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Abstract 
A new algorithm is suggested based on the central limit theorem for generat-
ing pseudo-random numbers with a specified normal or Gaussian probability 
density function. The suggested algorithm is very simple but highly accurate, 
with an efficiency that falls between those of the Box-Muller and von Neu-
mann rejection methods. 
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1. Introduction 

Random numbers are extremely important in all areas of computational science. 
As a result, any programming compiler comes with some sort of pseudo-random 
number generator that normally generates random numbers that are uniformly  
distributed in the interval [ )0,1 . However, in many situations, one requires ran-
dom numbers that have nonuniform distribution. 

Let us suppose that we want to generate random numbers that are distributed 
according to the probability density function ( )p x . This can be systematically 
achieved by first finding the cumulative probability distribution function ( )P x  
according to [1] [2],  

( ) ( )dx
P x p u u

−∞
= ∫                       (1) 

and then solving the equation  

( )P x r=                           (2) 

for x in terms of r, where r is a uniform random number in the unit interval 
0 1r≤ < . The random numbers x that are generated by this so-called inverse 
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transform method are distributed according to the probability density function 
( )p x . 
For example, consider the exponential probability density function,  

( )
1 e if 0

0 if 0

x x
p x

x

λ

λ
− ≥= 

 <

                     (3) 

where λ  is a constant. We have  

( )
0

1 e d 1 e
x x xP x xλ λ

λ
− −= = −∫                     (4) 

Then solving  

1 e x rλ−− =                            (5) 

we get  

( )ln 1x rλ= − −                           (6) 

Thus, if r is a uniformly distributed random number in the unit interval  
0 1r≤ < , then x is a random number distributed according to the exponential 
density function (3). 

In principle, the inverse transform method generates random numbers with 
any probability density function. However, the method relies on two conditions. 
First, the integral in Equation (1) should be evaluated analytically and, second, 
one should be able to solve Equation (2) explicitly for x in terms of r. But these 
are not always possible. For example, the Gaussian or normal probability density 
function,  

( ) ( )2 22

2

1 e
2

xp x µ σ

σ
− −=

π
                    (7) 

is a function for which the integral in Equation (1) cannot be evaluated analyti-
cally. However, based on the Gaussian density function, one can generate a two- 
dimensional probability density, and then transform it into plane polar coor-
dinates. After some simple algebraic manipulations, one obtains the random 
numbers  

( ) ( )1 2 1 22 cos and 2 sinx yρ θ ρ θ= =                (8) 

each of which is distributed according to the Gaussian probability density (7) [1]. 
Here ρ  is a random number generated according to the exponential distribu-
tion (3) and θ  is uniformly distributed in the interval 0 2θ≤ < π . This algo-
rithm is known as the Box-Muller method. 

A second method for generating random numbers with non-uniform proba-
bility density function if the inverse transform of ( )p x  fails is the von Neumann 
rejection method (also called acceptance-rejection method). This algorithm uses 
a so called comparison function ( )c x  such that ( ) ( )c x p x≥  over the entire 
interval of the definition of ( )p x  [3] [4] [5]. Clearly, the simplest compari-
son function in most cases is a constant as shown in Figure 1. Then, a pair of 
random numbers ( ),x y  is generated such that a x b≤ <  and 0 y c≤ < . This 
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Figure 1. Probability density function ( )p x  and a 

constant comparison function ( )c x  for generating 

random numbers by acceptance-rejection method. 
 
defines a point within the rectangle shown in Figure 1. If ( )y p x< , this point 
is below the curve ( )p x  and the random number x is accepted, otherwise, it is 
rejected. The process is then repeated. The random numbers x thus generated 
have the probability density function ( )p x . Clearly the rejection method works 
for any arbitrary probability density function. 

Because the normal or Gaussian probability distribution is the most encoun-
tered distribution in nature, in this work we suggest yet another algorithm for 
generating random numbers with normal probability density function that is 
based on the central limit theorem. 

The organization of the contents of this article is as follows: In Section 2, we 
develop the theoretical foundation for the investigation. In Section 3, we discuss 
random numbers with normal distribution, and suggest a new algorithm for 
their generation followed by computer simulation results. In Section 4, we com-
pare the suggested algorithm with other algorithms in terms of accuracy and 
speed. Finally, in Section 5, we present a summary of the current investigation 
followed by concluding remarks. 

