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Abstract 
Crystal shape distribution, i.e. the multidimensional size distribution of crys-
tals, is of great importance to their down-stream processing such as in 
filtration as well as to the end-use properties including the dissolution rate 
and bioavailability for crystalline pharmaceuticals. Engineering crystal shape 
and shape distribution requires knowledge about the growth behavior of dif-
ferent crystal facets under varied operational conditions e.g. supersaturations. 
Measurement of the facet growth rates and growth kinetics of static crystals 
in a crystallizer without stirring has been reported previously. Here attention 
is given to study on real-time characterization of the 3D facet growth beha-
vior of crystals in a stirred tank where crystals are constantly moving and ro-
tating. The measurement technique is stereo imaging and the crystal shape 
reconstruction is based on a stereo imaging camera model. By reference to a 
case study on potash alum crystallization, it is demonstrated that the crystal 
size and shape distributions (CSSD) of moving and rotating potash alum 
crystals in the solution can be reconstructed. The moving window approach 
was used to correlate 3D face growth kinetics with supersaturation (in the range 
0.04 - 0.12) given by an ATR FTIR probe. It revealed that {100} is the fastest 
growing face, leading to a rapid reduction of its area, while the {111} face has 
the slowest growth rate, reflected in its area continuously getting larger. 
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1. Introduction 

On-line microscopic imaging and image analysis for real-time characterization 
of crystallization processes has attracted much attention in recent years. While 
much of the published work was based on study on 2D imaging technique, 3D 
imaging seems to hold more promise. This is because crystal size and shape dis-
tributions (CSSD) should be the size distributions over more than one size di-
mension. 

In a comparison of 2D and 3D imaging for crystallization characterization of 
needle-shaped crystals [1], it was found that 2D imaging based technique could 
underestimate the crystal length by 2/3, while the 3D imaging approach esti-
mated the length much more accurately. A novel device was designed for direct 
measurement of face specific growth kinetics of growing crystals based on 3D 
online imaging technique through fixing a seed onto the pipeline in a flowcell 
rather than a stirred tank [2]. Ma et al. [3] proposed the triangulation method to 
reconstruct three different crystals 3D-shape in a reactor. However, the facet 
growth kinetics was not reported. Zhang et al. [1] also applied stereo vision im-
aging to measuring the size and shape of needle-like crystals in stirred tank 
crystallizer. The triangulation algorithm was also employed to reconstruct the 
3D shape. It is noticed that the triangulation algorithm has successfully recon-
structed the 3D shape for needle, plate and rod like crystals, but it is difficult for 
crystals with more complicated structures. The main limitation of the triangula-
tion of 3D reconstruction algorithm is that it relies on accurate identification of 
all the corners of each crystal on the 2D images, which proved to be challenging. 
For this reason, a new reconstruction method named stereo imaging camera 
model was presented and applied to static crystals growing in crystallizer with-
out a stirrer to obtain a crystal’s growth kinetics [4]. In this case, the rotation 
and motion of crystals were not considered, which may not truly reflect the 
crystal growth. In this current study, facet growth kinetics of potash alum crys-
tals was derived in a stirred tank crystallizer using stereo imaging camera model. 
Compared to the previous work mentioned above, the current work has made 
progress in two aspects: 1) 3D facet growth kinetics of moving and rotating 
crystals rather than static crystals was measured in a stirred tank; 2) A more ef-
fective 3D reconstruction method, stereo imaging camera model, incorporated 
with a moving window approach was used to reconstruct the CSSD. 

Although the above mentioned work [1] [2] [3] [4] is most relevant to the 
current paper, other techniques for on-line crystal shape measurement will also 
be briefly reviewed here. Since there are many papers on crystal shape measure-
ment using 2D imaging, and they are less relevant to the current work focusing 
on 3D, and also because they have been reviewed in some recent papers [4] [5] 
[6] [7], here the review will be restricted to those methods that characterize 
crystal 3D shape. 

