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Abstract 
The aim of the present study was to investigate the effect of one capsule of the 
micro-immunotherapy medicine (MIM) 2LMISEN® compared to vehicle, in a 
neuronal aging model. Senescence and apoptosis of hippocampal neurons 
were evaluated by measuring p16INK4a and caspase 3 levels, respectively. The 
data presented is a single observation. Mice hippocampal neuron cultures 
were treated with MIM (11 mM) or vehicle (11 mM) from 22 days in vitro 
(DIV) until 27 DIV. After incubation, hippocampal neuron cultures were 
fixed at 15 (control condition), 22, 25 and 27 DIV and then incubated with 
primary antibodies p16INK4a, MAP2 and Caspase 3. Quantification of p16INK4a 
and Caspase 3-positive neurons was done using Developer software. We 
found that vehicle had no effect on p16INK4a expression, whereas MIM was 
able to decrease p16INK4a levels at 22, 25 and 27 DIV in a statistically signifi-
cant manner. The MIM had no significative effect on Caspase 3 expression. 
Our preliminary results showed that the MIM capsule significantly reduced 
neuronal senescence and not apoptosis. 
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1. Introduction 

The concept of cellular senescence was first introduced by Hayflick and Moor-
head showing that cells in culture could only undergo a limited number of divi-
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sions [1]. During normal organism aging, cells undergo a wide range of struc-
tural and functional changes, including senescence and apoptosis [2]. Even 
though they have been proposed to contribute to the development of certain 
age-related diseases, senescence and apoptosis are critically important for the 
function of many tissues [3] [4]. Senescent cells undergo a durable growth arrest, 
associated with the expression of anti-proliferative molecules (such as p16INK4a), 
activation of damage sensing signaling pathways and caspase-induced apoptosis 
[5] [6]. One of the causes of senescence is damage of the telomeres and the lack 
of the enzyme telomerase activity, leading to the “end-replication problem” [7]. 
Several studies have reported the link between telomere dysfunction and p16INK4a 
activation in p53-independent telomere-directed senescence [8] [9] [10]. 

The prototypical molecular changes occurring during senescence include al-
tered morphology, expression of pro-inflammatory cytokines and growth fac-
tors. One of the characteristic features of aging mammals is that the function of 
the immune system decreases as a result of the decline in several components of 
the immune system (immune senescence), and a shifting to a chronic 
pro-inflammatory status (the so-called “inflammaging” effect) [11] [12]. 

Neuroprotective signaling pathways involving neurotrophic factors and cyto-
kines can interfere and delay the effects of aging in experimental models of neu-
rodegenerative disorders [6]. The regulation of cytokines and growth factors 
through micro-immunotherapy (MI) approach could regulate the neurodege-
nerative process, counteract immune senescence and delay age-related dysfunc-
tions.  

MI is an immunomodulation therapy which uses immune regulators, includ-
ing cytokines, plant-derived total deoxyribonucleic acid (DNA) and ribonucleic 
acid (RNA), and specific nucleic acids (SNA®) to readjust the immune response. 
The active substances, prepared in low doses (LD) and/or ultra-low doses 
(ULD), are used in sequential formulas developed to treat different acute and 
chronic diseases. 

The aim of the present study was to investigate the effect of one capsule of the 
micro-immunotherapy medicine (MIM) 2LMISEN® in a neuronal senescence 
model. 

2. Material and Methods 
2.1. Hippocampal Neuron Culture  

The experiments were performed in accordance to European guidelines for the 
care and use of laboratory animals (Directive 2010/63/UE) as described by Lilli 
et al. [13]. Briefly according to the decree 2013-118 of February 1, 2013 on the 
protection of animal used for scientific purposes, animal suffering has been mi-
nimized and the number of animals used in the experiments reduced. Animal 
sacrifice with the sole purpose of using their organs or their tissues is not consi-
dered as an experimental procedure  
(https://www.recherche-animale.org/sites/default/files/decret_2013-118, Pdf). 
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For this reason, no authorization was required for this project. Prior to the ad-
ministration of drugs, animals used to prepare mesencephalic cell cultures were 
naive. After receipt at the animal house at the latest the day before the sacrifice, 
pregnant mice were euthanized with CO2, according to the authorized proce-
dures. The nervous tissues of interest were then recovered from the embryos and 
cultured. Central nervous system (CNS) cultures of mice embryos were not sub-
ject to any authorization. 

