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Abstract 
Finding that in the formula of expansion of a function ( )f r�  into a series of 

wave-like functions ( )exp ikr
��  the coefficients are its Fourier transforms, if 

existed, we deduce mathematically all the principles and hypothesis that illus-
trated physicists utilized to build quantum mechanics a century ago, begin-
ning with the duality particle-wave principle of Planck and including the 
Schrödinger equations. By the way, we find a simple Fourier transform rela-
tion between Dirac momentum and position bras and a useful permutation 
relation between operators in phase and Hilbert spaces. Moreover, from the 
found particle-wave duality formula we prove and obtain again essentially by 
mathematical analysis all the laws of wave optics concerning reflections, re-
fractions, polarizations, diffractions by one or many identical 3D objects with 
various forms and dimensions. 
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1. Introduction 

From the find that a function ( )f r�  may be expanded into a series of functions 
eikr
��

 with coefficients equal to ( )3 22π  multiplies the Fourier transform ( )f k
��  

of ( )f r�  we arrive to obtain that a particle moving with celerity 0v� , momen-
tum 0p�  creates a wave, confirming the wave-particle duality principle con-
ceived by Planck and Einstein in 1900-1905. Moreover we obtain that 0p  is in-
versely proportional to the wavelength of this wave conformed with the hypo-
thesis of de Broglie and that the particle’s energy is proportional to the wave’s 
frequency conformed with the proposition of Planck. The coefficient of propor-
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tionality is then identifiable with the Planck’s constant h. 
The Exclusion principle of Pauli may be explained by the assimilation of two 

particles having the same momentum and the same position with only one hav-
ing double momentum so that the de Broglie wavelength is divided by two which 
is a paradox. 

From the fact that ( )0δ −p p� �  represents the momentum-representation of 

the state 0p�  and ( )
1

0
3
22 ei −−π p r� ��  its position-representation we obtain the re-

lation FT=k r
� �  where kp

�
�

�
= . These relations lead to the canonical com-

mutation relations ˆˆ ˆ,j l jli Iδ  = r p � , tE i= ∂�  of Born which in turn lead to 

the well known Schrӧdinger equations. Utilizing the relation FT=k r
� �  we 

see also that the Heisenberg’s incertitude relation 2x p∆ ∆ > �  is a matter of 
Fourier transform relation between the rectangular function  

( ) ( )( )1a H k a H k a− + − −  and the function ( ) ( )sin ax ax , ( )H x  being the 

Heaviside function. 
Consider an atom having a discrete spectrum of states each having a value of 

energy jE . It is represented by ( )
1

N

j
j

E E Eα δ
=

= −∑ . By searching the max-
imum values of 

2
t α  we see that from time to time there have emission/ab- 

sorption of a wave having frequency ( )1
jk k jh E Eν −= −  conformed with the 

theory of Bohr. Besides we obtain permutation relations between functions of 
creation and annihilation operators in second quantization. 

By the same formula giving quantum mechanics’ principles we realize that the 
product of a wave 0eik r

� �
 and an object described by a function ( )f r�  is a sum 

over eikr
��

 with coefficients equal to ( ) ( )3 2
02 fπ −k k

� �� . This opens a simple way 
to calculate the amplitude of diffraction of a wave by a 3D object such as a 
semi-space which leads to the Descartes, Snell’s laws, Fresnel equations, then by 
a set of identical objects having different geometric forms such as plane which 
leads to the Braag’s formula, pyramid, sphere, etc.  

Details of the finds are explained successively in the following paragraphs. 

2. Obtaining Principles and Hypothesis of Quantum  
Mechanics 

2.1. The Wave-Particle Duality Principle 

Let us expand a function ( )f r�  having Fourier transform on a basis of expo-
nential functions 

( ) ( )ei

k
f c= ∑ krr k

��

�

��
                   (2.1.1) 

where k
�

 belongs to an infinite set of vectors obeying the condition that the 
scalar product kr

��  is dimensionless for the following relation to hold 

( )2e 1 e eii i + π
= ⋅ =

krkr kr
��� �� �

                  (2.1.2) 

Under such condition we may write 
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( ) ( )

( ) ( ) ( )
( ) ( )