Li et al. [8] proposed a method called camera model to obtain 3D crystal 
shape information using on-line captured 2D images taken from a crystallizer, 
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but they used only one camera. Borchert et al. [9] developed a method to recon-
struct the 3D crystal shape by comparing Fourier descriptors of the 2D crystal 
projections in pre-computed database with the Fourier descriptors of on-line 
measured 2D images. It is noted that the images were still obtained using a single 
camera rather than two or more cameras in the above mentioned work. Wang et 
al. [6] proposed to use two or more synchronized cameras to firstly acquire two 
or three 2D images of the same moving crystal from different directions and 
then reconstruct its 3D shape from the 2D images using a reconstruction algo-
rithm. A clever method for measuring 3D crystal shape through flow cell using a 
single camera but two mirrors from vertical directions was shown by Mazzotti 
and co-workers [10] [11]. However, in their later work, they turned to two cam-
eras rather than a single camera plus mirrors [12]. More recently, they developed 
an optimization method to obtain crystal shape from stereoscopic images in a 
hot-stage reactor [13]. It needs to point out that in their work the crystals were 
also static. Huo et al. developed imaging analysis for online identification crystal 
morphology [14] and detection of particle agglomeration [15] rather than ob-
taining growth kinetic information based on 3D imaging system. Kovac ̌evic ́ et al. 
[16] reported a new algorithm for obtaining 3D crystal shape from microcom-
puted tomography [17]. More recently, they further extended this method for 
asymmetrical crystals and applied it for studying the disorientation angle distri-
bution (DAD) of potash alum crystals, and could measure the DAD using 3D 
imaging and the proposed image processing routines [18]. Although this method 
opens a new idea for estimation full particle size and shape distributions and ex-
ploration particle aggregation mechanism, it is still limited to dry particle sam-
ples rather than real-time measurement of crystals growing in a solution. Con-
focal microscopy is able to provide 3D shape information of specimen through 
obtaining tomographic images of samples [19], and an image-analysis program 
was used to measure morphology and identify polymorphs of 3D crystals [20], 
but the method is slow, takes from half hour to one hour for a single particle and 
not suitable for on-line monitoring. Computed tomography (CT), referred to as 
X-ray tomography, which can reconstruct the full 3D structure of a particle 
through a series of 2D X-ray images [21]. This technique has been applied in ex-
tracting 3D geometric information as well as measuring particle size distribution 
in different areas [22] [23] [24] [25]. In addition, three-dimensional electron 
tomography (3D-TEM) is also a method for obtaining the particle 3D shape 
[26]. However, CT and 3D-TEM are not suitable for on-line monitoring of crys-
tallization processes.  

On the basis the previous proof of concept study on stereo imaging camera 
model for monitoring static crystals growing in a crystallizer without stirring [4], 
the current investigation focuses the attention on characterization of 3D size and 
shape distribution of potash alum crystals growing in a stirred tank crystallizer 
where crystals constantly move and rotate. In the following sections, experi-
ments and the methodology of crystal 3-D shape reconstruction are briefly de-
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scribed. Then the facet growth kinetics of potash alum crystals is discussed. 
Conclusions will be made in the final section.  

2. Crystallization Experiment 

A 1.5 L reactor (Figure 1) was purposely designed to have a silica imaging win-
dow to apply the imaging instrument and to minimize convexity effect on im-
ages. In Figure 1, the area is labeled “image window”. A Julabo FP51-HE ther-
mostatic bath was used to control the temperature by manipulating the water 
circulation. The temperature was measured using a platinum resistance ther-
mometer (PT100). Solution concentration was measured using an attenuated 
total reflectance-Fourier transform infrared probe (ATR-FTIR). Potash alum, 
KAl(SO4)2·12H2O, was chosen as the model chemical. It has four molecules in 
the cubic unit cell with a space group of 3Pa  and cell parameters of a = b = c = 
12.517 Å and α = β = γ = 90˚. As shown in Figure 2, the crystal morphology is 
dominated by the large octahedron face {111} and two essential but considerably  
 

 
Figure 1. Schematic of the experimental set-up equipped with 
the stereovision imaging system the “Image window” area was 
purposely designed to minimize convexity effect. 

