
World Journal of Mechanics, 2019, 9, 259-266 
https://www.scirp.org/journal/wjm 

ISSN Online: 2160-0503 
ISSN Print: 2160-049X 

 

DOI: 10.4236/wjm.2019.912017  Dec. 2, 2019 259 World Journal of Mechanics 
 

 
 
 

High Resolution Compact Finite Difference 
Schemes for Convection Dominated Problems 

Abdullah Shah, Saher Akmal Khan, Najib Ullah 

Department of Mathematics, COMSATS University Islamabad, Islamabad, Pakistan 

 
 
 

Abstract 
In this short article, the upwind and central compact finite difference schemes 
for spatial discretization of the first-order derivative are analyzed. Compari-
son of the schemes is provided and the best discretization scheme for convec-
tion dominated problems is suggested. 
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1. Introduction 

With the ever-increasing interest in numerical calculations demanding high ac-
curacy for a wide range of length scales, such as large-eddy simulation and direct 
numerical simulation of turbulence, high-order numerical methods are desired. 
Particularly, high-order finite difference, finite volume, and finite element me-
thods have received more attention in handling complex problems. These 
high-order methods try to achieve high accuracy and avoid spurious oscillations 
and are usually characterized by their self-adaptive nature. The use of high-order 
methods is particularly warranted by the need to simulate flows containing dis-
continuous phenomena, such as fluid interfaces and steep shear layers. The 
compact high-order finite difference schemes provide an effective way of com-
bining the robustness of finite difference schemes and the accuracy of spectral 
methods [1] [2] [3]. Generally, the computation of derivatives in compact finite 
differences is implicit in the sense that the derivative values at a particular node 
are computed not only from the function values but also from the values of the 
derivative at the neighboring nodes [4]. Compared to non-compact counterparts 
of the same order of accuracy, compact schemes utilize a smaller stencil, have 
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smaller truncating errors, and give better resolution especially at higher wave 
numbers [5] [6]. Compact finite difference schemes can generally be classified 
into two broad categories: upwind and central. The upwind compact schemes 
inherently possess the needed dissipation to control the numerical instabilities. 
Fu and Ma [7] have developed some upwind compact schemes which are suc-
cessfully implemented by Shah et al. [8] [9] [10] [11] for solving fluid flow prob-
lems. As these schemes possess appropriate dissipation to prevent non-physical 
oscillations, they seem to be suitable for solving the convection dominated prob-
lems. N.B. Ali et al. [12] used implicit and explicit third and fifth-order upwind 
compact schemes for solving the level set equation. De V. E. and Eswaran, V. [13] 
have studied some optimized upwind and upwind compact schemes for the so-
lution of acoustic wave problem. Central compact schemes have the advantage 
of achieving high-order accuracy with fewer grid points in the stencil, but they 
are non-dissipative, and using central compact schemes on non-staggered 
meshes for convection terms might cause numerical oscillations even for flows 
without discontinuities. Reducing or removing such oscillations requires the in-
troduction of dissipation terms or the use of filtering approach [14]. Resolution 
characteristics imply how compact finite difference approximation represents 
the exact result over the full range of length scales that can be realized for a given 
mesh [15]. This work aims to study different compact schemes to find the 
scheme more suitable for solving convection dominated problems. 

2. Model Problem 
In order to examine approximating behaviors of various numerical schemes, the 
following linear convection equation (also known as one-way wave equation) is 
considered. 

0,    0.u uc c
t x

∂ ∂
+ = >

∂ ∂
                      (1) 

The semi discrete form Equation (1) is 

0.j j

j

u u
c

t x
∂ ∂

+ =
∂ ∂

                          (2) 

The solution of Equation (1) represented by ( ),u x t  by a typical Fourier 
mode is given by: 

( ) ( )ˆ, e ,ikx
ku x t u t=                         (3) 

ˆku  is the Fourier mode of the wave number k and 1i = − , the exact spatial 
differentiation of Equation (3) is represented by; 

( ) ˆ
e ,ikxku

u i kh
h

′ =                        (4) 

where the wave number is scaled by the grid size lh
n

= , where l is the length of  

domain and n is the number of grids. By analogy the numerical approximation 
of the derivative is written as [13] 
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( ) ( ) ( )( )ˆ ˆ
e e .ikx ikxk k

eq r i
u u

u k kh k kh i k kh
h h

′ = = +              (5) 

The exact solution of Equation (1) is ( ) ( ), eik x ctu x t −= , and the exact solution  

of Equation (2) can be written as ( ), e e
i

jr
kct ik x ctk k xx

ju x t
 −−  ∆ ∆= , where the modified  

wave number eq r ik k ik= + . ik  is related to the phase speed in the numerical 
solution, and rk  is related to the numerical damping of a difference scheme. 
Fourier analysis of different discretization schemes allows us to choose the best 
scheme. 

