingtip devices. 
[See Refs. [21] [22] and the following articles: “Wing tip” and “Wingtip de-
vice” (both most recently revised in 2019) at https://www.wikipedia.org, and 
“Wing Tip Drag Reduction Devices” (most recently revised in 2017) at 
https://www.skybrary.aero/index.php/Main_Page. The idea has been around 
since the early 20th century (see especially Section 1 of Ref. [21]), but wingtip 
devices as generally construed came into actual use only in the 1970s, when 
improved wingtip-device design diminished offsetting factors sufficiently that 
the reduction of induced drag became a net positive factor, i.e., yielding a net 
improvement in airplane efficiency, both aerodynamically and financially (see 
especially Section 2 of Ref. [21]). Yet tapering of wings towards the tips can 
be construed as a simple wingtip device, because, for any given aspect ratio, 
this reduces the size of the wingtips to less than would have been the case 
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with rectangular wings. And tapered wings were in actual use considerably 
earlier than the 1970s (see for example Sects. VI.4 and IX.7 of Ref. [10], p. 61 
of Ref. [14], and pp. 63-64 of Ref. [15]). [By contrast, the aerodynamic fence, 
also known as the wing fence, blocks airflow towards the wingtips and serves 
a different purpose; hence it is not a wingtip device. See pp. 61-62 of Ref.[14], 
and the following articles: “Which is more effective a wing fence or winglet?” 
(date of most recent answer is 2018) at  
https://www.quora.com/Which-is-more-effective-a-wing-fence-or-winglet; 
Daskilewicz, M. (no date available, but date of most recent cited reference is 
1989) “Stall Fences” (Georgia Tech Fixed Wing Design Class Wiki) at 
https://gtae6343.fandom.com/wiki/Stall_Fences; and “Wing fence” (most re-
cently revised in 2019) at https://www.wikipedia.org. (Note: the aforementioned 
quora website is also easily accessible via a Google search for: Which is more ef-
fective a wing fence or winglet.)] 

Supplementary Note 10: Skin-friction drag skinfricD  results from shear in air-
flow adjacent to surfaces parallel to the airflow—surfaces of an aircraft parallel to 
its direction of motion. Air sticks to such surfaces owing to its viscosity, so im-
mediately at such surfaces the air is at rest, or very nearly at rest, relative to the 
aircraft. Beyond a boundary layer of typically small thickness boundary , airflow 
relative to the aircraft approaches the airspeed v of the aircraft—thus the shear 

boundaryv  . In short, skin-friction drag results from the viscosity of air rubbing 
against surfaces parallel to the airflow. According to simplified arguments, let-
ting µ  be the coefficient of viscosity of air and ||A  be an aircraft’s surface area 
parallel to the airflow, there obtains in the simplest cases, as one might expect 
intuitively, the Stokes’-law-regime24 equation  

( )skinfric boundary || || boundaryD v A A vµ µ= =   (see for example pp. 75-78 of Ref. 
[9]). [In general boundary  is not constant (see Section IV.5 of Ref. [10]), but an 
average value can be taken.] As per Sections IV.1-IV.2 (especially pp. 77-79) and 
Section V.5 of Ref. [10] drag in general and skin-friction drag in particular can 
often be expressed in the form ( ) ( )2 2

skinfric || ||
a aD A v vl A vρ ρ µ ρ− −= =C C Re , 

where C  and a are dimensionless constants ( C  could be a dimensionless 
function), l is a characteristic length, and vlµ ρ≡Re  is the Reynolds number. 
[Pressure drag and induced drag are effected via bulk flow rather than via vis-
cosity, thus for them 0a a= − = . Hence their functional dependencies on Re  
are subsumed within C . For pressure drag (recall the first, second, and fifth 
paragraphs Section 3.1.1) ( ) ( ) 2DC= =   C C Re Re  and || frontal,geomA A→ ; for 
minimum induced drag (recall Supplementary Note 9)  

( ) ( ) 2
, , 2πLC= =   C C Re AR Re AR AR  and || wing,geomA A→ . The intuitive 

 

 