 

 

Figure 2. Morphology of potash alum crystal and the three size 
characteristic parameters (x, y, z) for independent crystal faces. 
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smaller faces, the cubic face {100}, and the rhomb-dodecahedron face {110} [27] 
[28] [29] [30]. Three minor faces, {221}, {112} and {012}, that exist only at early 
stages during crystallization and disappear quickly, hence, have not been fre-
quently observed. These three primary growth forms are manifested in the ex-
ternal morphology through the multiplicities associated with the cubic symme-
try which yields a total of 26 crystal growth surfaces, i.e., eight {111}, six {100} 
and twelve {110} faces as three feature faces. In Figure 2, x, y and z stand for the 
normal distances from geometric center to three feature faces, respectively. The 
solubility of potash alum crystals can be found in literatures [31] [32].  

The on-line imaging system depicted in Figure 1 consists of two IDS CCD 
cameras (camera 1 and camera 2 as shown in the figure) and two 2x optic lenses. 
The camera fitted with Sony Imaging sensor can carry out image acquisition 
with a pixel resolution of 1280 × 1024 under a maximum frequency of up to 15 
images per second. Two LED light sources were used to provide illumination for 
cameras. A PC running StereovisionNI software developed by PharmaVision Ltd 
was used for acquisition, storage and management of the images. The relative 
measurement error is less than 2%. 

Saturated solution (at 31˚C saturation temperature) was prepared with 170 g 
of potash alum and 1 L of fresh distilled water. The solution was heated quickly 
to 40˚C and held at the temperature for an hour until the solids were fully dis-
solved. The solution was then cooled down to 30˚C at a relatively fast cooling 
rate of 1˚C/min and maintained at 30˚C for half hour. After that, the solution 
was cooled down to 27˚C at a slow cooling rate of 0.1˚C/min. The growth of po-
tash alum crystals happened with the decrease of the solute temperature and 
concentration during the cooling crystallization. For the estimation of crystal 
shape, the temperature range used was from 30˚C to 27˚C and the correspond-
ing relative supersaturation range was from 0.04 to 0.12. 

3. ATR FTIR Calibration Experiments and Models 

The ATR-FTIR calibration experiments were carried out to collect data for pre-
dictive model development. The data contains 30 spectra, corresponding to so-
lutions at temperatures of 10˚C, 20˚C, 30˚C, 40˚C and 50˚C, and concentration 
range from 2 to 24 g/100g water. The peaks at wavenumbers of 1100 cm−1 and 
1640 cm−1 are associated with potash alum sulphate ( 2

4SO − ) and the H-O-H in 
water. 

Partial least square regression (PLS) [33] [34] [35] was used to develop the 
concentration predictive model. The calibration data comprises the input va-
riables, i.e. the wave numbers in the range between 800 cm−1 to 1800 cm−1 at 4 
cm−1 interval (The IR spectra peak of potash alum is known to be at the wave 
numbers of 1100 cm−1 and 1640 cm−1) and temperature, and the output variable 
i.e., the solution concentration. Although it was found the influence of tempera-
ture on spectra absorbance is not as obvious as solution concentration, 
temperature was still used as an input variable. The data was randomly divided 
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into two sets, the training dataset (18 spectra) for calibration model development 
and the test dataset (12 spectra) for model verification, which was same as Table 
1 in literature 4 as cells and cells with the letter “s”, respectively. The R-square 
values (R2) and root mean square of prediction (RMSEP) for the training data 
and test data are R2 = 0.99997, RMSEP = 0.0021 g/g water and R2 = 0.99995, 
RMSEP = 0.0025 g/g water using PLS model, respectively. 