As described by Harrison [14], mice hippocampal neurons were cultured. 
Briefly pregnant female mice (Swiss mice; Janvier) of 15 days gestation were eu-
thanized with CO2. The foetuses were removed from the uterus and placed in 
ice-cold medium of Leibovitz 15 (L15; PanBiotech, Germany) containing 2% of 
Penicillin-Streptomycin (PS; PanBiotech, Germany) and 1% of bovine serum 
albumin (BSA; PanBiotech, Germany). The hippocampi were dissociated by 
trypsinisation for 20 min at 37˚C (Trypsin EDTA 1X; PanBiotech, Germany). 
The reaction was stopped by the addition of Dulbecco’s modified Eagle’s me-
dium (DMEM; PanBiotech, Germany) containing DNAase I grade II (0.1 
mg/ml; Roche Diagnostic, France) and 10% of foetal calf serum (FCS; Invitro-
gen, USA). Cells were then mechanically dissociated by 3 passages through a 10 
ml pipette and then centrifuged at 180x g for 10 min at 4˚C on a layer of BSA 
(3.5%) in L15 medium. The supernatant was discarded and the cells of pellet 
were re-suspended in a culture medium consisting of Neurobasal (Invitrogen, 
USA) supplemented with B27 (2%; Invitrogen, USA), L-glutamine (2 mM; Pan-
Biotech, Germany), 2% of PS solution and 10 ng/ml of brain-derived neuro-
trophic factor (BDNF; PanBiotech, Germany). Viable cells were counted in a 
Neubauer cytometer using the trypan blue exclusion test. The cells were seeded 
at a density of 20.000 cells/well in 96 well-plates (pre-coated with poly-D-lysine; 
Greiner, Austria) and were cultured at 37˚C in a humidified air (95%)/CO2 (5%) 
atmosphere. Half of the medium was changed every 2 days with fresh medium. 
After 12 days of culture, astrocytes are present in the culture and release growth 
factor allowing neurons differentiation. Hippocampal neuron cultures (6 wells 
par condition) were treated with MIM (2LMISEN®; 11 mM) or vehicle (11 mM) 
from 22 days in vitro (DIV) until 27 DIV and senescence was evaluated at 22, 25 
and 27 DIV (Figure 1). 

2.2. Quantification of p16INK4a and Caspase 3  

Cells were fixed at 15 (control condition), 22, 25 and 27 DIV by a solution of 
paraformaldehyde 4% (Sigma-Aldrich, USA) for 25 min at room temperature 
and washed two times with phosphate buffered saline (PBS, PanBiotech, Ger-
many). Cells were then permeabilized and non-specific sites were blocked with a 
solution of PBS containing 0.1% of saponin (Sigma Aldrich, USA) and 1% of 
FCS for 15 min at room temperature. Cells were then incubated with primary 
antibodies p16INK4a produced in mouse (Thermo Scientific, USA), MAP2 pro-
duced in chicken (Abcam, France) and Caspase 3 produced in rabbit (Abcam, 
France). These antibodies were revealed with Alexa Fluor 488 goat anti-mouse  
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Figure 1. Experimental schema of the in vitro study. 

 
IgG (Molecular probe, USA), Alexa Fluor 568 goat anti-rabbit IgG (Molecular 
probe, USA) and Alexa Fluor 633 goat anti-chicken (Molecular probe, USA). 
Nuclei of neurons were labeled by a fluorescent marker (Hoechst solution, Sig-
ma-Aldrich, USA). Quantification of p16INK4a and Caspase 3-positive neurons 
was done using Developer software (GE Healthcare, France). For each well of 
culture, 20 pictures (20x magnification) per well were taken in the same condi-
tions using InCell AnalyzerTM 2200 (GE Healthcare, France). 

