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Abstract 
This work presented and solved the problem of portfolio optimization within 
the context of continuous-time stochastic model of financial variables. It has 
considered an investment problem of two assets, namely, risk-free assets and 
risky assets. The evolution of the risk-free asset is described deterministically 
while the dynamics of the risky asset is described by the geometric mean re-
version (GMR) model. The controlled wealth stochastic differential Equation 
(SDE) and the optimal portfolio problem were successfully formulated and 
solved with the help of the theory of stochastic control technique where the 
dynamic programming principle (DPP) and the HJB theory were used. Two 
utility functions which are members of hyperbolic absolute risk aversion 
(HARA) family have been employed, and these are power utility and expo-
nential utility. In both cases, the optimal control has explicit form and is wealth 
dependent Linearization of the logarithmic term in the portfolio problem was 
necessary for simplification of the problem.  
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1. Introduction 

The concept of portfolio optimization is of fundamental importance in financial 
investment theory and practice. It was initially introduced by Harry Markowitz 
in his historical work about Portfolio selection [1]. Later, Samwel [2] extended 
the Markowitz work to a more dynamic framework. He applied dynamic pro-
gramming approach to derive the optimal decision for a consumption invest-
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ment model. Further, Merton [3] [4] used optimal stochastic control technique 
in continuous time to explicitly determine a closed-form solution of the optimal 
portfolio problem in the financial investment market comprising risk-less asset 
and a stock as investment alternatives [5]. 

The development and analysis of numerous empirical studies regarding port-
folio selection problem have revealed that portfolio returns are definitely asym-
metric and due to complexity of financial markets the future security returns 
are uncertain variables and presented based on the experts’ estimations due to 
lack of historical data [6] [7]. In the study by [6], the skewness was introduced 
as the measure of the asymmetric property of the portfolio returns while the 
mean-risk-skewness model for portfolio selection was proposed to favor the un-
certain environment. In this study [6], the hybrid intelligent algorithm was used 
to solve the optimization model. In similar situations of portfolio returns consi-
dered as uncertain variables, [7] proposed a semi variance technique to be used 
for handling the diversified portfolio selection problem. In the study of [7], “99 
Method” was employed purposely for computing the expected value and semi-
variance of the uncertain variables, while the genetic algorithm was employed to 
seek the best allocation strategy for portfolio selection problem under uncertain 
environment. [8] discussed in the study about portfolio selection problem in un-
certain environment where the security returns are considered subjective to ex-
perts’ estimations and depicted as uncertain variables as well. In this study [8], 
the hybrid intelligent algorithm technique was designed so as to provide a gen-
eral method for solving the new optimization models. 

Back to the context of continuous-time stochastic models of financial variables 
as pioneered by Merton [3] [4] [9], the problems of portfolio optimization have 
been extensively studied [10]. The general issue is how an optimal portfolio can 
be constructed to quench the investor’s thirst of optimizing the expected profits 
(expected returns) meanwhile subduing possible losses (possible risks). Thus, 
from a couple of number of assets available for investments, with prices and re-
turns distribution, the agenda is now, what should be the optimal portfolio? This 
naturally is what definitely triggers the investors’ minds as far as the investment 
and portfolio management is concerned. 