4. Crystal 3D Shape Reconstruction 

The stereo imaging camera model described in the paper [4] was use here to re-
construct the 3D shape and estimate the multidimensional sizes of a crystal. The 
approach for 3D crystal shape reconstruction firstly rotates a digitalized crystal 
in the three-dimensional space and varies the dimensional sizes in all face direc-
tions. At each size and orientation, 2D projections of the crystal, according to 
the angles of the 2D cameras, are recorded. The contour information of 2D im-
ages is processed to calculate Fourier descriptors and radius-based signature that 
are stored in a database. Then when the stereo imaging instrument mounted on 
a crystallizer captures 2D images, they are segmented to obtain the contour in-
formation and further processes are applied for obtaining their Fourier descrip-
tors and radius-based information. The calculated Fourier descriptors and ra-
dius-based signature are used to find the best matching in the database. The 
corresponding 3D crystal shape is thus found. 

4.1. The Database 

Since the detailed method of the stereo imaging camera model was previously 
introduced [4], inhere it will not be repeated. Accurate estimation of the 3D 
shape and multidimensional sizes of a crystal in a stirred tank mainly depends 
on two factors: the quality of the captured images, as well as the database con-
taining the Fourier descriptors (FDs) and radii-based information of 2D projec-
tions from two different angles of a digital crystal that undergoes rotation in the 
three-dimensional space and variation in the dimensional sizes of all face direc-
tions. For the second factor, the discretization step sizes of the variation of 
orientation angles and crystal sizes during the generation of the database are 
important. Smaller discretization step size means higher matching accuracy, but 
at the expense of larger database and longer CPU time.  

The range of crystal size in this work was set from 10 μm to 200 μm and the 
step length for variation in each of the three normal distances was set as 5 μm. 
Meanwhile, the range and step length of rotation angle were the same as 
database in the previous paper [4], i.e., δ and φ varied between 0 and 2π, θ was 
from 0 to π, whilst the step length was 10˚.  

An assumption was made that the potash alum crystals always keep 26 faces, 
despite the fact that it is possible according to Wan et al. [36] that during the 
growth of a crystal one or two of the three faces {111}, {100} and {110} might 
disappear, resulting seven possible morphological forms. The additional con-
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straint was added that limits the area of a feature face never reaching zero when 
calculating the area using the equations described in the previous paper [28]. 

In total, 4334 combinations of three characteristic parameters (x, y, z) using 
the selected size range and step size for the database. The database was generated 
based on the following settings: nx,y,z = 4334, nδ,φ,θ = 23,328, and K = 128, where n 
is the number of selected size, x, y, z are the normal distances of three individual 
faces, and δ, φ, θ are the Euler angles. 

4.2. Shape Estimation Principle 

For dynamic crystals, though the reconstruction of crystal shape is more chal-
lenging, the estimation principle is essentially the same as for static crystals. In 
our previous work [4], 3D shape of a single static crystal was reconstructed using 
stereo imaging camera model based on stereo imaging system. Suppose that the 
crystals in a stirred tank crystallizer (Image A) and a static crystal (Image B) 
were photographed using the same camera, respectively. There are 2D projec-
tions of several crystals during rotation in the space on Image A, while only a 2D 
projection on Image B. Actually, these projections on Image A can be considered 
as the combination of the projection on Image B at different angles. Therefore, 
estimation of 3D shape of crystals in stirred tank reactor will become 3D recon-
struction of a series of single crystal. Furthermore, the probability of the same 
projection (size and shape) crystal generated at different angles is very small in 
stirred reactor. It is assumed that a potassium crystal rotates randomly at a slow 
enough speed, the 2D projections of crystal may be very similar at two successive 
steps or at fully symmetrical position in space. However, it is difficult in a stirred 
reactor to capture the same crystal at the specific position or symmetrical posi-
tion. Based on this situation, we assumed that the projection generated at 
specific rotation angle was unique. In this case, we can use the similar method to 
reconstruct 3D size of dynamic crystals as static crystal. 