24The Stokes’ law regime obtains at small Reynolds numbers, typically taken as Re < 1, i.e., at Rey-
nolds numbers much smaller than those corresponding to all aircraft flight except possibly that of 
the smallest flying insects. See for example: (a) Ref. [2], pp. 89-97 and 195-213; (b) Ref. [3], pp. 29-30 
and 52; and (c) “Stokes’ law” at https://www.wikipedia.org (most recently revised in 2019). See also 
the eighth paragraph of Section 3.1.1, the beginning of the first paragraph of Section 3.1.2, and Sup-
plementary Note 10 of this present paper. 
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result skinfric || boundaryD A vµ=   obtains if 1=C , 1 1a a= ⇔ − = − , and 

boundaryl =  . Indeed only if 1 1a a= ⇔ − = −  is skinfricD  no function of ρ . But 
neither C  nor a need equal 1. As per Chap. IV and especially Section V.5 of 
Ref. [10], more accurate consideration of skin-friction drag, even for the simple 
case of a flat rectangular plate of span b perpendicular to the airflow and chord c 
in the direction of (parallel to) the airflow assuming a laminar boundary layer, 
yields a result, as per Equations (5) and (6) on p. 106 of Ref. [10], that almost 
certainly could not be anticipated intuitively: 

( )1 23
skinfric 1.33D b cvµρ= . Recognizing that, since both the top and the bottom 

of the flat plate are exposed to skin friction, ||=2A bc , this result can be ex-
pressed as ( ) ( )1 2 1 22 2

skinfric || ||0.665 0.665D A v vc A vρ ρ µ ρ− −= = Re . If the boun-
dary layer is turbulent rather than laminar, then even this result for skinfricD  
must be modified as per Equation (7) on p. 106 of Ref. [10]: 

( )
1 5

1 52 2
skinfric || ||

1 5 1 5
2 4 5 9 5

|| ||

0.036 0.036

0.036 0.036 .

vlD A v A v

A v A v
vl l

ρρ ρ
µ

µ µρ ρ
ρ

−
−  

= =  
 

   = =   
  

Re
 

A more exact result given a turbulent boundary layer is provided as per Equa-
tion (8) on p. 106 of Ref. [10]: employing this equation skinfricD  probably must 
be evaluated numerically rather than analytically. Other formulas for skinfricD  
are provided in the Wikipedia article “Skin friction drag” (most recently revised 
in 2019) at https://www.wikipedia.org. (Span, chord, and aspect ratio are defined 
on pp. 112-114 of Ref. [10] and on pp. 55-58 Ref. [13]. Boundary layer is dis-
cussed in some detail on pp. 55-58 of Ref. [9], and on pp. 87-96 and in Section 
IV.5 of Ref. [10].) Note that air density ρ  appears in the more accurate equa-
tions for skinfricD  but not in the intuitive one skinfric || boundaryD A vµ=  , that intui-
tively skinfricD  is directly proportional to µ  but not so according to more ac-
curate equations, and that only the magnitude of ||A  matters in the intuitive 
equation for skinfricD  while both the magnitude and the shape of ||A  matter in 
more accurate ones. Also note that neither the intuitive result for skinfricD  nor 
the more accurate ones are even approximately proportional to 2vρ . The intui-
tive skinfric || boundaryD A vµ=   increases with increasing v only linearly rather 
than as v2. As per Equations (5) and (6) on p. 106 of Ref. [10], if the boundary 
layer is laminar ( )3

skinfric

1 2
1.33D b cvµρ=  increases with increasing v only as 

v3/2 rather than as v2. And as per Equation (7) on p. 106 of Ref. [10], if the boun-
dary layer is turbulent ( ) ( )1 5 1 52 4 5 9 5

skinfric || ||0.036 0.036D A v A v lρ ρ µ−= =Re  
increases with increasing v only as v9/5 rather than as v2. By contrast, given the 
paramount 2vρ  functional dependency of pressure drag, and also—recall Sup-
plementary Note 9—of induced drag, they are disposed to increase with in-
creasing v as v2. Hence skin-friction drag becomes less important relative to 
pressure drag and to induced drag with increasing v, or more fundamentally 
with increasing Reynolds number Re. The coefficient of skin-friction drag is 
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typically small, a few times 10−3. Hence skin-friction drag is often only a small 
fraction of the total drag D as given by Equation (7) of this present paper. See 
pp. 87-97 (especially pp. 93-94) of Ref. [9], and most especially Sects. V.5 and 
VI.2 of Ref. [10]. Often the functional dependence of skin-friction drag is not 
stated explicitly, and skin-friction drag is instead merely incorporated into Equ-
ations (7) and (8) of this present paper via a contribution to DC  that is often 
small, and even if not small can still be thus incorporated within DC , in accor-
dance with the second and eighth paragraphs of Section 3.1.1 of this present pa-
per. For underwater airplanes as discussed in Section 3.3.2 of this present paper, 
substitute “water” for “air”; most generally, substitute “fluid” for “air”. See also 
pp. 172-174 of Ref. [2], Refs. [3]-[8], and Sects. 7.10, 12.11, and 14.10 of Ref. 
[11]. 