In financial investments, the general abstraction behind this problem is the 
selection of the best strategies that could indeed provide optimal results at times 
an investor is faced with huge varieties of investment decisions about his wealth. 
The investors, dynamically allocate wealth between the risky and the risk-less 
assets with the major objective of maximizing total expected returns while mi-
nimizing the variance, i.e. the possible risk. The investors’ minds at any point in 
time want to maximize profit by appropriately and strategically choosing an op-
timal investment strategy and if it exists, will depend on some factors such as: 1) 
trending information about the market; 2) initial wealth of the investor; 3) the 
belief and behavior of investor’s mind in front of the market risks; and 4) the de-
cision criterion used by the investor regarding the optimality of the investment 
strategy [11]. 
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While paying attention to continuous time portfolio optimization problem, 
Researchers have as well noted the impact of mean-reversion on optimal portfo-
lio choice and also is of central importance in the asset allocation problem. The 
random walk model was the first to be in place as the basic model of stock prices 
based on the assumption of market efficiency. The basic idea is that returns can 
be represented as unforecastable fluctuations around some mean return. This 
assumption implies that the distribution of the returns at time t is independent 
from, or at least uncorrelated with, the distribution of returns in previous mo-
ments. Therefore, mean-reversion is thought of as a modification of the random 
walk, where returns change are not completely independent of one another but 
rather are related. Mean-reversion has actually received a considerable attention 
in the financial world as a classic indicator of predictability in financial markets 
and has more economic logic than geometric Brownian model [12]-[17]. 

In general, the problem of portfolio optimization can successfully be solved by 
the theory of optimal stochastic control, where Dynamic programming principle 
(DPP) and HJB theory are instrumental for finding a solution. Thus, by consi-
dering an optimal control of Ito-type processes which satisfy the stochastic dif-
ferential equation(SDE) w.r.t some Wiener process, our goal is to choose the in-
vestment control strategy (i.e. dynamic portfolio strategy) to maximize the ex-
pected utility of wealth at some future time τ  [18] [19]. 

The main focus is on portfolio problem of an investor who trades continuously 
from say time t and maximizes expected utility of wealth at some future time 

1t t> . The problem of finding the optimal strategy is classical and has been ex-
tensively studied. Most of these studies considered stock price as Markov process. 
[5] through the study of optimal portfolio optimization for an investor who can 
trade in a risk-free bond and stock, included the stochastic volatility in the dy-
namics of the risky asset. Its drawback is that, volatility is not directly observable 
in the market unlike the stock price, and it is therefore in practice impossible to 
follow portfolio rules where one must take the level of volatility explicitly into 
account. 

The study by [12] investigated the portfolio selection consisting of instru-
ments whose logarithms are mean-reverting. They assumed that portfolios are 
constant and also short-selling and borrowing are allowed, and the optimal 
strategies were found in the sense of time-independent portfolios, i.e. portfolios 
which do not depend on asset prices, which is not the case in real life situation. 

In this study, we focus on optimal strategies in the sense that portfolio de-
pends on asset prices and no borrowing and short-selling (thats no inflow and 
external flow of cash). As previous observations might be useful in predicting the 
future prices of the risky asset, then stock-price indexes can be characterized as 
mean-reversion processes [20]. Therefore, in this work we consider the price 
dynamics of the risky asset described by the geometric mean reversion (GMR) 
model  

( )
0 0

d ln d d
.

t t t t tS S S t S W
S s

κ µ σ = − +


=
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The organization of this paper is as follows. The Wealth stochastic differential 
equation is formulated in Section 2, while the stochastic optimal control prob-
lem is discussed in Section 3. The application of dynamic programming and HJB 
equation in obtaining the explicit solution of the stochastic optimal control 
problem is discussed in Section 4. The analysis of the results using MaTLAB 
software is done in Section 5. Finally, the conclusion and recommendation is 
provided in Section 6 and Section 7 respectively. 

2. Formulation of the Wealth SDE 

The stochastic portfolio optimization problem in continuous time is formulated 
and the stochastic control technique is used to find the optimal portfolio value 
by maximizing the utility of the wealth at some future time T. 

The formulation process has considered the dynamic system characterized by 
its state at any time, and evolving in an environment formalized by a filtered 
probability space ( ), , , PΩ F  for { }, 0t t= ≥ F  satisfying the usual condi-
tion on which a 1-dimensional standard Brownian motion { }, 0tW W t= ≥  va-
lued in   is defined [21]. 