4.3. Image Segmentation Method 

The multi-scale image analysis software of PharmaVision (Qingdao) Intelligent 
Technology Ltd, SHAPE, was used to extract crystals from the image back-
ground. Key steps of the image segmentation algorithm were illustrated in lite-
rature [37] [38] so will not be repeated here. The processed images were stored 
in the format of pixel coordinates, i.e., all the points on the images including 
sampling signature were the pixel coordinates, which cannot be used to directly 
calculate the Fourier descriptors (FDs). The pixel coordinates can be trans-
formed to the Cartesian coordinates based on the magnification (2x) and the 
size of each pixel (pixelated images with a resolution of 4.65 μm/pixel). In this 
work, all the programs were written in MATLAB, and calculated by high 
performance computing platform (20 computer codes, 2*Opteron 6000 proces-
sor, 12 processing core, 2.4 GHz and 48 Gb Ram running Rocks 6.0 operation 
system based on CentOS 6.2) in South China University of Technology (SCUT). 
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5. Results and Discussion 
5.1. Preliminary Analysis of the Images Captured in Experiments 

The sampling frequency was set to taking three pairs of images per second, 
hence in total 5400 image pairs were recorded in 30 minutes. Figure S1 shows 
examples of images taken immediately after nucleation (Figure S1(a) and Fig-
ure S1(b)). It is apparent that the images in Figure S1(a) and Figure S1(b) are 
too small to be able to construct the 3D shape of crystals. Figure S2 shows ex-
amples of images over a time window of about 7 seconds, from 17 h 15 min 37 
sec 102 ms to 17 h 15 min 43 sec 797 ms. 

Some crystals in Figure S2 images were small, overlapped, or having blur ex-
ternal contour. Of course, these particles in the images can still be processed 
through multi-segmentation algorithm, and their FDs and radii calculated, and 
to find a 3D size by matching with the projections in the database. But the errors 
are likely large. 

5.2. Illustration of 3D Crystal Shape Reconstruction 

Based on the above preliminary analysis of the images captured, a strategy for 
illustrating crystal shape reconstruction in this section was used: 

1) 3D crystal shape reconstruction was performed for only selected crystals in 
an image pair.  

2) In order to reflect crystals’ 3D size change with time during the crystalliza-
tion, crystals in images taken in a time window of 7 seconds (written as 7 s) were 
analyzed together. The first time window of 7 s was given a new time in the new 
time axis as the first second, i.e., 1 s. The first time window, i.e., the time window 
at 1 s in the new time system, was starting at 17 h 15 min 39 sec 96 ms plus 7 
seconds. Within this 1st time window, i.e., at the new time system at 1 s, the 
crystals that were selected for 3D shape reconstruction are shown in Figure 3. It 
needs to point out that the crystals in the image of Figure 3 were selected from 
the original images of this 7 s time window and put together; they have retained 
their original x-y axes.  

3) A moving window strategy was employed, i.e., the second time window 
started from 17 h 15 min 40 sec 96 ms with a width of 7 seconds. In other words, 
to move to the next time window, images over 1 second were moved out of the 
window from left, and new images span 1 second were added from the right side 
of the window. In this study, in total for 1316 crystals of potash alum, their 3D 
size and shape were reconstructed. 

Figures 3-10 show the images at four different times representing time win-
dows at t = 1 s, 126 s, 1078 s and 1645 s, processed images and the 3D recon-
structed crystal shape. As is known, particles within focal length of the cameras 
were clear, otherwise particles were blurred. To reduce their effects to the max-
imum extent, the LED source was set strong power to provide sufficient light in-
tensity to remove vague particles. In practice, images were photographed with a 
finite resolution by a CCD-chip. The pixel coordinates of particles on the images 
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determine their size. The position of the same particle on two images was not 
completely consistent because of two cameras with an angle. Therefore, to accu-
rately match the particle, the difference between two pixel coordinates of the 
particle on the X and Y axis in two images were calibrated based on the calibra-
tion parameters (error and the difference of pixel coordinates) in advance ac-
cording to the relative position of two cameras. Here we only present a few typi-
cal cases to illustrate this process. 

