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Abstract 
For the moment, the representative and hot research is decision-theoretic 
rough set (DTRS) which provides a new viewpoint to deal with deci-
sion-making problems under risk and uncertainty, and has been applied in 
many fields. Based on rough set theory, Yao proposed the three-way decision 
theory which is a prolongation of the classical two-way decision approach. 
This paper investigates the probabilistic DTRS in the framework of intuitio-
nistic fuzzy information system (IFIS). Firstly, based on IFIS, this paper con-
structs fuzzy approximate spaces and intuitionistic fuzzy (IF) approximate 
spaces by defining fuzzy equivalence relation and IF equivalence relation, re-
spectively. And the fuzzy probabilistic spaces and IF probabilistic spaces are 
based on fuzzy approximate spaces and IF approximate spaces, respectively. 
Thus, the fuzzy probabilistic approximate spaces and the IF probabilistic ap-
proximate spaces are constructed, respectively. Then, based on the three-way 
decision theory, this paper structures DTRS approach model on fuzzy proba-
bilistic approximate spaces and IF probabilistic approximate spaces, respec-
tively. So, the fuzzy decision-theoretic rough set (FDTRS) model and the in-
tuitionistic fuzzy decision-theoretic rough set (IFDTRS) model are constructed 
on fuzzy probabilistic approximate spaces and IF probabilistic approximate 
spaces, respectively. Finally, based on the above DTRS model, some illustrative 
examples about the risk investment of projects are introduced to make decision 
analysis. Furthermore, the effectiveness of this method is verified. 
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1. Introduction 

Rough set [1] is a kind of theory of dealing with imprecise and incomplete data 
by Poland mathematician Pawlak. It is a significant mathematic tool in the areas 
of data mining [2] and decision theory [3]. Compared with the classical set 
theory, rough set theory does not require any transcendental knowledge about 
data, such as membership function of fuzzy set or probability distribution. Paw-
lak mainly based on the object between the indistinguishability of the theory of 
object clustering into basic knowledge domain, by using the basic knowledge of 
the upper and lower approximation [4] to describe the data object uncertainty, 
which derives the concept of classification or decision rule. Related researches 
spread many field, for instance, machine learning [5]-[10], cloud computing [11] 
[12] [13] [14], knowledge discovery [15] [16] [17] [18], biological information 
processing [19] [20], artificial intelligence [21] [22] [23] [24] [25], neural com-
puting [26] [27] [28] and so on. 

The concept of intuitionistic fuzzy set theory [29] was proposed by Atanassov 
in 1986. As a generalization of fuzzy set, the concept of IF set has been success-
fully applied in many field for data analysis [30] [31] [32] and pattern recogni-
tion [33] [34]. IF set is compatible with the three aspects of membership and non 
membership and hesitation. Therefore, IF sets are more comprehensive and 
practical than the traditional fuzzy sets in dealing with vagueness and uncer-
tainty. Combing IF set theory and rough set theory may result in a new hybrid 
mathematical structure [35] [36] for the requirement of knowledge-handling 
system. Studies of the combination of information system and IF set theory are 
being accepted as a vigorous research direction to rough set theory. Based on 
intuitionistic fuzzy information system [37], a large amount of researchers fo-
cused on the theory of IF set. Recently, Zhang et al. [38] defined two new do-
minance relations and obtained two generalized dominance rough set models 
according to defining the overall evaluations and adding particular requirements 
for some individual attributes. Meanwhile, the attribute reductions of domin-
ance IF decision information systems are also examined with these two models. 
Zhong et al. [39] extended the TOPSIS (technique for order performance by si-
milarity to an ideal solution) approach to deal with hybrid IF information. Feng 
et al. [40] studied probability problems of IF sets and the belief structure of gen-
eral IFIS. Xu et al. [41] investigated the definite integrals of multiplicative IFIS in 
decision making. Furthermore, they studied the forms of indefinite integrals, 
deduced the fundamental theorem of calculus, derived the concrete formulas for 
ease of calculating definite integrals from different angles, and discussed some 
useful properties of the proposed definite integrals. 

As we all know, the Pawlak algebra rough set model is used to simulate the 
concept granulation ability and the concept approximation ability of human in-
telligence. The algebraic inclusion relation between concept and granule is the 
theoretical basis of the simulation. However, there is an obvious deficiency in the 
simulation of human intelligence in terms of the fault tolerance of simulated 
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human intelligence. To solve this problem, many researchers have proposed a 
decision rough set model. The DTRS have established the decisions rough set 
model with noise tolerance mechanism, which defines concept boundaries make 
Bayes risk decision method [42] [43]. The concept of DTRS three decision in-
cludes positive region, boundary region and negative region. Positive region de-
termine acceptance. Negative region determine reject, and bounds region are to 
make decision of deferment. As an stretch of the Pawlak’s rough set model, it has 
been extraordinarily popular in varieties of practical and theoretical fields, for 
instance, expanded his research in the field of rough set theory [44] [45] [46] 
[47] and information filtering [48] [49] [50], risk decision analysis [51], cluster 
analysis and text classification [52], network support system and game analysis 
[53]. Recently, DTRS has been paid more and more attention. Zhou et al. [50] 
introduced a three-way decision approach to filter spam based on Bayesian deci-
sion theory, Li et al. [54] presented a full description on diverse decisions ac-
cording to different risk bias of decision makers, and Liu et al. [55] emphasized 
on the semantic studies on investment problems. Liu chose the topgallant action 
with maximum conditional profit. A pair of a cost function and a revenue func-
tion is used to calculate the two thresholds automatically. On the other hand, Xu 
et al. [3] studied two kinds of generalized multigranulation double-quantitative 
DTRS by considering relative and absolute quantitative information, Yao et al. 
[56] [57] [58] provided a formal description of this method within the frame-
work of probabilistic rough sets, and Liu et al. [59] studied the semantics of loss 
functions, and exploited the differences of losses replace actual losses to con-
struct a new “four-level” approach of probabilistic rules choosing criteria. Fur-
thermore, Yang et al. [60] proposed a fuzzy probabilistic rough set model on two 
universes. Although they have discussed fuzzy relation in their paper, it is the 
λ-cut sets of fuzzy relation replaced the fuzzy relation itself that works when 
computing the conditional probability [61] [62] [63]. Sun et al. [64] presented a 
decision-theoretic rough fuzzy set. That is, they structured a non-parametric de-
finition of the probabilistic rough fuzzy set. 

However, these DTRS models have just discussed the classical equivalence re-
lations. Thus, IFIS data make them more difficulty to function. Such as, when 
dealing with a IFIS data, the fuzzy equivalence relation or IF equivalence relation 
obtained from data should be first transformed into classical equivalence rela-
tion in case of computing probability. This is complicated, and this may cause 
information loss for improper λ. In order to accurately deal with IFIS data, we 
transmute IFIS into fuzzy approximate space and IF approximate space by fuzzy 
equivalence relation and IF equivalence relation respectively. By considering 
fuzzy probability and IF probability, the fuzzy probabilistic approximate spaces 
and the IF probabilistic approximate spaces are constructed, respectively. Then, 
DTRS model has been established in fuzzy probabilistic approximate space and 
IF probabilistic approximate space, respectively. Consequently, we can conduct 
decision analysis on IFIS data by the proposed FDTRS model and IFDTRS mod-

https://doi.org/10.4236/iim.2020.121001


B. B. Sang, X. Y. Zhang 
 

 

DOI: 10.4236/iim.2020.121001 4 Intelligent Information Management 

 

el, respectively. This is the main work of this paper. 
The rest of this paper is organized as follows. Section 2 provides the basic 

concept of fuzzy set, fuzzy relation, fuzzy probability, IF set, IFIS etc. In Section 
3, we construct fuzzy approximate spaces by defining fuzzy equivalence relation. 
By considering fuzzy probability, we propose FDTRS model in fuzzy probabilis-
tic approximate space. The effectiveness of the model is proved by a case. In Sec-
tion 4, we construct IF probabilistic approximate spaces by defined IF equiva-
lence relation. By considering IF probability, we propose IFDTRS model in IF 
probabilistic approximate space. Besides, we generalize the loss function λ. The 
effectiveness of the model is proved by a case. At last, we conclude our research 
and suggest further research directions in Section 5. 