0 0

3 3

3
0

3
0

e d e e d

2

2

i i i

kR R

k

f c

c

c

δ

− −=

= π −

= π

∑∫ ∫

∑

� � �� � �

�

�

�� � �

� � �

�

k r k r krr r k r

k k k

k

            (2.1.3) 

so that we may state the theorem: 
“Any function ( )f r�  having Fourier transform may be written under the 

form 

( ) ( ) ( )3 22 eif f= π ∑ kr

k
r k

��

�

�� �                   (2.1.4) 

where kr
��  is dimensionless and ( )f k

��  is the Fourier transform of ( )f r�  

( ) ( ) ( ) ( )
3

3 22 e di

R

f FTf f− −= = π ∫ krk r r r
��� � ��           (2.1.5) 

Now from the well known formulas 

( ) ( )e xaf x a f x∂+ =                   (2.1.6) 

( ) ( ) ( )xFTD f x FTf x ikFTf x′= =                (2.1.7) 

we get 

( ) ( ) ( ) ( ) 1 2e e e 2xaD iak iakFT x a FT x FT xδ δ δ −− − −− = = = π      (2.1.8) 

so that by (2.1.4) 

( ) ( )00
0 e e eii i

k k
δ −−− = =∑ ∑ k r rk r krr r

�� � � �� �

� �

� �
               (2.1.9) 

Consider a particle situated at the position 0r
�  and having a mass m and a 

constant celerity 0v� . Defining  

0
0

0 0 0

2 2
λ ν λ
π π

= =
�� �v

k n                     (2.1.10) 

where 0λ  has the dimension of a length as it must be for 0k r
� �  to be dimen-

sionless we see from (2.1.9) that the formula 

( ) ( ) ( ) ( )0 0
0 0 0

0

2e expi iδ δ
λ

−  π
− − = = − 

 

� � �� � � � � � �k r rk k r r r r n       (2.1.11) 

represents at the same time this particle and a wave. Thank to the property 
2e 1i± π =  this wave has a wavelength 0λ  and consequently a period 

0 0 0T vλ=                        (2.1.12) 

The wave function of this particle is then within a multiplicative constant 

( ) ( )0 0 0
0

2, expr t A i t
T

 π
Ψ = − − 

 
k r r
� � ��

            (2.1.13) 

This is the insight of the principle of wave-particle duality conceived by 
Planck in 1900 [1] and Einstein in 1905 [2]. It constitutes the first quantization 
of quantum mechanics. 
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2.2. The de Broglie Particle-Wave Hypothesis and the  
Planck-Einstein Relation 

As 

// // m=k v p v
� � � �                        (2.2.1) 

we may define a universal constant θ  having dimension 2 1ML T −  then link 
p�  with k

�
 by the relation 

2 2θ θ θ
λ ν λ
π π

= = =
��� �vp k n                  (2.2.2) 

in order to get the form of the relation between momentum and associated wa-
velength  

2p kθ θ
λ
π

= =                       (2.2.3) 

in accordance with the hypothesis proposed in 1923 by de Broglie [3]. 
The wave function of the considered particle may then be put under the form  

( ) ( )1
0 0 0

0

2, expt A i t
T
θθ −  π

Ψ = − − 
 

r p r r� � � �
           (2.2.4) 

By dimensional consideration we see that the quantity 
0

2
T
θπ  is an energy that 

we baptize 0E  and propose to assimilate it with the energy of the quoted par-
ticle  

0
0

2E
T
θπ

=                        (2.2.5) 

By comparison with the formulae of Planck-Einstein [1] [2] and de Broglie [3]  

hE
T

= , hp
λ

=                   (2.2.6) 

we get the identifications 

2
hθ = =
π
�                       (2.2.7) 

=p k
��
�                        (2.2.8) 

and see that k
�

 is the commonly called wave-vector of a wave.  
From now all we say that k

�
 and r�  are Fourier transform reciprocal as so 

as 12 E
T

−π
= �  and the time t. The Planck constant h was measured by Millikan 

[4] in 1916. The best current value for h is 34 26.62607004 10 m kg sec−× ⋅  and is 
officially utilized from the date 20-05-2019 on to define the value of the kilo-
gram.  

2.3. The Pauli Exclusion Principle 

A consequence of the relation (2.2.4) and the de Broglie hypothesis (2.2.6) we see 
that if two particles have the same value of momentum p�  and the same posi-
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tion they may be assimilated to one particle with momentum 2 p�  so that the 
dual wave must have its wavelength divided by 2. This leads to a paradox and 
confirms the Exclusion principle of Pauli [5]. For photons with momentum 
p h cν=  too small, two times of it is quasi equal to it so that there is no para-

dox, i.e. many photons may occupy one position. 