The problem of portfolio allocation has considered Black-Scholes financial 
market with two investment possibilities namely: a risk free asset with positive 
price evolving as  

0d d , 1.t tB rB t B= =                      (1) 

and a risky asset with price at time t described dynamically by the geometric 
mean-reversion model  

( )
0 0

d ln d d
.

t t t t tS S S t S W
S s

κ µ σ = − +


=
               (2) 

The parameters of the market κ , σ , µ  are positive constants such that 
µ  represents the long term mean equilibrium (i.e. the value around which the 
future trajectories will converge in a long run), κ  is the speed of that conver-
gence and σ  is the degree of volatility. 

If the incremental change in the stock price is governed by the above geome-
tric mean reversion relation then, solving (2) provides the price of the stock at 
time t given(assuming it, a unique solution ) by  

( ) ( )
2

0 0
exp e ln 1 e e d .

2
t t ut t

t uS s Wκκ κσµ σ
κ

− −− −  
= + − − +     

∫      (3) 

The investment problem of an investor who has access to the capital market 
and wants to transfer current wealth 0 0X x=  into the bond and stock is consi-
dered. His/her preference is to dynamically choose the portfolio strategy in order 
to maximize the expected utility of wealth at some future time T. Thus, to de-
scribe the investor’s actions, the portfolio strategies are introduced. 

Definition 1 ([22]). Portfolio strategy is a two dimensional stochastic process  

( ) ( ) ( )( ) [ ]{ }0 , , 0,t t t t Tπ π= = Π Π ∈                (4) 
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satisfying the following conditions:  
1) π  is progressively measurable;  
2) π  is adapted i.e. t∀ , ( )tπ  is tF -measurable. 
The financial interpretation of the portfolio strategy is that ( )0 tΠ  is the num-

ber of units of bonds held by the investor at time t and ( )tΠ  is the number of 
units of stocks held by the investor at time t. 

Therefore the wealth (portfolio value) ( ) [ ]0,t t T
X

∈
 of an investor with initial 

capital 0 0x >  is such that  

( ) ( )0 .t t tX t B t S= Π +Π                      (5) 

The pair ( ) ( )( )0 ,t tΠ Π  is said to be a self-financing provided that, the cor-
responding wealth process ( )t t

X  is a continuous and adapted process such that  

( ) ( )0 00 0
d d .

t t
t u uX x u B u S= + Π + Π∫ ∫                 (6) 

This implies that changes in the wealth are only due to changes in the bond or 
stock prices, i.e. no external inflows or outflows of cash. 

The investor needs to monitor his/her wealth, and therefore, the fraction tθ  
of the wealth invested in stocks is set to be the control of the system at time t 
[19]. Thus, here comes  

( ) ( ) ( )
0

1
, t tt t

t t

XX
t t

S B
θθ −

Π = Π =                  (7) 

It is assumed that, ( )tθ  be almost surely continuous in [ ]0,t T∈  and since 
π  is assumed to be self-financing, then from (6), the differential equation  

( ) ( )0d d d .t t tX t B t S= Π +Π                     (8) 

below is formulated, and by (1) and (2) Equation (8) takes the form  

( ) ( ) ( )0d d ln d dt t t t t tX t rB t t S S t S Wκ µ σ = Π +Π − +   

Through collection of like terms in equation above, then the equation below is 
obtain 

( ) ( ) ( ) ( )0 ln d d .t t t t tr t B S t S t t S Wκ µ σ = Π + − Π + Π   

With further elimination of tS  and tB  using (7), finally the wealth stochas-
tic differential equation is obtain  

( ) ( )
d 1 ln d d .t t

t t t t t t t
X

X r X t X W
t

θ
θ κ µ θ σθ

   
= − + − +     Π    

       (9) 