2. Preliminaries 

For more convenience, this section recalls some basic concepts of fuzzy set, fuzzy 
relation, fuzzy probability, intuitionistic fuzzy sets, intuitionistic fuzzy informa-
tion system etc. More details can be found in [29] [40] [65] [66] [67].  

2.1. Fuzzy Set, Fuzzy Relation and Fuzzy Probability 

Definition 2.1.1 [65] Let U be a universe of discourse  

[ ]: 0,1A U →  

( )u A x→  

then A is called fuzzy set on U. ( )A x  is called the membership function of A. 
The family of all fuzzy sets on U is denoted by ( )UF . Let ( ),A B U∈F . 

Related operations of fuzzy sets. 
1) x U∀ ∈ , ( ) ( )B x A x B A≤ ⇒ ⊆ . 
2) ( )( ) ( ) ( ) ( ) ( )( )max ,A B x A x B x A x B x= ∨ = ;  

( )( ) ( ) ( ) ( ) ( )( )min ,A B x A x B x A x B x= ∧ = . 
3) ( )( ) ( ) ( )AB x A x B x= , ( ) ( )1cA x A x= − . 
Definition 2.1.1 [66] Let R is a fuzzy relation, we say that 
1) R is referred to as a reflexive relation if for any x U∈ , ( ), 1R x x = . 
2) R is referred to as a symmetric relation if for any ,x y U∈ ,  
( ) ( ), ,R x y R y x= . 
3) R is referred to as a transitive relation if for any , ,x y z U∈ ,  
( ) ( ) ( )( ), , ,z UR x y R x z R z y∈≥ ∨ ∧ . 
If R is reflexive, symmetric and transitive on U, then we say that R is a fuzzy 

equivalence relation on U. 
Definition 2.1.2 [67] Let ( ), ,U PA  be a probability space. Where A  is 

the family of all fuzzy sets that is denoted by ( )UF . Then A∈A  is a fuzzy 
event on U. The probability of A is  

( ) ( )d .
U

P A A x P∫  

If U is a finite set, { }| 1, 2, ,iU x i n= = 
, ( )i iP x p= , then  
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( ) ( )
1

n

i i
i

P A A x p
=
∑  

Proposition 2.1.1 Let ( ), ,U PA  be a probability space ,A B∈A . The 
property of the establishment. 

1) ( ) 1P U = ,that is ( ) d 1
U

P U P= =∫ ; 
2) ( )0 1P A≤ ≤ ; 
3) ( ) ( ),A B P A P B⊆ ≤ ; 
4) ( ) ( )1cP A P A= − ; 
5) ( ) ( ) ( ) ( )P A B P A P B P A B= + − 

; 
6) ( ) ( ) ( ) ,P A B P A P B A B= + = ∅ 

. 
Definition 2.1.3 [67] Let ( ), ,U PA  be a probability space and ,A B  be two 

fuzzy events on U. If ( ) 0P B ≠  then 

( ) ( )
( )

|
P AB

P A B
P B

=  

is called the conditional probability of A given B. 
Proposition 2.1.2 Let ( ), ,U PA  be a probability space and A be a classical 

event on X. Then, for each fuzzy event B on X, it holds that  

( ) ( )| | 1cP A B P A B+ =  

Proof. 

( ) ( ) ( )
( )

( )
( )

( ) ( )
( )

( ) ( )
( )

( ) ( )
( )

( )
( )

| |

d d

d d

d d

d

d
1

d

c
c

c
U U

U U
c

A A

U

c
A

U

P A BP AB
P A B P A B

P B P B

A x B x P A x B x P

B x P B x P

B x P B x P

B x P

A B x P

B x P

+ = +

= +

+
=

= =

∫ ∫
∫ ∫

∫ ∫
∫

∫
∫


 

2.2. IF relation, IF Information System and IF Probability 

Definition 2.2.1 [29] Let X be a non empty classic set. The three reorganiza-
tion in X like ( ) ( ){ }, , |A AA x x x x Xµ ν= ∈  meets the following three points. 

1) [ ]0,1Aµ →  indicates that the element of X belongs to the A membership 
degree. 

2) [ ]0,1Aν →  indicates that the non membership degree. 
3) ( ) ( )0 1AA x xν≤ + ≤ . 
A is called an intuitionistic fuzzy set on the X. 
Related operations of IF sets. Suppose 

( ) ( ){ } ( ), , |A AA x x x x X IF Xµ ν= ∈ ∈ , 
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( ) ( ){ } ( ), , |B BB x x x x X IF Xµ ν= ∈ ∈ . 

( ) ( ) ( ) ( )and , ;A B A BA B x x x x x Xµ µ ν ν⊆ ⇔ ≤ ≥ ∀ ∈  

( ) ( ){ } ( ) ( ){ }{ },min , ,max , | ;A B A BA B x x x x x x Xµ µ ν ν= ∈  

( ) ( ){ } ( ) ( ){ }{ },max , ,min , | ;A B A BA B x x x x x x Xµ µ ν ν= ∈  

( ) ( ){ }, , | .c
A AA x x x x Xν µ= ∈  

Definition 2.2.2 An intuitionistic fuzzy relation R  on a non-empty set X is 
a mapping : X X L× ⇒R  defined as ( ) ( ) ( ), , , ,x y x y x y Lµ ν= ∈R RR  
For ,x y X∈ .The family of all IF relations on X is denoted by R . An IF rela-
tion ∈R R  is: 

1) Reflexive, if ( ), 1x x =R  for each x X∈ ; 
2) Symmetric, if ( ) ( ), ,x y y x=R R  for each ,x y X∈ ; 
3) Transitive, if ( ) ( )( ) ( ), , ,y X Lx y y z x z∈∨ ∧ ≤R R R  for each , ,x y z X∈ . 
We write the IF relation ( ) ( ) ( )( ), , , ,x y x y x yµ ν= R RR  for simplicity, 

where ( ) ( ) [ ], , , : 0,1x y x y X X Iµ ν × → =R R  and satisfy  
( ) ( ), , 1, ,x y x y x y Xµ ν+ ≤ ∀ ∈R R . 

If { }1 2, , , nX x x x= 
 is a finite set, then an IF relation : X X L× →R  can 

be represented by an IF matrix form ( )( ),i j n n
x x

×
=R R , i.e. Then 

( ) ( )( ) ( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( ) ( ) ( )( )

1 1 1 1 1 2 1 2 1 1

2 1 2 1 2 2 2 2 2 2

1 1 2 2

, , , , , , , , ,

, , , , , , , , ,
.

, , , , , , , , ,

n n

n n

n n n n n n n n

x x x x x x x x x x x x

x x x x x x x x x x x x

x x x x x x x x x x x x

µ ν µ ν µ ν

µ ν µ ν µ ν

µ ν µ ν µ ν

 
 
 

=  
 
 
 





   



R R R R R R

R R R R R R

R R R R R R

R  

( )V R  is the collection of IFVs ( ),i jx xR  for , 1, 2, ,i j n=  , i.e. 
( ) ( ){ }for som| , , 1, 2e , ,i jV x x i j nα α= = = R R  
Definition 2.2.3 [40] An IF information system is an ordered quadruple 
( ), , ,I U AT V f= . 