2.1. Upwind Compact Scheme 

In this subsection, third and fifth-order upwind compact and upwind explicit 
schemes are analyzed. For the third-order upwind compact scheme [16], we 
have  
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where 
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Similarly, for the fifth-order upwind compact scheme [7], we have 
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For the explicit third-order upwind scheme [7], 

( ) ( )1 13 4cos cos 2 , 8sin sin 2 ,
6 6r ik kα α α α= − + = −           (12) 

and for the explicit fifth-order upwind scheme, we have, 

10 15cos 6cos 2 cos3 45sin 9sin 2 sin 3, .
30 30r ik kα α α α α α− + − − +

= =  (13) 

Figure 1 shows variations of rk  and ik  with the reduced wave number α  
for the above four schemes. We can see the fifth-order schemes can approximate 
the exact damping ( 0E

rk = ) to higher waver numbers than the third-order 
schemes, and the compact schemes can approximate the exact dispersion rela-
tion ( E

ik α= ) better than the non-compact schemes. 
Table 1 gives the upper limit of the reduced wave number, which corresponds 

to a point in Figure 1 where rk  or ik  begins to reach 2% errors relative to 
their exact solutions respectively. Larger upper limit implies fewer grid points 
are needed to resolve a given physical structure. For example, to approximate the 
exact wave speed within 2% error, the ratio of grid points needed by the 
5th-order upwind compact scheme to those needed by the 5th-order upwind bi-
ased scheme is 1.25 1.71 0.73=  in one dimensional case. In three-dimensional 
case, this ratio becomes ( )31.25 1.71 0.39= , resulting in significant saving in 
computer resources. 

2.2. Central Compact Schemes 

In this section, various compact finite difference schemes are studied. The family 
of cell centered central compact schemes given by Lele et al. [3] is given by: 

3 3 2 2 1 1
2 1 1 2 6 4 2

i i i i i i
i i i i i

u u u u u u
u u u u u c c c

h h h
ν µ µ ν + − + − + −

− − + +

− − −′ ′ ′ ′ ′+ + + + = + +  (14) 

The order of these schemes can be based parameters values as shown in Table 
2. 

Taking Fourier transform of Equation (14), we have 
 

 
Figure 1. Variations of rk  and ik  vs. α  for the compact and non-compact schemes. 
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Table 1. Upper limits of the reduced wave number when rk  and ik  of the difference 
schemes first exceed 2% errors relative to exact solutions. 

Scheme Upper limits of wave number 

 kr < 2% 1 2%ik α− <  

5th-order upwind compact 1.35 1.71 

3rd-order upwind compact 0.91 1.61 

5th-order upwind 1.08 1.25 

3rd-order upwind 0.72 0.902 

 
Table 2. Values of parameters involved for the central compact scheme. 

Order of scheme μ v a b c 

2nd order 0 0 1 0 0 

4th order 0 0 4
3

 1
3

 0 

6th order 1
3

 0 14
9

 1
9

 0 

8th order 4
9

 1
36

 40
27

 25
54

 0 

10th order 1
2

 1
20

 17
20

 191
150

 1
100
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+ +
= =

+ +
              (15) 

The different values of ik  are given in Table 3. 
The difference between modified wave number and exact wave number is very 

small, therefore these schemes have spectral like resolution. The comparison of 
various central compact schemes is presented in Figure 2. The eighth-order 
central compact scheme seems to follow the exact wave number more closely 
than all other central compact schemes, though it has a broader stencil width. 

2.3. Comparison of Upwind and Central Compact Scheme 

In this subsection, the upwind and central compact schemes are compared based 
upon the resolution characteristics ik  vs α . For this purpose, two upwind 
compact schemes and two central compact schemes are selected from the pre-
vious sections. 

The comparison plot for ik  vs α  is shown in Figure 3. 
The comparison of the scheme enables us to find the scheme best suitable 

from the chosen schemes. Figure 3 shows that the upwind compact schemes 
give the better resolution amongst all the schemes while central compact 
schemes have poor resolution. So in order to improve the resolution of central 
schemes, filtering is required. 

3. Conclusion 

We have analyzed upwind, upwind compact and central compact schemes of  
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Table 3. Values of parameters involved for the central compact scheme. 

Order of scheme ki 

2nd order sinα 

4th order 8sin sin 2
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α α+  

6th order 
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9 18
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α α
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+

+
 

8th order 

40 25sin sin 2
27 108

8 11 cos cos
9 18

α α

α α

+

+ +
 

10th order 

17 191 1sin sin 2 sin 3
12 300 300

11 cos cos 2
10

α α α

α α

+ +

+ +
 

 

 

Figure 2. Comparison of various central compact schemes for ik  vs α . 

 

 
Figure 3. Comparison of upwind and central compact schemes ik  versus α . 
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different order accuracy for numerical investigation of convection equation. It is 
observed that the use of the upwind compact scheme makes the numerical solu-
tion more stable as compared with the central scheme and can be used for con-
vection dominated problems. A comparison is also given with non-compact 
schemes of the same order of accuracy with almost the same computational cost. 
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