2.4. Obtaining the Fourier Transform Relation between Bras k
�

  

and r�  

In a Hilbert space of Dirac kets and bras let according to (2.1.13)  

( ) ( )3 2
0 02 exp i−= πr k k r
� �� �                   (2.4.1) 

be the position-representation of a state having a definite wave-vector 0k
�

. 
From the formula 

( ) ( ) ( ) ( )00

3

3 2 3 2
0e 2 e d 2ii

R

FT δ− −−= π = π −∫
k k rk r r k k
� � �� � � ��

       (2.4.2) 

and (2.4.1) we have 

( ) ( )03 2
0 0 02 eiFT FT δ−= π = − =k rr k k k k k

� �� � � � ��        (2.4.3) 

so that, because 0k
�

 is arbitrary, we get the interesting relation 

FT=k r
� �                        (2.4.4) 

which gives precision to the latent idea in many researchers that there exists 
somehow a Fourier relation between momentum and position: 

“In quantum mechanics the wave-vector bra k
�

 is the Fourier transform of 
the position bra r� ”.  

From (2.4.4) we get the relation between momentum-representation and posi-
tion-representation of a state  

FTΨ = Ψk r
� �                      (2.4.5) 

2.5. The Canonical Commutation Postulated by Born 

In the Hilbert space of states besides X̂  and x̂P  let us formally define another 
operator ˆ

xD  
by the relation 

ˆ ˆ ˆ ˆ ˆ
x xD X XD I− ≡                       (2.5.1) 

where Î  is the identity operator. 
Now, in the space of functions let X

�
 be the operator of multiplication by x 

and xD
�

 the derivative operator 

( ) ( )Xf x xf x=
�

; ( ) ( )xD f x f x′=
�

              (2.5.2) 

verifying 

,x x xD X D X XD I  ≡ − ≡ 
� � � � � � �

                 (2.5.3) 
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We must be attentive on the fact that the operators , , ,x x pX D P D
� � � �

 act on func-
tions and ˆ ˆ ˆ ˆ, , ,

xx x pX D P D  act on bras and kets. 
From (2.5.1), (2.5.3) we get  

( ) ( )'0 '0 0 '0
ˆ ˆ ˆ ˆ ˆ

x x xx D X XD x x x x D x x xδ− = − = −       (2.5.4) 

( ) ( )0 '0 0xD X x x xδ− − =
� �

                (2.5.5) 

( ) ( ) ( ) ( ) ( )'0 0 '0 '0x x xD X XD x x x x D x x x xδ δ δ− − = − − = −
� � � � �

  (2.5.6) 

so that 

0 0
ˆ

x xx D x D x x=
�

                  (2.5.7) 

Besides we have also 

( )0 0 0
ˆx X x x x x X x xδ= − =

�
               (2.5.8) 

so that, as 0x  is arbitrary, 

ˆ
x xx D D x≡
�

; ˆx X X x≡
�

                 (2.5.9) 

The above relations associated with (2.4.4) and 

( ) ( ) ( ) ( )1 22 e dikx
k kFTxf x i f x x i F x

∞− −

−∞
= π ∂ = ∂∫         (2.5.9) 

lead to 

0 0 0

0 0 0

ˆ ˆ

ˆ
k k k

k X k FT x X k FTx x k

i FT x k i k k k iD k

= =

= ∂ = ∂ =
      (2.5.10) 

i.e. 

ˆ ˆ ˆ
k pX iD i D≡ ≡ �                      (2.5.11) 

Similarly by repeating the reasoning with ˆ ˆ,
xx pP D  we get 

ˆ ˆ
x xP i D= − �                       (2.5.12) 

Extension to 3D space gives 

ˆ ˆˆ k pi i≡ ∇ ≡ ∇r �                     (2.5.13) 

and finally the commutation relations 

ˆ ˆˆ ˆ ˆ, ,j l j l jlr p i r i Iδ   = − ∇ =   � �               (2.5.14) 

which have been called quantum conditions and postulated by Born in 1925 [6]. 