Supplementary Note 11: The transition from laminar to turbulent flow is dis-
cussed on pp. 78-79 of Ref. [9], in Section V.3 of Ref. [10], and in Figs. 7.7 (a) 
and 7.7 (b) on pp. 400-401 and Sects. 14.10.5-14.10.6 of Ref. [11]. A concise sur-
vey of golf-ball aerodynamics is provided in Ref. [23]. For more detailed discus-
sions see Refs. [24] [25], which are cited in Ref. [23]. See also the excellent, easi-
ly-understandable discussion of golf-ball aerodynamics in Ref. [26]. Assists for 
laminar-to-turbulent transition as employed, for example, in fluid-dynamic 
modeling and in small aircraft are discussed on pp. 107-108 and 208-209 of Ref. 
[2]. 

Supplementary Note 12: A sharp rise in DC  as Mach 1 is approached 
from below followed by a sharp dip in DC  at values of v slightly above 
Mach 1 obtains for airplane wings. See pp. 128-129 of Ref. [9]. But for un-
streamlined bodies only a sharp rise in DC  as Mach 1 is approached from 
below may obtain, with the dip in DC  at values of v slightly above Mach 1 
being much less pronounced than for (streamlined) airplane wings, and per-
haps in some cases even nonexistent. See Section 15.10 of Ref. [11]. 
[Shock-wave drag (discussed in Chap. IV of Ref. [9], on p. ix of Ref. [10], 
and on pp. 58-60 and 182-183 of Ref. [14]), is due to shock waves at and in 
the vicinity of Mach 1. See also the articles “Wave drag” (most recently revised 
in 2019) at https://www.wikipedia.org and “Wave Drag” (most recently revised 
in 2017) at https://www.skybrary.aero/index.php/Main_Page.] 

Supplementary Note 13: Discussions and data pertinent to the U. S. Standard 
Atmosphere are provided in Chap. II (especially p. 19) of Ref. [13]; Sects. 2.2, 
2.3, and 2.55 of Ref. [16]; Section 1.3.4 of Ref. [17]; and pp. 18-28, 424-428, and 
487 of Ref. [27]. Meticulously detailed data, including discussions, tables, and 
charts, concerning atmospheric density and other atmospheric properties as a 
function of altitude are provided in Refs. [29] [30] [31]. Somewhat less recent 
data, but also meticulously detailed, including discussions, tables, and charts, 
concerning atmospheric density and other atmospheric properties as a function 
of altitude are provided in Ref. [32]. Somewhat abbreviated but still more than 
adequate discussions, tables, and charts concerning atmospheric density and 
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other atmospheric properties as a function of altitude are provided in Refs. [33] 
[34]. 

Supplementary Note 14: The average surface atmospheric pressure at low al-
titudes on Mars is ≈ 1/120 of that on Earth. But owing to both the higher average 
molecular weight of Mars’ largely-CO2 atmosphere and its lower average tem-
perature, the average surface atmospheric density at low altitudes on Mars is ≈ 
1/70 of that on Earth [35] [36] [37] (see also Supplementary Note 14). See rele-
vant data provided in Refs. [35] [36] [37] and in the following articles (both 
most recently revised in 2019) at https://www.wikipedia.org: “Earth” and 
“Mars”. Reviews of Mars aircraft are provided in the following Wikipedia ar-
ticles (both most recently revised in 2019) at https://www.wikipedia.org: “Mars 
aircraft” and “JPL Mars Helicopter Scout”. 

Supplementary Note 15: The hand-thrown distance records for discuses, Fris-
bees, Aerobies, and boomerangs are provided in the following articles (all most 
recently revised in 2019) at https://www.wikipedia.org: “Discus throw”, “Fris-
bee”, “Aerobie”, and “Boomerang”. Concerning the hand-thrown distance 
record for Frisbees, see especially http://www.wfdf.org/worldrecords (left-click 
on “Outdoor Distance” under “Distance”). The hand-thrown distance records 
for baseballs and golf balls are provided in the following articles at 
https://www.wikipedia.org (“Glen Gorbous” and “Roald Bradstock”, respective-
ly, both most recently revised in 2019. The hand-thrown distance record for ja-
velins is provided in the following articles (both most recently revised in 2019) at 
https://www.wikipedia.org: “Uwe Hohn” and “Javelin throw”. Sports-ball aero-
dynamics is discussed on pp. 31-34 and 40 of Ref. [9], in Refs. [23] [24] [25] [26] 
[39] [40], in Supplementary Note 11 and in the references cited therein, and in 
the Wikipedia article “Golf ball” (most recently revised in 2019) at 
https://www.wikipedia.org. Javelin aerodynamics is discussed in Ref. [41]. Dis-
cus aerodynamics is discussed in Refs. [42] [43]. Wikipedia articles concerning 
world-record-setting discus-throw athletes (all at https://www.wikipedia.org, all 
most recently revised in 2019) include “Jürgen Schult”, “Gabriele Reinsch”, and 
“Martina Hellmann”. 