 

 

Figure 3. On-line images from the stereo vision imaging system at the time window t = 1 s, 
(a) camera 1, (b) camera 2, the two images ((c) and (d)) processed by multi-segmentation 
method, all particles marked on the images ((e) and (f)), successfully matched particles on 
images ((g) and (h)). 

 

 
(a)                                      (b) 
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(c)                                      (d) 

 
(e)                                      (f) 

 
(g)                                      (h) 

Figure 4. The 3D shapes of crystals No 2 to No 9 at the time window t = 1 s, the number 
of a crystal is consistent with Figure 3(g) and Figure 3(h). (a)-No 2; (b)-No 3; (c)-No 4; 
(d)-No 5; (e)-No 6; (f)-No 7; (g)-No 8; (h)-No 9. 

 

 

Figure 5. On-line images from the stereo vision imaging system at the time window t = 
126 s, (a) camera 1, (b) camera 2, the two images successfully matched particles on images 
((c) and (d)). 
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As shown in Figure 3(e) and Figure 3(f), there were 12 particles marked on 
the images. Next, 9 pairs of particles were matched based on the pixel positions in 
Figures 3(g) and Figures 3(h). However, the boundary information of the par-
ticle marked as No 1 on the image from camera 1 is missing, so it was not consi-
dered. Other crystals, numbered 2 to 9 were successfully reconstructed (see Fig-
ure 4) in which the 3D shape of each of the crystals No. 2 to No. 9 was shown.  

 

 
(a)                                      (b) 

 
(c)                                      (d) 

 
(e)                                      (f) 

 
(g)                                      (h) 

Figure 6. The 3D shapes of crystals at the time window t = 126 s, the number of a crystal 
is consistent with Figure 5(c) and Figure 5(d). 
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Figure 7. On-line images from the stereo vision imaging system at the time window t = 
1078 s, (a) camera 1, (b) camera 2, the two images successfully matched particles on im-
ages ((c) and (d)). 

 

 
(a)                                      (b) 

 
(c)                                      (d) 

 
(e)                                      (f) 

Figure 8. The 3D shapes of crystals at the time window t = 1078 s, the number of a crystal 
is consistent with Figure 7(c) and Figure 7(d). 
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Figure 9. On-line images from the stereo vision imaging system at the time window t = 
1645 s, (a) camera 1, (b) camera 2, the two images successfully matched particles on im-
ages ((c) and (d)). 

 

 
(a)                                      (b) 

 
(c)                                      (d) 

 
(e)                                      (f) 

Figure 10. The 3D shapes of crystals at the time window t = 1645 s, the number of a 
crystal is consistent with Figure 9(c) and Figure 9(d). 
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In Figure 4, shapes of eight crystals were successfully reconstructed, including 
the multidimensional sizes written on each crystal as the normal distances of the 
three featured faces, x, y, z. It can be seen that the shape of a crystal depends on 
the relative ratio between the three sizes x, y, z. For example, crystals No 3 and 9 
have similar ratios for x:y:z, so they have the similar shapes (small {100} and 
{110} with hexagon, large {111} hexagon) though they have different dimension-
al sizes. Crystals numbered 4, 5, 6 and 7 crystals have similar x:y:z ratios, so they 
have similar shapes ({100} and {110} with rectangle, {111} with triangle) despite 
they have different dimensional sizes. The dimensional sizes of the number 2 
crystal are the maximum (x = 25.43 μm, y = 35.46 μm, z = 28.94 μm), and the No 
5 crystal has the minimum dimensional sizes with x = 12.33 μm, y = 19.50 μm 
and z = 15.91 μm. 

Similar observations can be made for other three time windows at t = 126 s, 
1078 s and 1645 s (Figures 5-10). In addition, the reconstructed crystal sizes 
generally speaking became larger from t = 1 s to 1645 s, which demonstrates 
crystals grow gradually during the cooling crystallization. Obviously, getting 
larger or not for the crystals should be based on statistical data, as will be pro-
vided later. 