For further simplification of Equation (9) to look much more beautiful, then 

the setting is done such that 
( )

ln t t
t

X
Y

t
θ

µ
 

= −   Π 
 and that, substitution into (9) 

is done to get  

( )d d dt t t t t t tX r Y r X t X Wκ θ σθ = + − +                (10) 

which is again a simplified stochastic differential equation of the wealth. 
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Logically it is assumed that the investor has complete information from the 
market at all instant, i.e. ( )tθ  is adapted. Therefore the investment policy is de-
fined by an  -adapted process ( ) [ ]{ }, 0,t t Tθ θ= ∈  which is a control process. In 
this case given a portfolio process θ , plausibly sounds convenient to rewrite (10) 
as  

( ) [ ],

0

d d d , 0,

, .
x t t t t t t tX r Y r X t X W t T

X x x

θ κ θ σθ  = + − + ∈  
= ∈ 

      (11) 

The notation xX θ  is used to emphasize the dependence of the wealth process 
on the initial wealth and the control. If the Equation (11) has a unique solution 
X, for a given data, then X is called the controlled process, as it’s dynamics are 
driven by the actions of the control process θ .  

3. The Stochastic Optimal Control Problem 

From (11), it is supposed that 
0

0tX x= >  at time 0t . The investor wants to 
maximize the expected utility of the wealth at some future time 1 0t t> . We as-
sume that 0 1tθ≤ ≤ , and by the concept of utility function from which the util-
ity function U to the wealth is assigned, then the Optimization criterion or a 
Reward function is then defined as  

( ) ( )0
0

,
0 , |t x

tJ t x U X X xθ θ θ
τ

 = = 


              (12) 

where τ  is the first exit time from the region ( ){ }1 1 1, ; ,0s x s t x x= < < <  
defined in Theorem below [19]. 

Theorem 1 ([23]). Let X be a cad-lag, adapted process and   be an open 
subset of    

1) If the filtration   satisfies the usual conditions, then the hitting time of 
  defined by  

{ }inf 0 : tt Xτ = ≥ ∈   

(with the convection inf ∅ = ∞ ) is a stopping time.  
2) If X is continuous, then the exit time of   defined by  

{ }inf 0 : tt Xτ = ≥ ∉   

is a predictable stopping time.  
Actually, 1x  is the amount of the wealth at any time 1s t<  before exit from 

the region  . We notice that, Equation (12) is a performance criterion of the 
form: 

( ) ( ) ( ) ( ) { }0
, , dt

t tJ x f t X t h X
τ θθ

τ τθ <∞
 = +  ∫ 

 
          (13) 

with 0f =  and h U= . 
It is required to maximize the expected utility of the wealth ( )U X θ 

   over 
the class ( ),t x  of all admissible portfolio strategies θ  that satisfy  

( )U X θ
τ

  < ∞ 


                        (14) 
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Now, the value function of the control problem which is actually our stochas-
tic optimal control problem is defined as follows  

( )
( )

( ){ }
0

0 0
,

, sup , ;0 1, where is Markov control
t x

V t x J t xθ

θ
θ θ

∈
= ≤ ≤


   (15) 

The main wish is to find an optimal strategy *θ  for which an optimal value 
( )0 ,V t x  is attained, that is  

( ) ( )*
0 0, , , .V t x J t x θ=  

4. Dynamic Programming and Hamilton-Jacobi-Bellman  
Equation 

At this juncture, the stochastic optimal control problem (15) is solved by max-
imizing the performance function (12) satisfying condition (14) and subject to 
the state (wealth) Equation (11). 

The statement of the stochastic version of Bellman’s principle of optimality, 
which is commonly known as the Dynamic programming principle (DPP) is 
provided as a reference for the next discussions.  

Theorem 2 (Bellman’s equation [24]). For all ( ) [ ]0 , 0, nt y T∈ ×  and  
[ ]1 0 ,t t T∈   

( ) ( ) ( )10
10

,
0 1 0 1, sup , , d , ,  0 .

tt y
s s tt

V t y s X s V t X t t T
θ

φ θ
∈

 = + ∀ ≤ ≤ ≤  ∫


  (16) 

Briefly the principle says that, an optimal policy from 0t  to T passing through 

1t  is also optimal in [ ]1,t T . Its thorough proof is in [24], and one can also find 
it in [22] and [25]. 