{ }1 2, , , nU x x x= 
 is a non-empty finite set of objects; 

{ }1 2, , , pAT a a a=   is a non-empty finite set of attributes; 

a
a AT

V V
∈

=


 and aV  is a domain of attribute a; 

:f U AT V× ⇒  is a function such that ( ), af x a V∈ , for each  
,a AT x U∈ ∈ , called an information function, where aV  is an IF set of un-

iverse U. That is ( ) ( ) ( ), ,a af x a x xµ ν= , for all a AT∈ . 
Definition 2.2.4 Let ( ), ,U  PA  be a IF probability space. Where A  is the 

family of all IF sets that is denoted by ( )UF . Then A∈ A  is a IF event on U. 
The probability of A is  

( ) ( ) ( ) ( ) ( ) ( )d d , d , .A A A AU U U
A A x P x P x P P Pµ ν µ ν= = =∫ ∫ ∫P  

Among ( )AP µ  is probability of membership, ( )AP ν  is probability of 
nonmembership. 
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Proposition 2.2.1 Each IF event A is associated with an IF probability 

( )AP . The P  is called an IF probability measure on U which is generated by 
P. If A degenerates into a classical event or a fuzzy event A′  it follows that 

( ) ( )A A′=P P . 
Proposition 2.2.2 Also, if { }1 2, , , nU x x x= 

 is a finite set and ( )i ip P x= , 
then  

( ) ( ) ( ) ( )
1 1 1

, .
n n n

i i A i i A i i
i i i

A A x p x p x pµ ν
= = =

= =∑ ∑ ∑P  

Definition 2.2.4 Let ( ), ,U PA  be a probability space and ,A B  be two IF 
events on U. If ( ) 0BP ν ≠  and ( ) 0BP µ ≠  then 

( ) ( ) ( )( )| | , | .A B A BA B P Pµ µ ν ν=P  

is called the IF conditional probability of A given B. 

2.3. Decision-Theoretic Rough Sets 

Decision-theoretic rough sets were first proposed by Yao [42] for the Bayesian 
decision process. Based on the thoughts of three-way decisions, DTRS adopt two 
state sets and three action sets to depict the decision-making process. The state 
set is denoted by { }, cX XΩ =  showing that an object belongs to X and is out-
side X, respectively. The action sets with respect to a state are given by 

{ }, ,P B NA a a a= , where Pa , Ba  and Na  represent three actions about de-
ciding ( )x POS X∈ , ( )x BND X∈ , and ( )x NEG X∈ , namely an object x 
belongs to X, is uncertain and not in X, respectively. The loss function concern-
ing the loss of expected by taking various actions in the different states is given 
by the 3 2×  matrix in Table 1. 

In Table 1, PPλ , BPλ  and NPλ  express the losses happened for taking ac-
tions of Pa , Ba  and Na , respectively, when an object belongs to X. Similarly, 

PNλ , BNλ  and NNλ  indicate the losses incurred for taking the same actions 
when the object does not belong to X. For an object x, the expected loss on tak-
ing the actions could be expressed as: 

[ ]( ) [ ]( ) [ ]( )| | | ;c
P PP PNR R RR a x P X x P X xλ λ= +            (1) 

[ ]( ) [ ]( ) [ ]( )| | | ;c
B BP BNR R RR a x P X x P X xλ λ= +            (2) 

 
Table 1. The cost function [ ]X

λ  for X. 

 X: positive Xc: negative 

Pa : accept ( )|PP Pa Xλ λ=  ( )| c
PN Pa Xλ λ=  

Ba : reject ( )|BP Pa Xλ λ=  ( )| c
BN Ba Xλ λ=  

Na : defer ( )|NP Pa Xλ λ=  ( )| c
NN Na Xλ λ=  
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[ ]( ) [ ]( ) [ ]( )| | | .c
N NP NNR R RR a x P X x P X xλ λ= +            (3) 

By the Bayesian decision process, we can get the following minimum-risk de-
cision rules: 

(P) If [ ]( ) [ ]( )| |P BR RR a x R a x≤  and [ ]( ) [ ]( )| |P NR RR a x R a x≤ , then de-
cide ( )x POS X∈ ; 

(B) If [ ]( ) [ ]( )| |B PR RR a x R a x≤  and [ ]( ) [ ]( )| |B NR RR a x R a x≤ , then de-
cide ( )x BND X∈ ; 

(N) If [ ]( ) [ ]( )| |N PR RR a x R a x≤  and [ ]( ) [ ]( )| |N BR RR a x R a x≤ , then de-
cide ( )x NEG X∈ . 

In addition, By taking into account the loss of receiving the right things is not 
greater than the latency, and both of them are less than the loss of refusing the 
accurate things; at the same time, the loss of rejecting improper things is less 
than or equal to the delation in accepting the correct things, and both shall be 
smaller than the loss of receiving the invalidate things. Hence, a reasonable as-
sumption is that 0 PP BP NPλ λ λ≤ ≤ <  and 0 NN BN PNλ λ λ≤ ≤ < . 

Accordingly, the conditions of the three decision rules (P)-(N) are reducible 
to the following form. 

(P) If [ ]( )| RP X x α≥  and [ ]( )| RP X x γ≥ , then decide ( )x POS X∈ ; 
(B) If [ ]( )| RP X x α≤  and [ ]( )| RP X x β≥ , then decide ( )x BND X∈ ; 
(N) If [ ]( )| RP X x β≥  and [ ]( )| RP X x γ≤ , then decide ( )x NEG X∈ . 

where the thresholds values are given by: 

( ) ( )
;PN BN

PN BN BP PP

λ λ
α

λ λ λ λ
−

=
− + −

 

( ) ( )
;BN NN

BN NN NP BP

λ λ
β

λ λ λ λ
−

=
− + −

 

( ) ( )
.PN NN

PN NN NP PP

λ λ
γ

λ λ λ λ
−

=
− + −

 

3. Decision-Theoretic Rough Set Based on Fuzzy Probability  
Approximation Space 

In previous IF information systems, decision making often considers only the 
relationships among objects under individual attributes, which often leads to 
lack of accuracy. On this basis, the fuzzy equivalence relation is used to synthet-
ically consider the relationship among objects under multiple attributes, and 
then the fuzzy approximate space is obtained. Making use of decision theory in 
fuzzy approximate space to analyze the data reasonably. 

3.1. Fuzzy Probability Approximation Space 

Definition 3.1.1 Let ( ), , ,I U AT V F=  be an IF information system, 

ka AT∀ ∈ , ,i jx x U∈ , ( ) ( ) ( ), ,
k ki k a i a if x a x xµ ν= ,  

( ) ( ) ( ), ,
k kj k a j a jf x a x xµ ν= , then 
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( ) ( ) ( ) ( ) ( )
( )( ) ( )( ) ( )( ) ( )( ){ }2 22 2

,
max ,

k k k k

k

k k k k

a i a j a i a j
a i j

a i a i a j a j

x x x x
s x x

x x x x

µ µ ν ν

µ ν µ ν

+
=

+ +
 

is called the relative similarity degree of ( ),i kf x a  and ( ),j kf x a ; or 

( )
( )( ) ( )( ) ( )( ) ( )( ){ }

( ) ( ) ( ) ( )

2 22 2
min ,

,
k k k k

k

k k k k

a i a i a j a j

a i j
a i a j a i a j

x x x x
s x x

x x x x

µ ν µ ν

µ µ ν ν

+ +
=

+
 

is regarded as the relative similarity degree of ( ),i kf x a  and ( ),j kf x a . 
From the above two formulas, the relative similarity degree of ( ),i kf x a  and 
( ),j kf x a , that is the similarity of objects ix  and jx  under the attribute ka . 

In addition, the greater the value of ( ),
ka i js x x , the greater the similarity de-

gree. Particularly, when ( ), 1
ka i js x x = , then IF number ( ),i kf x a  is com-

pletely similar to ( ),j kf x a . In other words, the property value of objects ix  
and jx  are identical. 