Similarly from the fact that 12 E
T

−π
= �  and t are Fourier reciprocal we have 

tE i= ∂�                        (2.5.15) 

2.6. The Schrödinger Equations 

From the relations (2.5.6) we may also get an important proposition: 
“The eigenvalue equation 

( )ˆ ˆ,A X P aα α=  
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of an arbitrary operator ( )ˆ ˆ,A X P  leads to the differential equation for the func-
tion x α  

( ) ( )ˆ ˆ, , xx A X P A X i D x a xα α α= − =
� �
�          (2.6.1) 

For example, with  

( ) ( )21ˆ ˆ ˆ ˆ,
2

A X P P V X
m

≡ +                   (2.6.2) 

we obtain the well known time independent Schrödinger equation [7] 

( ) ( ) ( )
2

2

2 xD V x x E x
m

 −
+ Ψ = Ψ 

 

��
               (2.6.3) 

As 12 E
T

−π
= �  and t are Fourier transform reciprocal we get the time depen-

dent Schrödinger equation 

( )
2 2

2 , , ,
2 tV x t x t i x t

m x
 ∂
− + Ψ = ∂ Ψ 

∂ 

�
�           (2.6.4) 

2.7. The Heisenberg Uncertainty Principle 

Let ( ),S k k∆  be the function equal to zero for 2k k> ∆  and to ( ) 1k −∆  for 
2k k< ∆  as illustrated by Figure 1. 

A state α  where there is incertitude on the wave-number k 

( ) ( )0 02 2k k k k k− ∆ ≤ ≤ + ∆                 (2.7.1) 

corresponds to the momentum-representation 

( ) ( )0
0 , e ,kkk S k k k S k kα − ∂= − ∆ = ∆             (2.7.2) 

Utilizing the Heaviside function we may write 

( ) ( ) ( )2 2
,

H k k H k k
S k k

k
+ ∆ − − ∆

∆ ≡
∆

           (2.7.3) 

Thank to (2.1.6), (2.1.7) and the property 

( ) ( ) ( )

( ) ( )
1
2

2 2

2

2 e e

1e 2

k
k k ix

k ix

FTH k k FT H k FTH k

x
ix

δ

∆ ∆
∂

∆
−

+ ∆ = =

 = π + π 
 

        (2.7.4) 

we get by Fourier transform of (2.7.3) 
 

 
Figure 1. The rectangular function. 
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( ) ( ) ( )
( )

1
2

sin 2
, 2

2
x k

FTS k k
x k

− ∆
∆ = π

∆
              (2.7.5) 

so that by (2.7.2)  

( ) ( ) ( )
( )

0 0
1
2

sin 2
e , 2 e

2
kk ik x x k

FTFT x FT k FT S k k
x k

α α −− ∂ − ∆
= = ∆ = π

∆
(2.7.6) 

( ) ( )
( )

01 2 sin 2
2 e

2
ik x x k

x FTFT x
x k

α α − ∆
= − = π

∆
       (2.7.7) 

The graph of x α  has the form (Figure 2). 
The function x α  has maximum value for 0x = , vanishes for  

2x k∆ = ±π . It and its squared are equal nearly to half of their maxima for  

2 2
x k∆ π

≈  or x k∆ ≈ π .  

We may then write that 

2x p x k h∆ ∆ = ∆ ∆ ≅ π =� �                   (2.7.8) 

Because h > �  the relation (2.7.6) is conformed with the uncertainty principle 
announced by Heisenberg [8] and proven somehow by Kennard [9] in 1927. 

2
x p∆ ∆ ≥

�                         (2.7.9) 

Similarly because the couple ( )1 ,E t−�  are reciprocal so as ( )1 ,p x−�  we get 

2
t E∆ ∆ ≥

�                        (2.7.10) 

2.8. Emission of Photons from Atoms Following Bohr 

Consider a state α  which has many stable values for its energy and suppose 
that α  is the sum of individual states each of them having only one value of 
energy or one frequency 

( )
1

N

j
j

E E Eα δ
=

= −∑                    (2.8.1) 

By Fourier transform we get  

( )
1
2

1
2 e j

N
iE t

j
t α − −

=

= π ∑ �                   (2.8.2) 

 

 
Figure 2. Graph of ( )sin x x . 
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so that  

( ) ( )2 1

1
2 2cos

N

k j
j k j

t N E E tα −

= <

 
= π + − 

 
∑∑ �           (2.8.3) 

By (2.8.3) we see that the probability for observing α  at the instant t is 
maximal for  

, 1, 2, , ; 0,1, 2,n
k j k j

h nt n j k N n
E E ν ν

= = ∀ < = =
− −

� �      (2.8.4) 

In other word we see that from time to time there may have emission/absor- 
ption of waves with frequencies  

( )1
j k k jh E Eν −= −                      (2.8.5) 

This result accords with the theory on the constitution of atoms and mole-
cules of Bohr [10] in 1913. 