It can be noticed that, an optimal control problem (15) is similar to Bellman’s 
Equation (16) in Theorem 2, with 0φ = . 

The differential operator θL  is applied to the value function V in (15) to get  

( ) ( ) ( ) ( ) ( ) ( )21, , , , , , , ,
2t x xxV t x V t x b t x V t x t x V t xθ θ σ θ= + +L      (17) 

whereby, the comparison with the wealth SDE (11), provides that  

( ) ( )( ) ( ), ,   and  , ,b t x r y r x t x xθ κ θ σ θ σθ= + − =  

and ln xy θµ  = −  Π 
, being the substitution made in (9) to yield (11). Hence 

from Equation (15), it is possible to deduce the HJB equation  

( ){ } ( )
( ) ( )
( ) ( )

1

1

sup , 0  for ,

,   for

,0 0 0  for

V t x t x

V t x U x t t

V t U t t

θ
θ∈

 = ∈


= =


= = <

 L

              (18) 

where ( )U x  stands for any utility function that shall be applied in here. 
Therefore, for all ( ),t x ∈ , the main interest is to find the value ( ),t xθ θ=  

of which, in turn, it maximizes the function 

( ) ( ) ( )( )
2

2 2 2
2

1,
2

V V VV t x x r y r x
t x x

θξ θ κ θ σ θ∂ ∂ ∂
= = + + − +

∂ ∂ ∂
L      (19) 
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Since ln xy θµ  = −  Π 
, then let ( ) lnf λ λ=  such that ( )y fµ λ= − . Thus  

for simplicity, before dealing with the value of ( ),t xθ θ=  which maximizes 
( )ξ θ  above, it is first better to linearly approximate the function ( ) lnf λ λ=  

by Taylor series at 0 1λ = . Thus by Taylor series the expression below is found  

( ) ( ) ( ) ( )2 31 1
1 1

2 3
f

λ λ
λ λ λ

− −
= − − + + ≈ −

 

Therefore, making substitution for λ , an approximated linear expression 

( ) 1x xf f θ θλ  = ≈ − Π Π 
                    (20) 

is obtained. Plug Equation (20) into the function ( )ξ θ  in Equation (19), to get 
the approximated function ( )ξ θ  which is named as ( )η θ .  

( ) ( ) ( ) ( ) ( )

( )2 2 2

, 1 1 ,

1 , .
2

t x

xx

xV t x x r V t x

x V t x

θξ θ η θ θ κθ µ

σ θ

  ≈ = + − + + −  Π  

+

    (21) 

The Equation (21), then modifies the HJB Equation (18) and become  

( ){ } ( ){ } ( )
( ) ( )
( ) ( )

1

1

sup , sup 0  for ,

,   for

,0 0 0  for

V t x t x

V t x U x t t

V t U t t

θ
θ θ η θ∈ ∈

 ≈ = ∈


= =


= = <

  L

       (22) 

which is the same as 

( ) ( ) ( )

( ) ( )

( ) ( )
( ) ( )

2 2 2

1

1

sup , 1 1 ,

1 , 0 for ,
2
,   for

,0 0 0  for .

t x

xx

xV t x x r V t x

x V t x t x

V t x U x t t

V t U t t

θ
θθ κθ µ

σ θ

∈

    + − + + −    Π  
  + = ∈


 = =


= = <



        (23) 

Now, assuming that, V satisfies conditions of being strictly concave and in-
creasing, and that ( )η θ  has a maximum value at some ( ),t xθ , then  

( )( )
2

2 2d 21 0
d x x xx

xr xV V x Vη κθκ µ σ θ
θ
= + − − + =

Π
 

is achieved and solving for θ  from the expression above, finally the result is 
obtained to be  