Proposition 3.1.1 For any three IF numbers ( ) ( ),x x xµ ν= ,  
( ) ( ),y y yµ ν= , ( ) ( ),z z zµ ν= , the following properties can be obtained: 

1) ( ),s x y   is bounded, ( )0 , 1s x y≤ ≤  ;  
2) ( ),s x y   is reflexive, ( ), 1s x x =  ;  
3) ( ),s x y   is symmetric, ( ) ( ), ,s x y s y x=    ;  
4) ( ),s x y   is transitive, if ( ), 1s x y =   and ( ), 1s y z =  , then ( ), 1s x z =  ;  
5) ( ),s x y   is contiguous, if z  is closer to y  than x , then ( ) ( ), ,s x y x z≤    ; 

if z  is closer to x  than y , then ( ) ( ), ,s x y z y≤   .  
Definition 3.1.2 Let ( ), , ,I U AT V F=  be an IF information system, 

ka AT∀ ∈ , ,i jx x U∈ , ( ) ( ) ( ), ,
k ki k a i a if x a x xµ ν= ,  

( ) ( ) ( ), ,
k kj k a j a jf x a x xµ ν= . The similarity degree of objects ix  and jx  

under attribute set AT is as follows:  

( ) ( )
1

, , .
k

p

AT i j a i j
k

R x x s x x p
=

= ∑  

Through establishing analogical relations ATR , we could turn IF information 
system into a fuzzy approximation space ( ),U R  in accordance with definition 
3.1 and 3.2. The subscript AT will be omitted in the rear. It holds:  

1) Firstly, U is a non-empty classical set, a binary relation R from U to U in-
dicates a fuzzy set [ ]: 0,1R U U× → . So R is a fuzzy relation on the universe U.  

2) Furthermore, R is a fuzzy equivalence relation on U. The reasons are as 
follows: 
 x U∀ ∈ , ( ), 1R x x = , R is reflexive; 
 ,x y U∀ ∈ , ( ) ( ), ,R x y R y x= , R is symmetric; 
 , ,x y z U∀ ∈ , ( ) ( ) ( ), , ,R x y R y z R x z∧ ≤ , R is transitive  

These three conditions are very obvious. Therefore, ordered pair ( ),U R  is a 
fuzzy approximation space. 

Given the probability P with its description R, a fuzzy probability approxima-
tion space ( ), ,U R P  is constructed in which U is a domain of discourse, R is a 
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fuzzy equivalence relation on U, and P is fuzzy probability of U. 

3.2. Decision-Theoretic Rough Set Based on Fuzzy Probability  
Approximation Space 

Assume ( ), ,U R P  be a fuzzy probability approximation space, for each x U∈ , 

[ ]Rx  is denoted by [ ] ( ) ( ),Rx y R x y=  for any y U∈ . In light of (1)~(3), thus, 
the expected costs of adopting various actions in different states for x are ex-
pressed as follows:  

[ ]( ) [ ]( ) [ ]( )| | | ;c
P PP PNR R RR a x P X x P X xλ λ= +              (4) 

[ ]( ) [ ]( ) [ ]( )| | | ;c
B BP BNR R RR a x P X x P X xλ λ= +              (5) 

[ ]( ) [ ]( ) [ ]( )| | | .c
N NP NNR R RR a x P X x P X xλ λ= +              (6) 

Proposition 3.2.1 The condition probability [ ]( )| RP X x  and [ ]( )|c
RP X x  

are calculated by:  

[ ]( )
( )
( )

,
| ,

,
i

j

i ix X
R

j jx U

R x x p
P X x

R x x p
∈

∈

=
∑
∑

                 (7) 

[ ]( )
( )
( )

,
| .

,

c
i

j

i ix Xc
R

j jx U

R x x p
P X x

R x x p
∈

∈

=
∑
∑

                 (8) 

In the above equations, ( )i ip P x= . The computing method of condition 
probability is not the same as we know before. Since  

[ ]( ) [ ]( )| | 1c
R RP X x P X x+ =   for every x U∈ . Thus, (4) - (6) is further ex-

pressed as:  

[ ]( ) [ ]( ) [ ]( )( )| | 1 | ;P PP PNR R RR a x P X x P X xλ λ= + −           (9) 

[ ]( ) [ ]( ) [ ]( )( )| | 1 | ;B BP BNR R RR a x P X x P X xλ λ= + −          (10) 

[ ]( ) [ ]( ) [ ]( )( )| | 1 | .N NP NNR R RR a x P X x P X xλ λ= + −          (11) 

Loss function to meet the conditions: PP BP NPλ λ λ≤ <  and NN BN PNλ λ λ≤ < . 
According to Bayesian decision process, the decision rules can be characterized 
by the following form: 

(P1) If [ ]( ) [ ]( )| |P BR RR a x R a x≤   and [ ]( ) [ ]( )| |P NR RR a x R a x≤  , then de-
cide ( )x POS X∈ ; 

(B1) If [ ]( ) [ ]( )| |B PR RR a x R a x≤   and [ ]( ) [ ]( )| |B NR RR a x R a x≤  , then de-
cide ( )x BND X∈ ; 

(N1) If [ ]( ) [ ]( )| |N PR RR a x R a x≤   and [ ]( ) [ ]( )| |N BR RR a x R a x≤  , then de-
cide ( )x NEG X∈ . 

The decision rules (P1)-(N1) are the three-way decisions, which have three re-
gions: ( )POS X , ( )BND X  and ( )NEG X . These rules mainly relies on the 
comparisons among [ ]( )|P RR a x , [ ]( )|B RR a x  and [ ]( )|N RR a x  which are 
essentially computing the fuzzy probabilities. Decision rules (P1)-(N1) of 
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three-way decisions can be simplified as: 
(P2) If [ ]( )| RP X x α≥  and [ ]( )| RP X x γ≥ , then decide ( )x POS X∈ ; 
(B2) If [ ]( )| RP X x α<  and [ ]( )| RP X x β> , then decide ( )x BND X∈ ; 
(N2) If [ ]( )| RP X x γ<  and [ ]( )| RP X x β≤ , then decide ( )x NEG X∈ . 
Proposition 3.2.2 In this case, we have the following simplified fuzzy proba-

bility region: 
( ) ( ) [ ]( ) [ ]( ){ }, : | , | ,R RPOS X x U P X x P X xα γ α γ= ∈ ≥ ≥   

( ) ( )  [ ]( ){ }, : ( | [ ] ) , | ,R RBND X x U P X x P X xα β α β= ∈ < >  

( ) ( ) [ ]( ) [ ]( ){ }, : | , | .R RNEG X x U P X x P X xγ β γ β= ∈ < ≤   

In the fuzzy relation R, the fuzzy probability upper approximation and the 
fuzzy probability of X are respectively: 

( ) ( ) ( ) ( ), , ,R X POS Xα γ α γ=  

( ) ( ) ( ) ( )( ), , .
c

R X NEG Xα γ γ β=  

Under the discussions in Proposition3.2.2, the additional conditions of deci-
sion rule (B2) suggest that β α< , namely, it follows that 0 1β γ α≤ < < ≤ , the 
rules are: 

(P3) If [ ]( )| RP X x α≥ , then decide ( )x POS X∈ ; 
(B3) If [ ]( )| RP X xβ α< < , then decide ( )x BND X∈ ; 
(N3) If [ ]( )| RP X x β≤ , then decide ( )x NEG X∈ . 
Proposition 3.2.3 In this case, we have the following simplified fuzzy proba-

bility regions:  
( ) ( ) [ ]( ){ }: | ,RPOS X x U P X xα α= ∈ ≥  

( ) ( ) [ ]( ){ }, : | ,RBND X x U P X xα β β α= ∈ < <  

( ) ( ) [ ]( ){ }: | .RNEG X x U P X xβ β= ∈ ≤  

In the fuzzy relation R, the fuzzy probability lower approximation and the 
fuzzy probability upper approximation of X are respectively: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ),
c

R X POS X R X NEG Xα α β β= =  

According to decision-theoretic rough set, suppose the loss function satisfies 
0 PP BP NPλ λ λ≤ ≤ < , 0 NN BN PNλ λ λ≤ ≤ <  and  
( )( ) ( )( )BP PP BN NN NP BP PN BNλ λ λ λ λ λ λ λ− − ≤ − − , then we can get  
0 1β γ α≤ < < ≤ . Meanwhile, this paper also discusses the relationship between 
the value of α β+  and 1. 

Case 1: When 1α β+ = , the loss function must satisfies  
( )( ) ( )( )BP PP NP BP PN BN BN NNλ λ λ λ λ λ λ λ− − = − − ; 

Case 2: When 1α β+ < , the loss function must satisfies  
( )( ) ( )( )BP PP NP BP PN BN BN NNλ λ λ λ λ λ λ λ− − > − − ; 
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Case 3: When 1α β+ > , the loss function must satisfies  
( )( ) ( )( )BP PP NP BP PN BN BN NNλ λ λ λ λ λ λ λ− − < − − . 