2.9. Obtaining Permutation Relations between Functions of  
Creation and Annihilation Operators 

Let ,A B  be two operators obeying the condition 

AB BA I≡ +                        (2.9.1) 

We have 
1m m mA B AA AB BA mA −≡ ≡ +�                 (2.9.2) 

because at each time we change AB into BA we must add 1mA − . 
So, let ( )f t  be an entire function and ( )f t′  its derivative function we clear-

ly have 

( ) ( ) ( )f A B Bf A f A′≡ +                   (2.9.3) 

Now from (2.9.3) 

( ) ( ) ( ) ( ) ( ) ( )2 2 2f A B Bf A B f A B B f A Bf A f A′ ′ ′′≡ + ≡ + +  (2.9.4) 

so that by recursion we get 

( ) ( ) ( )
0

m
km m k

k

m
f A B B f A

k
−

=

 
≡  

 
∑                  (2.9.5) 

From (2.9.5) we can’t sum over mB  because of the mixed coefficient 
m
k

 
 
 

 

under the summation. After thinking we replace (2.9.5) with the following for-
mula 

( ) ( )( ) ( ) ( )
0

1
!

m k km m

k
f A B B f A

k=

≡ ∑                 (2.9.6) 

so that if ( )g B  is an entire function we get the fundamental identity between 
operators obeying the sole condition AB BA I− ≡  

( ) ( ) ( ) ( ) ( ) ( )
0

1
!

k k

k
f A g B g B f A

k

∞

=

≡ ∑               (2.9.7) 

and its dual 
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( ) ( ) ( ) ( ) ( ) ( ) ( )
0

11
!

k k k

k
f B g A g A f B

k

∞

=

≡ −∑            (2.9.8) 

For examples we have successively 

( )e e e ex x x xD D D DX X X Iα α α αα α≡ + ≡ +  

( ) ( )e ex xD Df X f X Iα α α− ≡ +                 (2.9.9) 

( )
2 2

2 2e e
X X

x xD D X
β β
α αα α β≡ +  

( ) ( )22 2 2 1
2 2 2 2 2e e e e e e e e e ex x x x

X X X X ID X D D DX
β β β β α αβα β α α αβα α α α

− − ++ ≡ ≡ ≡  (2.9.10) 

Defining the creation and the annihilation operators by 

( )1
2 x x xa D X a a a a D X XD I± + − − +≡ ⇒ − ≡ − ≡∓         (2.9.11) 

we get from (2.9.8), (2.9.9), (2.9.10),  

( ) ( ) ( ) ( ) ( ) ( ) ( )
0

11
!

k k k

k
f a g a g a f a

k

∞
− + + −

=

≡ −∑            (2.9.12) 

( )
21

24e e e ,
2

x
a f x f x x C

λ
λλ λ±  

= + ∈ 
 

∓∓
           (2.9.13) 

Closing this paragraph we propose from (2.9.6) the new version of the New-
ton’s binomial formula 

( )
0 0

1 e
!

xr yDr k k k k r r
x

k k

r
x y x y y D x x

k k

∞ ∞
−

= =

 
+ = = = 

 
∑ ∑          (2.9.14) 

3. Obtaining Laws of Wave Optics 
3.1. Diffraction by a 3D Object Centered at the Origin of Axis  

System 

Consider an object occupied a limited domain D in space and represented by the 
object function which may be discontinuous 

( ) ( )1 for & 0 forD Df D f D= ∈ = ∉r r r r� � � �             (3.1.1) 

From the formula (2.1.4) we see that the coexistence of a wave and this object 
may be represented by 

( ) ( ) ( )( ) ( ) ( )0 03 2 3 2
0e 2 e e 2 ei i i i

D D D
k k

f FT f f= π = π −∑ ∑k r k r kr krr r k k
� � � �� � � �

� �

� �� � �  (3.1.2) 

Equation (3.1.2) gives rise to the main theorem in wave optics 
“The amplitude of diffraction of a wave 0k

�
 into a wave k

�
 by the form of an 

object is equal to ( )3 22π  multiplies the Fourier transform of the object func-
tion calculated for the deviation of the wave-vector ( )0−k k

� �
”. 