( )
( )( )

2

1
,

2
x

x
xx

r V
t x

V V

κ µ
θ θ

κ
σ

+ −
= =

 − Π 

                   (24) 

With substitution of Equation (24) into HJB Equation (23), the partial diffe-
rential equation below is obtained  

https://doi.org/10.4236/jmf.2020.101002


L. J. Mbigili et al. 
 

 

DOI: 10.4236/jmf.2020.101002 18 Journal of Mathematical Finance 
 

( )( )

( ) ( )

2 2

1
2

1

11 0  for , 0
22

,   for

x
t x

x
xx

r V
V rxV t t x

V V

V t x U x t t

κ µ
κ

σ

 + −
 + + = < >

−
Π

 = =

      (25) 

which is a boundary value problem for V. This boundary value problem is ex-
tremely hard to solve for general utility function U. Thus, the work would be 
simplified if we consider the specific utility functions. We start to implement this 
by stating hereunder, the first theorem which thereafter will be followed by its 
proof.  

Theorem 3. Suppose that, for all  -adapted control process ( )0,1θ ∈  of 
the wealth 0x > , the solution for the boundary value problem (25) exists, and 
that, the investor’s behaviour is modeled by the power utility function 

( ) ;  0 1.xU x
α

α
α

= < <  

Then, the optimal control strategy *θ  is given by 

( )* ,t x
x
εθ

δ
=

+
                      (26) 

where the constants ,ε δ  and   are positive and depend on the market pa-
rameters. 

Proof. Since V is a function of two variables t and x, then by separation of va-
riables (or product method), the goal is to have a solution of the form  

( ) ( ) ( ) ( ), xV t x h t U x h t
α

α
= =                  (27) 

satisfying the boundary value problem (25), and therefore, it is required to solve 
for h. From (27), it is found that  

( ) ( ) ( )( )1 2,  and  1 .t x xx
xV h t V h t x V h t x
α

α αα
α

− −′= = = −      (28) 

Then, substituting Equation (28) into BVP (25), the equation below is ob-
tained  

( )( )
( )

2

1
2

1
0  for .

2 1

r
x h h r t t

x
α κ µ

α
κ σ α

  
 + − 
′ + + = <  

  − −   Π  

 

Since 0xα ≠  as 0x >  then a simplified equation below is obtained 

( ) 0h x hβ′ + =                        (29) 

which is a separable differential equation. The Equation (29) is solved, while set-
ting ( ) 1h t = , for 1t t= . The solution is then found to be 

( ) ( )( )1e .x t th t β −=                        (30) 

Hence Equation (27) becomes  

( ) ( ) ( )( )1, e x t tx xV t x h t
α α

β

α α
−= =                  (31) 
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where ( )
( )( )

( )

2

2

1
2 1

r
x r

x
κ µ α

β α
κ σ α

+ −
= +

− −
Π

. Now, from (31) the partial derivatives xV  

and xxV  are obtained, which are then plugged into (24) to get 

( ) ( )

( )
* *

2

1
,

2 1

r
t x

x
κ µ

θ θ
κ σ α

+ −
= =

+ −
Π

                (32) 

which is equivalent to (26) with ( )1 rε κ µ= + − , 2δ κ= Π  and ( )2 1σ α= − , 
and the proof is hence complete.  

And consequently, the Equation (31) is then the solution of the HJB Equation 
(23), provided that ( )* 0,1θ ∈ . 

Theorem 4. Suppose that the first hypothesis in Theorem 3 is considered, and 
suppose that, an exponential utility function.  

( ) e , 0axU x a−= − >  

is considered in the modeling of the investor’s behavior in the market play-
ground. Then the optimal policy is inversely proportional to the wealth. That is 

( )* 1,t x
x

θ ∝  

Proof. By the separation technique, the proof begins by assuming that, the 
value function is given by ( ) ( ) ( ),V t x h t U x=  such that:  

2e , e   and  eax ax ax
t x xxV h V ha V ha− − −′= − = = −           (33) 

Therefore, plug (33) into (25) and then look forward to obtain the function h.  