2. Theory  

Consider a random number x that is distributed according to the normalized 
probability density function ( )p x . The expected value or the mean value of x 
and x2 are given by [6]  

( )dx xp x x= ∫D                         (9) 

and  

( )2 2 dx x p x x= ∫D                       (10) 

where D  is the domain of ( )p x . Then, the variance of the distribution is 
given by  

22 2
x x xσ = −                         (11) 

Now let us pick n of these random numbers and find their average  

1
1

1 n

i
i

y x
n =

= ∑                          (12) 
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Then, repeat this process a large number of times with the same number n to 
generate 1 2 3, , ,y y y  . The question is, are the new random numbers y as ran-
dom as the numbers x? In other words, is the probability density function for y 
the same as ( )p x ? The answer is no. The new random numbers y are not as 
random as the numbers x. For example, consider a random number x that is un-
iformly distributed in the interval 0 1x≤ < . Figure 2(a) shows the graph of 
1000 of these random numbers. We then generate 1000 pairs of these numbers 
and plot the average of them, which is shown in Figure 2(b). As can be seen 
from these figures, although both systems have a mean of 0.5, the random num-
bers generated by the average of pairs of the uniformly distributed numbers are 
generally closer to their mean than the former ones, and hence they have a dif-
ferent probability distribution function. 

Let , , ,x y z   be several uncorrelated random variables with corresponding 
probability density functions ( ) ( ) ( ), , ,f x g y h z  . Let the variances of these 

random variables be 2 2 2, , ,x y zσ σ σ  , respectively. Then according to the Bienaymé 
formula [7],  

2 2 2 2
x y z x y zσ σ σ σ+ + + = + + +



                   (13) 

where 2
x y zσ + + +  is the variance of the random numbers generated by the sum of 

the random variables , , ,x y z  . From this equation, we find the variance of the 
average ( )x y z n+ + + ,  

( )
2 2 2 2= x n y n z nx y z nσ σ σ σ+ + + + + +



                (14) 

where n is the number of random variables to be averaged. But according to Eq-
uation (11), we have  

( )
2 2 2

22 2
2 2

1 x
x n

x x x x
n n n n

σ
σ  = − = − = 

 
           (15) 

with similar results for 2 2, ,y n z nσ σ  . Therefore, Equation (14) reduces to  

( ) ( )2 2 2 2
2

1
x y zx y z n n

σ σ σ σ+ + + = + + +


                (16) 

 

 
(a)                                     (b) 

Figure 2. (a) Uniformly distributed random numbers in the interval [ )0,1 . (b) Average of 

two uniformly distributed random numbers in the same interval.  
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Finally, if all the random variables have the same distribution, we get  
2 2 2 2 2 2 2
x y z nσ σ σ σ σ σ σ+ + + = + + + =              (17) 

And, if for the sake of simplicity we denote ( )
2
x y z nσ + + +  by 2

nσ , Equation (14) 

reduces to  

n n
σσ =                           (18) 

Furthermore, it can also be shown that the mean of these random numbers is the 
same as the mean of the original random numbers, i.e.,  

nx x=                           (19) 

As an example, the normalized probability density function for a random 
number that is uniformly distributed over the interval [ )0,1  is ( ) 1p x = . Then,  

1
2

x =                            (20) 

and  

2 1
3

x =                            (21) 

Therefore,  

21 1 1
3 2 2 3

σ  = − = 
 

                     (22) 

Therefore,  

2
1

2 2 6
σσ = =                         (23) 

This explains why the random numbers in Figure 2(b) are less random than 
those in Figure 2(a). Likewise, if we average n of the uniformly distributed ran-
dom numbers in the interval [ )0,1  to obtain new random numbers, we obtain  

1 1and
2 2 3n nx

n
σ= =                    (24) 

According to the central limit theorem, the random numbers thus obtained 
tend toward normal or Gaussian distribution as n →∞  [8] [9] [10] [11]. In 
fact, according to this theorem, the shape of the initial distribution of the ran-
dom numbers is immaterial and the distribution of the mean approximates a 
normal distribution if the sample size is sufficiently large, with a mean and 
standard deviation given by Equations (18) and (19) [12]. It is also worth noting 
that as n →∞ , 0nσ → , the resulting normal distribution approaches the Di-
rac delta function [13] [14] [15]. 