3.3. Case Study 

Set 10 investment objects, from the perspective of risk factors for their assess-
ment, risk factors for 5 categories: market risk, technical risk, management risk, 
environmental risk and production risk. Table 2 is the risk assessment form of 
investment, among { }1 2 3 4 5 6 7 8 9 10, , , , , , , , ,U x x x x x x x x x x= , A = {market risk, 
technology risk, management risk, environment risk, production risk}. For sim-
plicity and without loss of generality, using 1 2 3 4 5, , , ,a a a a a  said the market risk, 
technology risk, management risk, environment risk, production risk. 

Any one of the IF numbers in Table 2 is ( ) ( ),
k ka i a ix xµ ν  among 

1,2, ,5; 1,2 ,10k i= =  . ( )
ka ixµ  indicates ix  the degree of risk under the 

attribute ka . ( )
ka ixν  indicates ix  the degree of insurance under the attribute 

ka . 
On the basis of Table 2, the hypothesis ( ), ,U R P  is a fuzzy probability ap-

proximation space, including { }1 2 10, , ,U x x x= 
, R is a fuzzy relation, and the 

fuzzy relation on U as shown in Table 3. Now assume that the preference prob-
ability distribution on U is ( )1 0.15p x = , ( )2 0.07p x = , ( )3 0.10p x = , 
( )4 0.08p x = , ( )5 0.11p x = , ( )6 0.10p x = , ( )7 0.04p x = , ( )8 0.05p x = , 
( )9 0.16p x = , ( )10 0.14p x = . Let { }1 3 6 7 10, , , ,X x x x x x=  denotes a decision class 

in which the classes are excellent. In the Bayesian decision process 3 3P N , 
some experts will provide values of the loss function for X, i.e. 

( ) ( )| , | , , ,c
iP i iN ia X a X i P B Nλ λ λ λ= = = . It exhibits three cases in Table 4. 

Consider the loss function of Table 4, there are  

1 1 2 2 3 30.54, 0.46; 0.59, 0.51; 0.50, 0.44α β α β α β= = = = = = . 
 
Table 2. The IF information system of venture capital. 

U 1a  2a  3a  4a  5a  

1x  0.4,0.5  0.3,0.5  0.8,0.2  0.4,0.5  0.7,0.1  

2x  0.3,0.5  0.4,0.5  0.6,0.1  0.4,0.5  0.7,0.3  

3x  0.3,0.5  0.4,0.4  0.8,0.1  0.4,0.5  0.7,0.3  

4x  0.8,0.1  0.8,0.1  0.5,0.4  0.8,0.1  0.8,0.2  

5x  0.7,0.3  0.4,0.5  0.9,0.1  0.5,0.5  0.8,0.1  

6x  0.3,0.3  0.2,0.3  0.4,0.2  0.8,0.1  0.0,0.7  

7x  0.4,0.6  0.5,0.1  0.6,0.2  0.2,0.7  0.3,0.6  

8x  0.8,0.1  0.7,0.2  0.7,0.2  0.5,0.3  0.7,0.1  

9x  0.6,0.3  0.9,0.0  0.7,0.1  0.8,0.2  0.8,0.0  

10x  0.0,1.0  0.3,0.5  0.2,0.6  0.7,0.2  0.0,0.2  
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Table 3. A fuzzy relation on U. 

U 1x  2x  3x  4x  5x  6x  7x  8x  9x  10x  

1x  1.00          

2x  0.89 1.00         

3x  0.94 0.93 1.00        

4x  0.63 0.67 0.63 1.00       

5x  0.86 0.82 0.84 0.75 1.00      

6x  0.50 0.58 0.56 0.52 0.47 1.00     

7x  0.72 0.77 0.76 0.61 0.68 0.60 1.00    

8x  0.78 0.75 0.75 0.84 0.82 0.44 0.66 1.00   

9x  0.71 0.71 0.71 0.87 0.76 0.48 0.61 0.82 1.00  

10x  0.53 0.53 0.52 0.47 0.48 0.52 0.52 0.40 0.38 1.00 

 
Table 4. Three cases of loss function. 

 1 1 1α β+ =  2 2 1α β+ <  3 3 1α β+ >  

Pa : accept 0.25PPλ = , 0.61PNλ =  0.40PPλ = , 0.84PNλ =  0.20PPλ = , 0.83PNλ =  

Ba : reject 0.43BPλ = , 0.40BNλ =  0.54BPλ = , 0.70BNλ =  0.39BPλ = , 0.56BNλ =  

Na : defer 0.72NPλ = , 0.15NNλ =  0.68NPλ = , 0.59NNλ =  0.80NPλ = , 0.14NNλ =  

 
And the fuzzy conditional probabilities for every ix U∈  are computed as 

follows (by Equations. (7)): 

[ ]( )1| 0.53RP X x = , [ ]( )2| 0.52RP X x = , [ ]( )3| 0.53
R

P X x = ,  

[ ]( )4| 0.43RP X x = , [ ]( )5| 0.48
R

P X x = , [ ]( )6| 0.59
R

P X x = ,  

[ ]( )7| 0.54
R

P X x = , [ ]( )8| 0.45
R

P X x = ,  

[ ]( )9| 0.43
R

P X x = , [ ]( )10| 0.62
R

P X x = . 

Case 1: When 1α β+ = , namely, 1 10.54, 0.46α β= = , it follows that 
( ) { }0.54

6 7 10, ,R X x x x= , ( ) { }0.46
1 2 3 5 6 7 10, , , , , ,R X x x x x x x x= . 

And 

( ) { }0.54
6 7 10, ,POS X x x x= , ( ) { }0.46

4 8 9, ,NEG X x x x= ,  

( ) ( ) { }0.54,0.46
1 2 3 5, , ,BND X x x x x= . 

Based on these achievements, we can get the corresponding decision rules as 
follows: 

(P1) The investors 6 7 10, ,x x x  most probably choose this scheme with a possi-
bility not less than 0.54; 

(B1) The investors 4 8 9, ,x x x  are less likely to invest in terms of the current 
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conditions; 
(N1) We are not sure for 1 2 3 5, , ,x x x x  who need further investigation.  
Case 2: When 1α β+ < , namely, 2 20.50, 0.44α β= = , it follows that  

( ) { }0.50
1 2 3 6 7 10, , , , ,R X x x x x x x= , ( ) { }0.44

1 2 3 5 6 7 8 10, , , , , , ,R X x x x x x x x x= . 

And 

( ) { }0.50
1 2 3 6 7 10, , , , ,POS X x x x x x x= , ( ) { }0.44

4 9,NEG X x x= ,  

( ) ( ) { }0.50,0.44
5 8,BND X x x= . 

According to the calculation results, the decision rules in case 2 can present as 
follows: 

(P2) The investors 1 2 3 6 7 10, , , , ,x x x x x x  most probably choose this scheme with 
a possibility not less than 0.5; 

(B2) The investors 4 9,x x  are less likely to invest with respect the given con-
ditions and loss function; 

(N2) We are not sure for 1 2 3 5, , ,x x x x  who need further investigation.  
Case 3: When 1α β+ > , namely, 3 30.59, 0.51α β= = , it follows that 

( ) { }0.59
6 10,R X x x= , ( ) { }0.51

1 2 3 6 7 10, , , , ,R X x x x x x x= . 

And 

( ) { }0.59
6 10,POS X x x= , ( ) { }0.51

4 5 8 9, , ,NEG X x x x x= ,  

( ) ( ) { }0.59,0.51
1 2 3 7, , ,BND X x x x x= . 

Analogously, we can get the rest of the decision rules associate with these 
rough regions, as follows: 

(P3) The investors 6 10,x x  most probably choose this scheme with a possibili-
ty not less than 0.59; 

(B3) The investors 4 5 8 9, , ,x x x x  are less likely to invest in terms of the given 
conditions and loss function; 

(N3) We are not sure for 1 2 3 5, , ,x x x x  who need further investigation under 
the current conditions. 