( )( )2

1
2

11e 0  for
2 2

ax r
h ha rx t t

a

κ µ
κ σ

−

  
 + − 
′ − + = <  

  +   Π  

 

Since e 0ax− ≠  then, through setting ( ) 1h t =  for 1t t= , it appears to have 
separable ordinary differential equation  

( ) 0h x hγ′ + =  

from which the solution is simply obtained. That is  

( ) ( )( )1e x t th t γ −=                         (34) 

whereby ( )
( )( )2

2

11
2 2

r
x a rx

a

κ µ
γ

κ σ

 
+ − 

= − + 
 + 
 Π 

. Hence, the solution ( ),V t x  is 

achieved such that  

( ) ( ) ( ) ( )( )1, e e .x t t axV t x h t U x γ − −= = − ⋅               (35) 

So, from (35), the partial derivatives  

2
x

xx

V aV

V a V

= −


=
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are easily obtained, and then substitution into (24) is performed to get another 
expression for the optimal strategy *θ  in the case of exponential utility consi-
dered as the investor’s behavioral measure. That is  

( )
( )( )* *

2

1
,

2
r

t x
a x

κ µ
θ θ

κ σ

+ −
= =

 + Π 

                  (36) 

and the proof is complete.  
The optimal control obtained in both cases of utility functions, depends on 

the wealth x, the market parameters , ,k rµ  and σ  as well as α  for the first 
case and a for the second case. The results obtained here look different from the 
other results which have been found by other researchers. 

The differences actually arise from the fact that, most of the researches which 
have been conducted particularly in the optimal portfolio problems, the dynam-
ics of the risky assets (stocks) have been described by the geometric Brownian 
motion. The controlled SDE for the wealth process formulated from that model 
leads to the value function from which the optimal policy is obtained and found 
to be independent from time and the wealth in particular. 

In this study, the dynamics of the risky asset is described by the geometric 
mean reversion (GMR) processes as the Equation (2) shows. The formulation of 
the controlled wealth SDE incorporates the deterministic differential Equation (1) 
and the GMR model (2), and from there the value function (14) is defined and 
hence the optimal policies which depend on the wealth and the market parame-
ters are determined as indicated above. 

5. Analysis of the Results 

In this section, the use of MATLAB software to implement the simulation of the 
optimal strategy and study its behavior in relation to the wealth is essentially 
done. Also the implementation of the simulation of the value function with re-
spect to time and the wealth for the same market parameters used in the simula-
tion of optimal policy is well achieved. For both cases, power utility and expo-
nential utility, the results are analyzed differently. 

5.1. The Analysis of Optimal Strategy in the Case of Power Utility 

At this juncture, the simulation of the results obtained by solving the portfolio 
problem when the power utility used as the measure of the investor’s behavior is 
implemented. The implementation of the simulation of the optimal strategy with 
respect to wealth of the portfolio with the market parameters 10.54µ = , 

0.3κ = , 0.97σ = , 0.05r = , 2Π =  and 0.5α =  is effectively achieved. Fig-
ure 1 shows that, the optimal investment strategy decreases almost to zero as the 
wealth increases. 

This implies that, as the investor becomes richer the less he invests in risky 
assets. This result looks somewhat absurd as it contradicts with the economic  
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Figure 1. The optimal policy with respect to wealth for the power utility case. 

 

interpretation of the absolute risk aversion(ARA) ( ) 1A x
x
α−

= , for power utili-

ty, which signifies that, someone with higher capital is less afraid of taking risk  
in investing on risky assets. On the other hand, the result concurs exactly with 
what is happening in real life situation, whereby as someone gains more wealth, 
then deposits most of his/her wealth in bank accounts than investing in risky as-
sets. He/she looks somewhere he can invest his wealth with minimum or almost 
no risk at all to take on, while expecting for an absolute perfect return. 