Supplementary Note 16: For symmetrical hand-thrown aircraft such as 
Frisbees, Aerobies, or discusses, it is the magnitude airv  of airv  that alone 
determines whether or not aerodynamic level flight can be sustained, irres-
pective of the sign of airv . (The symmetry must be at least bilateral with re-
spect to the forward/backward direction.) If ground air,min wind0 v v v≤ = < , 

air ground wind air,min wind 0v v v v v= − = − < , and  

air wind ground wind air,min 0v v v v v= − = − > . Aerodynamic level flight of a symmetrical 
hand-thrown aircraft such as a Frisbee, Aerobie, or discuss can then be main-
tained if air air,minv v≥ , which can obtain if wind air,min2v v≥ . The analyses for un-
symmetrical hand-thrown aircraft such as hand-thrown (e.g., paper or balsa) 
gliders if ground air,min wind air0 0v v v v≤ = < ⇔ <  is more complex, and we do not 
attempt it. air 0v <  corresponds to an aircraft flying backwards. For a symme-
trical aircraft (hand-thrown or otherwise) forward and backward flight are 
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aerodynamically equivalent—but of course not so for unsymmetrical aircraft 
(hand-thrown or otherwise). 

Supplementary Note 17: See the following articles (all most recently revised in 
2019) at https://www.wikipedia.org: “Friction”, “Rolling resistance”, “Energy ef-
ficiency in transport”, “Magnetic levitation”, “Maglev”, and “Inductrack”. 
(While traditional railroad transportation is more energy-efficient at low to 
moderate speeds, maglev trains almost completely abolish wear on the tracks, 
owing to their lack of mechanical contact with the tracks: see the last three Wi-
kipedia articles cited in this Supplementary Note 17.) See also the following ar-
ticles at The Engineering Toolbox website https://www.engineeringtoolbox.com: 
“Friction and Friction Coefficients” (most recently revised in 2004) at  
https://www.engineeringtoolbox.com/friction-coefficients-d_778.html. 
and “Rolling Resistance” (most recently revised in 2008) at  
https://www.engineeringtoolbox.com/rolling-friction-resistance-d_1303.html. 

Supplementary Note 18: Ground effect is discussed in the following articles: 
“Ground Effect” (most recently revised in 2017) at the SKYbrary website 
https://www.skybrary.aero/index.php/Main_Page; also, “Ground effect (aerody-
namics)” and “Ground-effect vehicle” (both most recently revised in 2019) at 
https://www.wikipedia.org. Intuitively, one might attribute the ground effect for 
an aircraft near the ground as being due to compression of air near the ground, 
thus creating a lift-augmenting cushion of air under the aircraft that helps to 
support the aircraft. The wings, and possibly the aircraft as a whole, being in-
clined slightly upwards towards the direction of flight helps in this compression 
of air near the ground and thus in the creation of this air cushion. (The ground 
is usually a land surface, but could be a smooth water surface.) But this is only 
partially correct. Ground effect is a more complex, multifaceted, phenomenon. A 
perhaps less intuitively obvious contribution to the ground effect for aircraft 
arises because the proximity of the ground does not allow vortices at the wing 
tips to fully form, thus reducing induced drag. Thus ground effect results not 
only in increased lift but also in decreased drag. A given lift is produced at a 
smaller angle of attack with ground effect than without it. This is consistent with 
induced drag being smaller with ground effect than without it, because it cor-
responds to lift being directed at a smaller angle backwards (recall Supplemen-
tary Note 9). Thus at any given angle of attack ground effect results not only in 
increased lift but also in decreased drag. Hence a higher L D  ratio obtains at 
any given angle of attack with ground effect than without it owing to both in-
creased lift and decreased drag. Also, the stalling angle of attack (recall Supple-
mentary Note 6) is larger with ground effect than without it. 
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