2.3. Investigational Product 

The MIM is notified to the Belgian Federal Agency for Medicines and Health 
Products under notification number 1507CH47F1. As reported by Lilli et al. 
[13], MI medicines for oromucosal administration are composed of lac-
tose-saccharose pillules impregnated with LD and/or ULD of ethanolic prepara-
tions of immune mediators and nucleic acids. Active substances are obtained 
through a “serial kinetic process” reproduced a defined number of times, con-
sisting of a 1/100 dilution process followed by vertical shaking. Centesimal 
Hahnemannian (CH) dilutions are used to express medicines composition indi-
cating the number of times by which the two proceedings are carried out for 
each active substance. The composition of the MIM tested capsule is as follow: 
recombinant human (rh) interleukin-2 (IL-2; 10CH); rh epidermal growth factor 
(EGF; 10CH); dehydroepiandrosterone (DHEA; 10CH); dimethylsulfoxide 
(DMSO; 10CH); ribonucleic acid (RNA; 10CH); specific nucleic acid® (SNA) 
targeting human leukocyte antigen (HLA) class I (SNA-HLA I; 10CH); SNA® 
HLA class II (SNA-HLA II; 10CH); SNA® targeting human telomerase reverse 
transcriptase (TERT) (SNA-MISEN; 16CH). Vehicle used as control consists of 
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lactose-saccharose pillules impregnated with the vehicle solution without any ac-
tive substance. 

The pillules contained in one capsule of MIM or vehicle control (380 mg) were 
dissolved in cell culture media (100 ml). Indeed, the tested lactose-saccharose 
concentration was 11 mM.  

2.4. Statistical Analysis 

Statistical analyses and graphs have been performed using SAS software 9.4 (SAS 
Institute, Cary NC). The data were represented by box plot with scatter diagram 
(of 6 data per condition, 1 culture). The comparison between groups was per-
formed using a one-way analysis of variance (ANOVA) following by Dunnett’s 
test to compare control 15 DIV vs controls at 22, 25 and 27 DIV and Tukey test 
to compare vehicle vs MIM at 22, 25 and 27 DIV. The level of significance is set 
at p ≤ 0.05. 

3. Results 
3.1. Effect of MIM on p16INK4a Expression 

We showed that an increase of p16INK4a immunostaining appeared at 22 DIV in 
hippocampal neurons culture and remained at 25 DIV and 27 DIV (Figure 2). 
We found that vehicle had no effect on p16INK4a expression, whereas MIM was 
able to decrease p16INK4a levels at 22 DIV, 25 DIV and 27 DIV in a statistical sig-
nificant manner (control 15 DIV vs controls 22, 25, 27 DIV [p ≤ 0.0001]; control 
vs MIM 22 DIV [p = 0.0004], 25 DIV [p = 0.0004] and 27 DIV [p = 0.0272]; ve-
hicle vs MIM 22 DIV [p = 0.0017], 25 DIV [p = 0.0037], 27 DIV [p = 0.1333]). 
Representative pictures of hippocampal neurons staining with primary antibo-
dies p16INK4a are reported in Figure 4.  

3.2. Effect of MIM on Caspase 3 Expression 

We showed that a statistically significant increase of caspase 3 immunostaining 
appeared at 22 DIV in culture (Figure 3). We found that neither vehicle nor 
MIM had effect on caspase 3 level at any time of culture (control 15 DIV vs con-
trol 22 DIV [p = 0.0098]; control vs MIM 22 DIV [p = 0.8077], 25 DIV [p = 
0.8655] and 27 DIV [p = 0.7868]; vehicle vs MIM 22 DIV [p = 0.7156], 25 DIV 
[p = 0.6677], 27 DIV [p = 0.9886]). Representative pictures of hippocampal 
neurons staining with primary antibodies caspase 3 are reported in Figure 4. 

4. Discussion 

Aging is associated with replicative senescence and increased p16INK4a levels in 
most mammalian tissues [15] [16]. Using an in vitro model of neuronal senes-
cence, this study demonstrated that the combination of LD of the components 
contained in the tested MIM capsule significantly reduced p16INK4a levels in a 
long-term hippocampal neurons culture.  