4. Decision-Theoretic Based on IF Probability Information  
System 

In this section, IF relation is constructed in IF information system, and the rela-
tion between object and attribute is transformed into two relation between ob-
ject and object that is [ ] [ ]0,1 , 0,1U U× → . The probability of each object is 
given by analyzing the object, and then an IF probability approximation space is 
obtained. Finally, in the IF probability approximation space, the decision theory 
is used to analyze the decision making of IF information system. 

4.1. IF Probability Approximation Space 

Definition 4.1.1 Let ( ), , ,I U AT V F=  be an IF information system, 
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ka AT∀ ∈ , ,i jx x U∈ , ( ) ( ) ( ), ,
k ki k a i a if x a x xµ ν= ,  

( ) ( ) ( ), ,
k kj k a j a jf x a x xµ ν= , then  

( ) ( ) ( ) ( ) ( ){ }{ }, min 1 max , ,
k k k kAT i j a i a j a i a jx x x x x xµ µ µ ν ν= − − −  

( ) ( ) ( ) ( ) ( )( )1, max .
2 k k k kAT i j a i a j a i a jx x x x x xν µ µ ν ν = − + − 

 
 

are called the degree of membership similarity and the degree of nonmember-
ship similarity of ( ),i kf x a  and ( ),j kf x a . 

The similarity degree of objects ix  and jx  under attribute set AT is as fol-
lows: 

( ) ( ) ( ), , , , .AT i j AT i j AT i jx x x x x xµ ν=R  

Through establishing analogical relations ATR , we could turn IF information 
system into a IF approximation space ( ),U R  in accordance with Definition 
4.1. The subscript AT will be omitted in the rear. It holds: 

1) Firstly, U is a non-empty classical set, a IF relation R  from U to U indi-
cates a IF set [ ] [ ]: 0,1 , 0,1U U× →R . So R  is a IF relation on the universe 
U.  

2) Furthermore, R  is a IF equivalence relation on U. The reasons are as 
follows: 
 x U∀ ∈ , ( ), 1,0x x =R , R  is reflexive; 
 ,x y U∀ ∈ , ( ) ( ), ,x y y x=R R , R  is symmetric; 
 , ,x y z U∀ ∈ , ( ) ( ) ( ), , ,x y y z x z∧ ≤R R R , R  is transitive.  

These three conditions are very obvious. Therefore, ordered pair ( ),U R  is a 
IF approximation space. 

Given the probability P  with its description R , a IF probability approxi-
mation space ( ), ,U R P  is constructed in which U is a domain of discourse, 
R  is a IF equivalence relation on U, and P  is fuzzy probability of U. 

4.2. Decision-Theoretic Rough Set Based on IF Probability  
Approximation Space 

Let ( ), , ,U AT V F  be a IF information system and P be a probability measure 
on U. The decision-theoretic procedure in this section adopts two states and 
three actions. The row states is { }, cX X  express an element is in X or not, re-
spectively. The set of actions is by a 3 2×  interval-valued matrix shown in Ta-
ble 5. The subscript X represents this loss function is for X, which is omitted in 
the following. 

The expected losses of each action for object x U∈  are as follows: 

[ ]( ) [ ]( ) [ ]( )
[ ]( ) [ ]( ) [ ]( )
[ ]( ) [ ]( ) [ ]( )

| | | ;

| | | ;

| | | .

c
P PP PN

c
B BP BN

c
N NP NN

R a x X x X x

R a x X x X x

R a x X x X x

λ λ

λ λ

λ λ

= +

= +

= +

R R R

R R R

R R R

P P

P P

P P

 

https://doi.org/10.4236/iim.2020.121001


B. B. Sang, X. Y. Zhang 
 

 

DOI: 10.4236/iim.2020.121001 16 Intelligent Information Management 

 

Table 5. The interval-valued loss function [ ]X
λ  for X. 

 X: positive Xc: negative 

Pa : accept ( )| ,PP P PP PPa Xλ λ λ λ− += =     ( )| ,c
PN P PN PNa Xλ λ λ λ− += =     

Ba : defer ( )| ,BP B BP BPa Xλ λ λ λ− += =     ( )| ,c
BN B BN BNa Xλ λ λ λ− += =     

Na : reject ( )| ,NP N NP NPa Xλ λ λ λ− += =     ( )| ,c
NN N NN NNa Xλ λ λ λ− += =     

 
In Table 5, ijλ

−  and ijλ
+  are lower bound and upper bound of  

( ), , ,ij i j P B Nλ = . ,PP PP PPλ λ λ− + =   , ,BP BP BPλ λ λ− + =   , and ,NP NP NPλ λ λ− + =    
indicates the costs for taking actions of Pa , Ba , and Na ,respectively, when an 
element is in X. Equally, ,PN PN PNλ λ λ− + =   , ,BN BN BNλ λ λ− + =    and 

,NN NN NNλ λ λ− + =    denotes the losses for taking the same actions when an ele-
ment belongs to cX . On the basis of conditions in Table 5, a particular kind of 
loss function is considered: 

, ;PP BP NP PP BP NPλ λ λ λ λ λ− − − + + +≤ < ≤ <  

, .NN BN PN NN BN PNλ λ λ λ λ λ− − − + + +≤ < ≤ <  

Likewise, [ ]x
R

 is the description of x based on the IF relation ( ),µ ν=R , 
i.e. [ ] ( ) ( ),x y x y=

R
R  and it is assumed that ( )( ) 0P xµ ≠ . 

Proposition 4.2.1 Note that [ ]( ) ( )| ,X x p pµ ν=
R

P  and  
[ ]( ) ( )| 1 ,1cX x p pµ ν= − −

R
P  are two IF condition probabilities. X is a clas-
sical event, X U∈ . ( ) ( ) ( ), , , ,i j i j i jx x x x x xµ ν=R , [ ]( )|p P X x

µ
− =  and 

[ ]( )|p P X x
ν

+ = . If { }1 2, , , nU x x x= 
 and ( )i iP x p= , then  

( )
( )

( )
( )

, ,
, .

, ,

c
i i

j j

i i i ix X x X

j j j jx U x U

x x p x x p
p p

x x p x x pµ ν

µ ν

µ ν
∈ ∈

∈ ∈

= =
∑ ∑
∑ ∑

         (12) 

pµ  is called the conditional probability of X given [ ]x
µ

, pν  is called the 
conditional probability of X given [ ]x

ν
. 

In light of Bayesian decision procedure, the decision rules ( ) ( )1 1-P N′ ′  in Sec-
tion 2 could be re-expressed as follows: 

( )1P′  If [ ]( ) [ ]( )| |P BR a x R a x
R R

 and [ ]( ) [ ]( )| |P NR a x R a x
R R

, de-
ciding ( )x POS X∈ ; 

( )1N ′  If [ ]( ) [ ]( )| |N BR a x R a x
R R

 and [ ]( ) [ ]( )| |N PR a x R a x
R R

, de-
ciding ( )x NEG X∈ . 

( )1B′  If the remainder elements x’s satisfying neither ( )1P′  nor ( )1N ′ , we 
decide ( )x BND X∈ ; 

Definition 4.2.1 Let ( ), ,U R P  be an IF probabilistic approximation space. 
The loss function is the interval value [ ]λ . The [ ] [ ] [ ], ,POS BND NEDλ λ λ  are de-
fined as follows:  

[ ] ( ) [ ]( ) [ ]( ){
[ ]( ) [ ]( )}
| | | ,

| | ,

P B

P N

POS X x U R a x R a x

R a x R a x

λ = ∈ ≤

≤

R R

R R

 

https://doi.org/10.4236/iim.2020.121001


B. B. Sang, X. Y. Zhang 
 

 

DOI: 10.4236/iim.2020.121001 17 Intelligent Information Management 

 

[ ] ( ) [ ]( ) [ ]( ){
[ ]( ) [ ]( )}

| | | ,

| | ,

N B

N P

NEG X x U R a x R a x

R a x R a x

λ = ∈ ≤

≤

R R

R R

 

[ ] ( ) [ ] ( ) [ ] ( )( ) .
c

BND X POS X NEG Xλ λ λ=   

In the IF relation R , the [λ]-IF probability upper approximation and the 
[λ]-IF probability upper approximation are respectively:  

[ ] ( ) [ ] ( ) [ ] ( ) [ ] ( )( ),
c

X POS X X NEG Xλ λ λ λ= =R R  

[ ] ( ) [ ] ( )( ),X Xλ λR R  is called the [λ]-IF probability rough set of X. 
The decision rules ( ) ( )1 1-P N′ ′  are the three-way decisions, which have three 

regions: ( )POS X , ( )BND X  and ( )NEG X . These rules mainly rely on the 
comparisons among [ ]( )|PR a x

R
, [ ]( )|BR a x

R
 and [ ]( )|NR a x

R
 which 

are essentially computing the IF probabilities. Therefore, the conditions for cal-
culating decision rules are as follows. 