3.2. Diffraction by Systems of Identical Objects Centered at the  
Positions jr�  

Consider a set of objects centered at the points jr� . Utilizing (2.1.6), (2.1.7) we 
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have 

( ) ( )e j r
D j Df f− ∇− = rr r r

�� � �
                (3.2.1) 

( ) ( ) ( )e ej ji
D j D DFTf FT f f− ∇ −− = =rr krr r r k

�
�� � �� � � �         (3.2.2) 

and get a useful formula giving the amplitude of diffraction in some direction 
k
�

 of a plane wave 0k
�

 by a set of identical objects 

( ) ( ) ( ) ( ) ( )3 2 3 22 2 expD j D j
j j

FTf f iπ − = π ∆ − ∆∑ ∑r r k kr
� �� � ��     (3.2.3) 

3.3. Applications 

3.3.1. Diffraction of k
�

0  by a Semi Space 

The semi space under the plane Oxy is described by the object function 

( ) ( ) ( ) ( ) ( ), 1Oxyf u x u y H z u x= − =r�               (3.3.1) 

From the theorem (2.1.4) we see that 

( ) ( ) ( )( ) ( )( ) ( )( )0e 2 ei i
Oxy x y z

k
f Hδ δ= π ∆ ∆ − ∆∑k r krr k k k

� �� �

�

� � �� �    (3.3.2) 

so that there are diffracted waves only for  

( ) ( ) 0
x y

∆ = ∆ =k k
� �

 

0 0 0 0 0x x y y x x y y′′ ′′ ′ ′− = − = − = − =k k k k k k k k
� � � � � � � �

           (3.3.3) 

Equations (3.3.3) gives the Descartes law of reflection [11] which implies that 

0k
�

 and ′′k
�

 must be symmetric as shown Figure 3. Moreover if the diffracted 
wave ′k

�
 is situated in a medium where the refractive index is n so that 

0k nk′ =  we get the Snell’s law for refraction [11] 

( )0 0 sin sin 0x xk k k n r i′ − = − =                (3.3.4) 

3.3.2. Obtaining the Fresnel Formulae 
Now, let , ,a a a′ ′′  denoted the amplitudes of the incident, the refracted and the 
reflected waves; 1 2,n n  the upper and lower semi-space refraction indices. 

The amplitudes ,a a′ ′′  are proportional to a and respectively to  

( )0,0,D zf ′∆k
�� , ( )0,0,D zf ′′∆k

��                 (3.3.5) 

Remarking that the Fourier transform of a Heaviside function ( )H z  is 

( ) ( ) ( )1 2 12z z
z

H k k
ik

δ−  
= π + π 

 
�               (3.3.6) 

we get 

( ) ( )

( )

0 00

00

sin
cos cos sin

1
2 cos

z

z

a a a ra
k r k i k i rk k

aa a
k ik k

ν ν ν

µµ

′ = = =
′ − −′ −

′′ = = −
′′ −

� �

� �
         (3.3.7) 
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Figure 3. Diffraction by the half space under the plane Oxy. 

 
In order to calculate the coefficients μ, ν we will make use of the law of con-

servation of energies. The incoming density of energy at the interface Oxy is 
proportional to 2a , to the inclination 1cos i  and the duration of time an in-
coming photon is in the vicinity of it, i.e. to 1

1v−  or 1n . Similarly for the density 
of outgoing energies so that 

2 2 2
1 2 1cos cos cosn a i n a r n a i′ ′′= +               (3.3.8) 

The above equations and the formula 

( ) ( )2 24cos sin cos sin sin sini i r r i r i r= + − −           (3.3.9) 

lead by (3.2.3) to the following 

( ) ( ) ( ) ( )( )2 2 2 2 2 2 2 2 2
0 14 cos sin sin sin sink n i i r i r i r i rµ ν− = − + + − −  (3.3.10) 

• Taken 0ν =  we get 0 12 cosk n iµ =  and there is total reflection. 
• Taken ( ) ( )1 02 cos sin sinn k i i r i rµ ν= = − +  we get the Fresnel formulae 

[11] 

( )
( )
( )