5.3. 3D Crystal Shape Evolution on a Statistical Basis 

Obviously, it is impossible to capture the same crystals at different times due to 
the continuous motion and rotation of the suspension in a stirred reactor. 
Therefore, the crystal size obtained at a particular time cannot well reflect the 
population of crystal size in the reactor. Even using the moving window ap-
proach described above, if the window width is small like 7 seconds above, it 
cannot reflect the statistical information. 

In this section, the width of a time window is set as 30 s (a time window per 
four images). As a new image is added into the moving window each time, the 
earliest image in the window will be taken out to keep the window width at 30 s. 
All the particles in the current time window are analyzed to provide the size dis-
tribution. Figure S3 shows variation of growth rates and the averaged normal 
distances, x, y, z with time through analyzing images from reconstructed crystal 
mean size, respectively.  

To more precisely display variety of the mean size with time, larger window 
time width to 60 s at three different times was chosen. Figures 11-13 show the 
predicted mean size distributions in the face {111}, {110} and {100} at 126 s, 1078 
s, 1645 s. It can be seen that the averaged normal distances of three characteristic 
faces {111}, {110} and {100} successively increase at three times. Furthermore, 
based on the reconstructed 3D shape, apparently, the areas of faces {100} (green) 
and {110} (blue) slowly decrease, especially face {100}, by the contrast, the area 
of {111} (pink) becomes larger with the time, which is good agreement with im-
ages captured through stereo cameras. From Figure 3(a) and Figure 3(b) to 
Figure 9(a) and Figure 9(b), it can be seen that some edges of the 2D projec-
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tions became smaller as a result of smaller area of face {100}. It indicated that the 
growth rate of face {111} may be the slowest, while growth rate of face {100} may 
be the fastest in the cooling crystallization. 

5.4. Estimation of Face Specific Growth Kinetics 

Figure S3 shows the mean distributions of normal distances (x, y and z) of three 
individual faces {111}, {100} and {110}. It can be seen that the normal distances 
of individual faces grew with time, t, and a second order polynomial function 
was used to curve-fit them with R2 being over 0.90: 

 

 
(a)                                      (b) 

 
(c)                                      (d) 

Figure 11. The mean size distribution in three featured faces (solid lines: blue-{111} face, 
red-{110} face, black-{100} face,) average previous 60 s at 126 s, (a) single camera 1, mean 
size 19.39 μm in {111} face, 22.99 μm in {110} face and 28.08 μm in {100}; (b) single cam-
era 2, mean size 18.79 μm in {111} face, 22.36 μm in {110} face and 27.12 μm in {100}; (c) 
stereo camera, mean size 19.09 μm in {111} face, 22.63 μm in {110} face and 27.60 μm in 
{100} face; (d) reconstructed 3D shape, pink-{111} (x), green-{100} (y), blue-{110} (z). 

 

 
(a)                                      (b) 
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(c)                                      (d) 

Figure 12. The mean size distribution in three featured faces (solid lines: blue-{111} face, 
red-{110} face, black-{100} face,) average previous 60 s at 1078 s, (a) single camera 1, 
mean size 26.43 μm in {111} face, 29.13 μm in {110} face and 37.18 μm in {100}; (b) single 
camera 2, mean size 26.72 μm in {111} face, 29.49 μm in {110} face and 37.56 μm in {100}; 
(c) stereo camera, mean size 26.57 μm in {111} face, 29.31 μm in {110} face and 37.37 μm 
in {100} face; (d) reconstructed 3D shape, pink-{111} (x), green-{100} (y), blue-{110} (z). 

 

 
(a)                                      (b) 

 
(c)                                      (d) 

Figure 13. The mean size distribution in three featured faces (solid lines: blue-{111} face, 
red-{110} face, black-{100} face,) average previous 60 s at 1645 s, (a) single camera 1, 
mean size 38.61 μm in {111} face, 40.84 μm in {110} face and 44.42 μm in {100}; (b) single 
camera 2, mean size 39.99 μm in {111} face, 42.30 μm in {110} face and 46.04 μm in {100}; 
(c) stereo camera, mean size 47.69 μm in {111} face, 50.45 μm in {110} face and 54.85 μm 
in {100} face; (d) reconstructed 3D shape, pink-{111} (x), green-{100} (y), blue-{110} (z). 