For the rule ( )1P′ :  

[ ]( ) [ ]( )| |P BR a x R a x
R R

  

[ ]( ) [ ]( )
,

| |
,

PN BN PN BN c

BP PP BP PP

X x X x
λ λ λ λ

λ λ λ λ

− − + +

− − + +

 − − ⇔
 − − 

R R
P P  

[ ]( ) [ ]( )| |P NR a x R a x
R R

  

[ ]( ) [ ]( )
,

| |
,

PN NN PN NN c

NP PP NP PP

X x X x
λ λ λ λ

λ λ λ λ

− − + +

− − + +

 − − ⇔
 − − 

R R
P P  

For the rule ( )1N ′ :  

[ ]( ) [ ]( )| |N PR a x R a x
R R

  

[ ]( ) [ ]( )
,

| |
,

PN NN PN NN c

NP PP NP PP

X x P X x
λ λ λ λ

λ λ λ λ

− − + +

− − + +

 − − ⇔
 − − 

R R
P   

[ ]( ) [ ]( )| |N BR a x R a x
R R

  

[ ]( ) [ ]( )
,

| |
,

BN NN BN NN c

NP BP NP BP

X x X x
λ λ λ λ

λ λ λ λ

− − + +

− − + +

 − − ⇔
 − − 

R R
P P  

Therefore, in light of Bayesian decision procedure, the decision rules 
( ) ( )1 1-P N′ ′  could be rewritten as follows: 
( )2P′  If [ ]( ) [ ]( )| , |cX x X xα α− + ≥  R R

P P  and  
[ ]( ) [ ]( )| , |cX x X xγ γ− + ≥  R R

P P , then decide ( )x POS X∈ ; 
( )2N ′  If [ ]( ) [ ]( )| , |cX x X xγ γ− + ≤  R R

P P  and  
[ ]( ) [ ]( )| , |cX x X xβ β− + ≤  R R

P P , then decide ( )x NEG X∈ . 
( )2B′  If the remainder elements x’s satisfying neither ( )2P′  nor ( )2N ′ , then 

decide ( )x BND X∈ ; 
Where 
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,PN BN PN BN

BP PP BP PP

λ λ λ λ
α α

λ λ λ λ

− − + +
− +

− − + +

− −
= =

− −
 

,PN NN PN NN

NP PP NP PP

λ λ λ λ
γ γ

λ λ λ λ

− − + +
− +

− − + +

− −
= =

− −
 

,BN NN BN NN

NP BP NP BP

λ λ λ λ
β β

λ λ λ λ

− − + +
− +

− − + +

− −
= =

− −
 

For any interval valued , , , , ,α α β β γ γ− + − + − +            we define “⊕ ” opera-
tions and “ ≤ ” relation as follows: 

{ } { }, , max , , max , ;α α β β α β α β− + − + − − + +    ⊕ =       

{ } { }, , max , ,max , ;α α γ γ α γ α γ− + − + − − + +    ⊕ =       

{ } { }, , max , ,max , .β β γ γ β γ β γ− + − + − − + +    ⊕ =       

, , and ;α α β β α β α β− + − + − − + +   ≤ ⇒ ≤ ≤     

, , and ;α α γ γ α γ α γ− + − + − − + +   ≤ ⇒ ≤ ≤     

, , and .β β γ γ β γ β γ− + − + − − + +   ≤ ⇒ ≤ ≤     

Proposition 4.2.2 For simplicity, it is denoted by ,α α α− + =   , 
,β β β− + =    and ,γ γ γ− + =   . In this case, we have the following simplified 

IF probability region: 
( ) ( ) [ ]( ) [ ]( ){

[ ]( ) [ ]( )}

, : | , | ,

| , | ,

c

c

POS X x U X x X x

X x X x

α γ α α

γ γ

− +

− +

 = ∈ ≥  

 ≥  

R R

R R

P P

P P
 

( ) ( ) [ ]( ) [ ]( ){
[ ]( ) [ ]( )}

, : | , | ,

| , | ,

c

c

NEG X x U X x X x

X x X x

γ β α α

β β

− +

− +

 = ∈ <  

 ≤  

R R

R R

P P

P P
 

( ) ( ) ( ) ( ) ( ) ( )( ), , , , .
c

BND X POS X NEG Xα γ β α γ γ β=   

In the fuzzy relation R, the fuzzy probability upper approximation and the 
fuzzy probability of X are respectively: 

( ) ( ) ( ) ( ), , ,X POS Xα γ α γ=R  

( ) ( ) ( ) ( )( ), , .
c

X NEG Xγ β γ β=R  

( ) ( ) ( ) ( )( ), ,,X Xα γ γ βR R  is called the ( ), ,α γ β -IF probability rough set of 
X. 

Under the discussions in Proposition 4.2.2, the additional conditions of deci-
sion rule ( )2N ′  suggest that β α< , namely, it follows that 0 1β γ α≤ < < ≤ , 
the rules are: 

( )3P′  If [ ]( ) [ ]( )| , |cX x X xα α− + ≥  R R
P P , then decide ( )x POS X∈ ; 

( )3N ′  If [ ]( ) [ ]( )| , |cX x X xβ β− + ≥  R R
P P , then decide ( )x NEG X∈ ; 
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( )3B′  If the remainder elements x’s satisfying neither ( )3B′  nor ( )3N ′ , then 
decide ( )x BND X∈ ; 

Proposition 4.2.3 In this case, we have the following simplified IF probability 
region:  

( ) ( ) [ ]( ) [ ]( ){ }: | , | ,cPOS X x U X x X xα α α− + = ∈ ≥  R R
P P  

( ) ( ) [ ]( ) [ ]( ){ }: | , | ,cNEG X x U X x X xβ β β− + = ∈ ≤  R R
P P  

( ) ( ) ( ) ( )( ), .
c

BND X POS X NEG Xα β α β=   

In the IF relation R , the IF probability lower approximation and the IF 
probability upper approximation of X are respectively:  

( ) ( ) ( ) ( ) ( ) ( ) ( )( ),
c

X POS X X NEG Xα β βα = =R R  

( ) ( )( ),X Xα βR R  is called the ( ),α β -IF probability rough set of X. 
According to decision-theoretic rough set, suppose the loss function satisfies 

0 PP BP NPλ λ λ≤ ≤ < , 0 NN BN PNλ λ λ≤ ≤ <  and  

( )( ) ( )( )BP PP BN NN NP BP PN BNλ λ λ λ λ λ λ λ− − ≤ − − , then we can get  
0 1β γ α≤ < < ≤ . Meanwhile, this paper also discusses the relationship between 
the value of α β+  and 1. 

Case 1: When 1α β⊕ = , the loss function must satisfies  

( )( ) ( )( )BP PP NP BP PN BN BN NNλ λ λ λ λ λ λ λ− − = − − ; 
Case 2: When 1α β⊕ < , the loss function must satisfies  

( )( ) ( )( )BP PP NP BP PN BN BN NNλ λ λ λ λ λ λ λ− − > − − ; 
Case 3: When 1α β⊕ > , the loss function must satisfies  

( )( ) ( )( )BP PP NP BP PN BN BN NNλ λ λ λ λ λ λ λ− − < − − . 