1

1 2

1 2

1 2

2 cos 2cos sin
cos cos sin

sincos cos
cos cos sin

n ia i r
a n i n r i r

i rn i n ra
a n i n r i r

′
= =

+ +

−′′ −
= = −

+ +

              (3.3.11) 

• Taken ( )cos i rµ ν= − +  we get the second Fresnel formulae [11]  

( ) ( )
( )
( )

1

1 2

2 cos 2cos sin
cos cos sin cos

tan
tan

n ia i r
a n i n r i r i r

i ra
a i r

′
= =

+ + −

−′′
=

+

           (3.3.12) 

From (3.3.12) we find again the Brewster’s condition for total polarization 

( )
2

i r π
+ = , 0a′′ =  [11]. 

3.3.3. Diffraction by a Sphere 
The equation of a sphere centered at O and having radius R as shown in Figure 
4 is 

( ) ( ) ( ) ( )2 2 2 2 2 2 2 2 2, ,S x y z H R z H R y z H R x y z= − − − − − −   (3.3.13) 

Its Fourier transform is invariant in a rotation around the origin so that 
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Figure 4. Deflection of waves by a sphere. 

 

( ) ( ) ( ) ( )
2 2

2 2

3 2 2 2 2, , 0,0, 2 2 e d d
R R zikz

x y z R R z
S k k k S k z y R z y

−− −

− − −
= = π − −∫ ∫� �  

( ) ( )
1
2

2

2 sin2 cosR RkS k Rk
Rkk

−  = π − 
 

��             (3.3.14) 

As conclusion we see that in a diffraction by a sphere the amplitude of diffrac-
tion is inversely proportional to ( )2k∆  with k k∆ = ∆

�
 and there is extinction 

if 

tan 0.02R k R k R k∆ = ∆ ⇒ ∆ =               (3.3.15) 

Let ϕ  be the deviation angle in a diffraction as shown Figure 5, we have ex-
tinction for ϕ  such that  

0.02sin
2 2 2 2

k R k
k Rk Rk

ϕ ∆ ∆
= = =                 (3.3.16) 

For example, for 10 nmλ =  and 2.5 nmR =  hemoglobin, there is extinc-
tion if 

0.02sin 0.0064
2
ϕ
= =

π
 

3.3.4. Diffraction of a Plane Wave by Parallel Planes 
From (3.2.3) we obtain for example the amplitudes of diffraction of a plane wave 
by parallel planes perpendicular to Oz at the points , 2 , ,d d Nd± ± ±�  as shown 
Figure 6 

( ) ( ) ( ) ( ) ( )
( )

3 2 3 2

1

sin 21
2 e e 2 2 cos

2 sin 2
z z

N zzind k ind k n

n z

Nd kN d k

d k
− ∆ ∆

=

∆+ ∆
π + = π

∆
∑

� �
��

� (3.3.17) 

The maximum amplitudes of diffraction correspond, because 0k
�

 and k
�

 have 
opposite projections on Oz as shown Figure 6, to 

( )0 02 cos , 2
2

zd m d k Oz m∆
= π⇒ = π

k k
�

�
           (3.3.18) 

( )0
0

22 cos , 2 sin , integerd Oz d m m m
k

θ λπ
= = =k

�
      (3.3.19) 

The formula (3.3.19) is identical with the Braag’s formula [11]. Apart from the 
above applications of the formula (3.1.2) for studying wave optics we have many 
other interesting applications in Ref [12].  
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Figure 5. Angle of deflection. 

 

 
Figure 6. Diffraction by equidistant parallel planes. 

4. Remarks and Conclusions 

Someone has said that “Physics is the studies of Nature, how matter and radia-
tion behave, move and interact thorough space and time. Mathematics, on the 
other hand, is logical deductive reasoning based on initial assumption. There are 
many different systems of mathematics that can describe the same physical 
phenomenon.” Accordingly this work which improves and completes a previous 
work [13] is only one attempt for understanding systematically quasi all the 
principles and hypothesis of quantum mechanics as so as many aspects of wave 
optics taught in universities. The main remark is that these quantum principles 
and laws of optics may be deduced from only one simple formula  
( ) ( ) ( )3 22 ei

k
f f= π ∑ krr k

��

�

�� �  associated with the property 2e 1in± π =  which leads 
to quantization.  

May this work brings closer students to modern physics! 
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