5.2. The Analysis of Value Function in the Case of Power Utility 

At this point the intention is to study graphically how the value function behaves 
in relation to time and the wealth with the same market parameters used above. 

The value function decreases with time and wealth. The observations show 
that, the value function does not decrease exactly to zero, yet it reaches a certain 
point where it shows some unnoticeable changes with respect to wealth, while 
continues to decrease exponentially with the increase in time. The surface de-
scribed so far in Figure 2 shows a nonlinear relationship between the value 
function and the time and wealth as well.  

5.3. The Analysis of Optimal Strategy in the Case of Exponential  
Utility 

The results obtained when exponential utility used as the measure of the inves-
tor’s behavior in the market are considered. The market parameters 10.54µ = , 

0.3κ = , 0.97σ = , 0.05r = , 2Π =  and 1a =  are used. The realization of 
the graph of optimal investment strategy with respect to the wealth of the port-
folio for the exponential utility is done. 

Figure 3 shows that, the optimal strategy varies inversely with respect to 
wealth. As the wealth increases the optimal policy decreases. This result has the 
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same implication as the one already discussed above for the power utility. Thats, 
the genuine investor reduces his proportions invested in risky assets and depo-
sits them in bank accounts. This means that, the investor escapes from too much 
trading and now tries to find more time to get relaxed and avoid stresses.  

5.4. The Analysis of Value Function in the Case of Exponential  
Utility 

At this point, the realization of the value function with respect to time and 
wealth of the portfolio and the same market parameters used above for the ex-
ponential utility is well done. Figure 4 shows that, the value function does not vary 
with respect to the wealth, but rather varies exponentially with respect to time. 
 

 
Figure 2. The value function with respect to time and wealth for the power utility case. 
 

 
Figure 3. The optimal strategy with respect to current wealth for the exponential utility 
case. 

https://doi.org/10.4236/jmf.2020.101002


L. J. Mbigili et al. 
 

 

DOI: 10.4236/jmf.2020.101002 23 Journal of Mathematical Finance 
 

 
Figure 4. The value function with respect to time and wealth for the exponential 
utility case. 

 
The value function increases negatively as the time advances with no effect from 
the wealth. The value function remains maximum no matter how wealth in-
creases, however, that is not the case with time. 

6. Conclusion and Recommendation 

This paper has provided discussion on portfolio management under the mean- 
reverting stock returns and the constant force of interest for bond returns. The 
problem of portfolio optimization has been approached by the theory of stochas-
tic optimal control technique. The determination of optimal investment strate-
gies and the value functions from the two theorems which have been stated and 
then proved for the power utility and exponential utility cases have been achieved. 
The results however show that, the optimal investment rules are absolutely in-
versely related to the wealth and therefore rules out the popular investment al-
location advice that, the more capital someone has the more he/she invests in 
risky assets for quick and better expected returns. The popular investment allo-
cation advice is that, the wealthier someone is, the less he/she fears in investing 
on the risky assets. However, this is contrary to the above findings obtained in 
this work. The investment problem studied so far involves only two assets, namely, 
bonds with the price at time t evolving exponentially with constant interest rate r 
and the stocks whose price at time t described by geometric mean-reversion 
model. The introduction of extra features such as consumption, human capital 
and transaction costs may bring model improvements and hence the optimal 
asset allocation choice. Also the use of other utility functions in handling the 
problem is highly recommended before arriving to the general conclusion of the 
results so far obtained in this work. 
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Appendix 
A.1. Codes for Numerical Simulation of Optimal Policy and Value  

Function for Power Utility Case 
 

 
 
A.2. Codes for Numerical Simulation of Optimal Investment  

Strategy and Value Function for Exponential Utility Case 
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