4.3. Case Study 

Now continue to use case 3.3 as the research object, and make the rough set 
theory of decision making under the IF probability approximation space. On the 
basis of Table 2, the hypothesis ( ), ,U R P  is a IF probability approximation 
space, including { }1 2 10, , ,U x x x= 

, R  is a IF relation, as shown in Table 6. 
Now assume that the preference probability distribution on U is ( )1 0.15p x = , 

( )2 0.07p x = , ( )3 0.10p x = , ( )4 0.08p x = , ( )5 0.11p x = , ( )6 0.10p x = , 

( )7 0.04p x = , ( )8 0.05p x = , ( )9 0.16p x = , ( )10 0.14p x = . Let  

{ }1 3 6 7 10, , , ,X x x x x x=  denotes a decision class in which the classes are excellent. 
In the Bayesian decision process ( ) ( )3 3P B′ ′


, some experts will provide values 

of the loss function for X, i.e. ( ) ( )| , | , , ,c
iP i iN ia X a X i P B Nλ λ λ λ= = = . It 

exhibits three cases in Table 7. Consider the loss function of Table 7, there are 

[ ] [ ]1 11,1 , 0.8,1.0α β= = ; [ ] [ ]2 20.8,1.0 , 0.75,1.0α β= = ;  

[ ] [ ]3 31.9, 2.0 , 0.7,1.2α β= = . 
And the IF conditional probabilities for every ix U∈  are computed as fol-

lows (by Equations. (12)): 
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Table 6. A IF relation on U. 

U 1x  2x  3x  4x  5x  6x  7x  8x  9x  10x  

1x  1.00,0.00           

2x  0.80,0.10  1.00,0.00          

3x  0.80,0.10  1.00,0.00  1.00,0.00         

4x  0.90,0.10  0.90,0.10  0.90,0.10  1.00,0.00        

5x  0.90,0.05  0.80,0.15  0.80,0.15  0.90,0.05  1.00,0.00       

6x  0.30,0.65  0.30,0.55  0.30,0.55  0.20,0.65  0.20,0.70  1.00,0.00      

7x  0.50,0.45  0.60,0.35  0.60,0.35  0.50,0.45  0.50,0.50  0.70,0.20  1.00,0.00     

8x  1.00,0.00  0.80,0.10  0.80,0.10  0.90,0.10  0.90,0.05  0.30,0.65  0.50,0.45  1.00,0.00    

9x  0.90,0.10  0.70,0.20  0.70,0.20  0.80,0.10  0.90,0.05  0.20,0.75  0.40,0.55  0.90,0.10  1.00,0.00   

10x  0.30,0.40  0.30,0.40  0.30,0.40  0.20,0.40  0.20,0.45  0.50,0.25  0.60,0.35  0.30,0.40  0.20,0.50  1.00,0.00  

 
Table 7. Three cases of loss function. 

 1 1 1α β⊕ =  2 2 1α β⊕ <  3 3 1α β⊕ >  

Pa : accept 
[ ]0.10.0.20PPλ = , 

[ ]0.55,0.70PNλ =  

[ ]0.10,0.40PPλ = , 

[ ]0.40,0.70PNλ =  

[ ]0.40,1.40PPλ = , 

[ ]1.57,1.90PNλ =  

Ba : reject 
[ ]0.30,0.45BPλ = , 

[ ]0.35,0.45BNλ =  

[ ]0.30,0.65BPλ = , 

[ ]0.24,0.45BNλ =  

[ ]0.80,1.85BPλ = , 

[ ]0.80,1.00BNλ =  

Na : defer 
[ ]0.55,0.70NPλ = , 

[ ]0.15,0.20NNλ =  

[ ]0.42,0.90NPλ = , 

[ ]0.15,0.20NNλ =  

[ ]1.00,2.00NPλ = , 

[ ]0.66,0.82NNλ =  

 

[ ]( ) ( )1| 0.43,0.80X x =
R

P , [ ]( ) ( )2| 0.45,0.69X x =
R

P , 

[ ]( ) ( )3| 0.45,0.69X x =
R

P , [ ]( ) ( )4| 0.45,0.69X x =
R

P , 

[ ]( ) ( )5| 0.40,0.88X x =
R

P , [ ]( ) ( )6| 0.72,0.38X x =
R

P , 

[ ]( ) ( )7| 0.59,0.43X x =
R

P , [ ]( ) ( )8| 0.43,0.80X x =
R

P , 

[ ]( ) ( )9| 0.39,0.86X x =
R

P , [ ]( ) ( )10| 0.73,0.40X x =
R

P . 

Case 1: When 1α β⊕ = , namely, [ ] [ ]1 11.00,1.00 , 0.80,1.00α β= = , it follows 
that 

[ ] ( ) { }1.00,1.00
6 7 10, ,X x x x=R , [ ] ( ) { }0.80,1.00

2 3 6 7 10, , , ,X x x x x x=R . 

and 
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[ ] ( ) { }1.00,1.00
6 7 10, ,POS X x x x= , [ ] ( ) { }0.80,1.00

1 4 5 8 9, , , ,NEG X x x x x x= , 

[ ] [ ]( ) ( ) { }1.00,1.00 , 0.80,1.00
2 3,BND X x x= . 

Based on these achievements, we can get the corresponding decision rules as 
follows: 

( )1P′  The investors 6 7 10, ,x x x  most probably choose this scheme. 
( )1N ′  The investors 1 4 5 8 9, , , ,x x x x x  are less likely to invest. 
( )1B′  We are not sure for 2 3,x x  who need further investigation.  
Case 2: When 1α β⊕ < , namely, [ ] [ ]2 20.80,1.00 , 0.75,1.00α β= = , it fol-

lows that 

[ ] ( ) { }0.80,1.00
6 7 10, ,X x x x=R , [ ] ( ) { }0.75,1.00

1 2 3 6 7 8 10, , , , , ,X x x x x x x x=R . 

and 

[ ] ( ) { }0.80,1.00
6 7 10, ,POS X x x x= , [ ] ( ) { }0.75,1.00

4 5 9, ,NEG X x x x= ,  

[ ] [ ]( ) ( ) { }0.80,1.00 , 0.75,1.00
1 2 3 8, , ,BND X x x x x= . 

According to the calculation results, the decision rules in case 2 can present as 
follows: 

( )2P′  The investors 6 7 10, ,x x x  most probably choose this scheme; 
( )2N ′  The 4 5 9, ,x x x  are less likely to invest. 
( )2B′  We are not sure for 1 2 3 8, , ,x x x x  who need further investigation. 
Case 3: When 1α β⊕ > , namely, [ ] [ ]3 31.90,2.00 , 0.70,1.20α β= = , it fol-

lows that 
[ ] ( ) { }1.90,2.00

6 10,X x x=R , [ ] ( ) { }0.70,1.20
5 9,X x x=R . 

and 
[ ] ( ) { }1.90,2.00

6 10,POS X x x= , [ ] ( ) { }0.70,1.20
5 9,NEG X x x= , 

[ ] [ ]( ) ( ) { }1.90,2.00 , 0.70,1.20
1 2 3 4 7 8, , , , ,BND X x x x x x x= . 

Analogously, we can get the rest of the decision rules associate with these 
rough regions, as follows: 

( )3P′  The investors 6 10,x x  most probably choose this scheme; 
( )3N ′  The 5 9,x x  are less likely to invest; 
( )3B′  We are not sure for 1 2 3 4 7 8, , , , ,x x x x x x  who need further investigation. 

5. Conclusions 

The DTRS proposed by Yao et al. is an important development of Pawlak’s 
rough set theory. We introduced different relations to convert IFIS into fuzzy 
and IF approximation spaces, respectively. By considering fuzzy probability and 
IF probability, FDTRS model and IFDTRS model have been established in our 
work. The main contributions of this paper are as follows. Firstly, FDTRS is dis-
cussed in the frame of fuzzy probability approximation spaces, and the corres-
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ponding measures and performance are discussed. Secondly, in order to deal 
with actual situation, we also study IFDTRS model in the frame of IF probability 
approximation spaces. Finally, we have constructed a case study about risk in-
vestment to explain and illustrate decision-making model. In the future, we will 
investigates other new decision-making methods and the corresponding states 
being IF sets. 
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