MI employs LD and ULD of specific substances to regulate the immune sys-
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tem and protect cells, including neurons, from aging. MIM uses IL-2 at 10 CH to 
promote neuronal viability and functions and decrease age-related neuronal loss 
and dysfunctions. IL-2 promotes the survival and neurite extension brain neu-
rons in culture and increases the survival of hippocampal neurons in rat [17] 
[18]. In fact, the expression of IL-2, in humans and rodents, decreases with age 
and is associated with immune senescence features and age-related decrease in 
immunologic function [19].  

 

 
Figure 2. Effect of MIM on p16INK4a protein content in hippocampal neurons over time. 
Data are expressed in percentage of control at 15 DIV (####p ≤ 0.0001 Control at 15 DIV 
vs controls at other times of cultivation; one-way ANOVA followed by Dunnett test; ♦p ≤ 
0.05, ♦♦♦p ≤ 0.001 MIM vs control; one-way ANOVA followed by Tukey test; **p ≤ 0.01 
MIM vs vehicle; one-way ANOVA followed by Tukey test). 

 

 
Figure 3. Effect of MIM on caspase 3 protein content in hippocampal neurons over time. 
Data are expressed in percentage of control at 15 DIV (##p ≤ 0.01; Control at 15 DIV vs 
controls at other times of cultivation; one-way ANOVA followed by Dunnett test). 
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Figure 4. Representative pictures of hippocampal neurons. Images taken using InCell 
AnalyzerTM 2200 with 20x magnification. (a) Controls at 15 DIV, 22 DIV, 25 DIV and 27 
DIV; (b) Control (i), vehicle (ii) and MIM (iii) at 22 DIV; Control (iv), vehicle (v) and 
MIM (vi) at 25 DIV; Control (vii), vehicle (viii) and MIM (ix) at 27 DIV. Blue: Hoechst, 
Grey: p16INK4a, Red: Caspase 3, Green: MAP2. Scale bar 30 μm. 
 

Specific EGF receptors (EGFR) have been identified in a variety of nerve cells, 
including the subventricular zone, hippocampus, and cerebellum. The distribu-
tion of EGFR expression in the two primary areas of adult neurogenesis suggests 
that the EGFR could also play a pivotal role in age-related neuronal survival and 
regeneration [20] [21] [22]. EGF is also expressed in various regions of the CNS, 
enhancing neurite outgrowth and survival [23]. MIM uses EGF at 10 CH to in-
duce pro-survival and trophic signals. 

DHEA is a neurosteroid which has multiple actions in the CNS, such as neu-
ronal differentiation during development [24] and neurogenesis [25]. DHEA has 
also several neuroprotector effects, protecting hippocampal cells from oxidative 
stress [26]. Interestingly, DHEA is able to promote neurogenesis and neuronal 
survival in human neural stem cell cultures in an EGF and leukemia inhibitory 
factor-dependent manner [27]. MIM uses DHEA at 10 CH to exert neuroprotec-
tive effects.  

HLA class I molecules are expressed by neurons during development and ear-
ly adulthood in brain regions, including hippocampus [28] [29]. A coordinated 
up-regulation of HLA class I pathway expression with hippocampal aging was 
showed in rats [30]. Several studies also clearly showed that HLA class II 
up-regulation at the protein level is a prominent immunophenotype of normal 
brain aging [31] [32]. MIM uses SNA® targeting HLA class II proteins at 10 CH 
to regulate their expression and limit overexpression. 

TERT is active in the adult rat cerebellum at a higher level than in young rats 
[33] and promotes tissue regeneration by delaying the entrance of cells into se-
nescence. Moreover, being constitutively expressed in the hippocampus and the 
olfactory bulbs, TERT is also important for regulating normal brain functions 
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[34]. MIM uses SNA® targeting TERT at 16 CH to regulate the expression of 
TERT during aging retarding telomere shortening.  

Our results showed that the MIM capsule significantly reduced neuronal se-
nescence and not apoptosis. 

5. Conclusion 

The preliminary results of this study allowed to investigate the effect of a single 
capsule of the MIM sequence in an in vitro model of neuronal senescence. Only 
one experiment has been performed. Further molecular and mechanistic analys-
es are required to demonstrate the functioning of the whole MIM sequence in 
vitro and in vivo. 
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