 

( )2 60.0004 0.0599 21.922 10x t t −= × − × + ×               (1) 

( )2 60.0008 0.0061 27.659 10y t t −= × + × + ×               (2) 

( )2 60.0006 0.0718 25.391 10z t t −= × − × + ×               (3) 
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Equations (1)-(3) were used to obtain growth rates of three individual faces. 
As shown in Figure S3(b), the obtained growth rates have a linear relationship 
with time. The crystal growth rates of three individual faces against the relative 
supersaturation can be obtained (Equations (4)-(6)). 

{ }
7 2.16

111 9.242 10G σ−= × ×                     (4) 

{ }
6 2.16

100 1.849 10G σ−= × ×                     (5) 

{ }
6 2.16

110 1.386 10G σ−= × ×                     (6) 

It is worth noting that the 3D shape of complex crystals in a stirred tank was 
firstly reconstructed via stereo imaging system and image analysis techniques, 
which provides a feasible reconstruction approach method for obtaining 3D 
shape information of other compounds including potash alum in the future. In 
addition, the method developed here was used to estimate the growth rate of 
three individual faces of potash alum, especially the growth rate of faces {100} 
and {110}, which was rarely reported in literatures because of difficult to meas-
ure and estimate. The results show that the growth rate of {100} is the fastest, 
while the slowest is face {111}, this trend observed for dynamic crystals is con-
sistent with what was found for static crystals in previous work [3]. 

6. Concluding Remarks 

In this paper, the stereo imaging camera model for crystal 3D shape reconstruc-
tion was applied to online estimation of faceted growth kinetics of potash alum 
crystals growing in a stirred tank crystallizer. The crystal size and shape distribu-
tion (CSSD) was estimated based on statistical information obtained from mov-
ing windows. Moreover, the result revealed that faces {100} and {111} are the 
fastest and slowest growing faces, respectively. The promising result obtained 
provides a valuable approach for monitoring the 3D CSSD. It is noted that in 
stirred tank crystallizers, there are still some difficulties and challenges such as 
blur, overlapped and too small particles in the images, which should be ad-
dressed in the future. 
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Appendix 

 
(a)                                        (b) 

Figure S1. On-line images captured from a crystallization experiment of potash alum 
using stereo imaging system, camera 1 (left) and camera 2 (right), (a) and (b) crystals 
were firstly observed in the images.  
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Figure S2. On-line images captured in 7 s (between 17 h 15 min 37 sec 102 ms to 17 h 15 
min 43 sec 797 ms), the images from camera 1 (left) and camera 2 (right). 

 

 
(a) 
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(b) 

Figure S3. The averaged normal distances (a) covering 254 points and the corresponding 
growth rates (b) of three featured faces through 3D reconstruction. Each point represents 
the mean values in the previous 30 s (a point per four images). 

 

https://doi.org/10.4236/jcpt.2019.92002

	Real-Time Characterization of Crystal Shape and Size Distribution Based on Moving Window and 3D Imaging in a Stirred Tank
	Abstract
	Keywords
	1. Introduction
	2. Crystallization Experiment
	3. ATR FTIR Calibration Experiments and Models
	4. Crystal 3D Shape Reconstruction
	4.1. The Database
	4.2. Shape Estimation Principle
	4.3. Image Segmentation Method

	5. Results and Discussion
	5.1. Preliminary Analysis of the Images Captured in Experiments
	5.2. Illustration of 3D Crystal Shape Reconstruction
	5.3. 3D Crystal Shape Evolution on a Statistical Basis
	5.4. Estimation of Face Specific Growth Kinetics

	6. Concluding Remarks
	Acknowledgements
	Conflicts of Interest
	References
	Appendix