3. Random Numbers with Specific Normal Distribution  

Most common computer programming languages come with some sort of built- 
in pseudo-random number generator that generates numbers in some interval 
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[16] [17]. However, most generators use the linear congruential or power resi-
due method and generate pseudo-random numbers in the interval [ )0,1 , which 
is perhaps the most convenient interval in many applications [18] [19] [20]. 

Figures 3-5 show the results of computer simulations for progression to-
ward a normal or Gaussian distribution for 2n = , 3n = , and 20n =  starting 
with a uniform initial distribution in the interval [ )0,1 . In each case 106 random 

numbers are generated. The corresponding probability density function for a 
normal distribution with mean and standard deviation given by Equations (24) 
is also shown for comparison in each case. As can be seen from Figure 5, the 
agreement between the sample mean of 20 random numbers with Gaussian dis-
tribution is nearly perfect. Therefore, excellent Gaussian approximations can be 
achieved with fairly small samples. 

In Figure 5, the mean and standard deviation of ( )p x  for the sample means 
and the Gaussian distribution are both 1 2µ =  and 1 240σ = , respectively. 
This is due to the fact that the mean and the standard deviation in this case are 
given by Equations (24). Furthermore, because n is an integer, the standard dev-
iation is quantized, with values given by  

1 , 1, 2,3,
2 3n n

n
σ = =                     (25) 

But this is certainly a limitation because we may need to generate random num-
bers that have Gaussian distribution with an arbitrary mean µ  and standard 
deviation σ  that are not necessarily one of these quantities. 

Let us suppose that we need to generate random numbers with Gaussian dis-
tribution given by Equation (7), with arbitrary values of the mean µ  and stan-
dard deviation σ . We start by generating uniform random numbers in the interval  
[ )0,1 , and take the average of n of these numbers, say 20 of them, to generate 
new random numbers with Gaussian distribution as in Figure 5. The random 
numbers thus generated have a mean 1/2 and a standard deviation 1 2 3n . 

To adjust the generated random numbers to match the specified Gaussian 
distribution, we have to change two things; the mean µ  and the standard dev-
iation σ . The standard deviation needs to be adjusted first. To do so, we divide 
each random number by 1 2 3n  and multiply by the required σ . Thus, we 
multiply each of the random numbers by a factor α , where  

2 3
1 2 3

n
n

σα σ= =                    (26) 

This changes the standard deviation to the required value. But this also changes 
the mean from 1/2 to  

1 3
2

nµ α σ = = 
 

                      (27) 

We now have to shift the mean to the required value µ . This is done by 
shifting each of the new random numbers by xδ , given by  

3x nδ σ µ= − +                        (28) 
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Figure 3. Probability density generated by averaging two 
random numbers from a uniform distribution in the 
interval [ )0,1  (the bullets). The solid curve is the Gaussian 

function with the same mean and standard deviation 
calculated from Equation (24). 

 

 

Figure 4. Same legends as in Figure 3 but 
with averaging three random numbers. 

 

 

Figure 5. Same legends as in Figure 3 but 
with averaging twenty random numbers. 

 
The random numbers thus generated have the required normal or Gaussian dis-
tribution. 

Combining the above transformations, if x is the average of n uniformly dis-
tributed random numbers in the interval [ )0,1 , then x′  obtained through the 
transformation  

( )3 2 1x n xσ µ′ = − +                    (29) 

is distributed according to the normalized Gaussian distribution  
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( ) ( )2 22

2

1 e
2

xp x µ σ

σ
′− −′ =

π
                   (30) 

As an example, suppose we want to generate random numbers having a nor-
mal probability distribution with 2µ = −  and 1.0σ = , i.e.,  

( ) ( )22 21 e
2

xp x − +=
π

                     (31) 

To do so, we generate random numbers x so that each is the average of 20 un-
iformly distributed random numbers in the interval [ )0,1 . We then transform 
these into new random numbers x′  according to Equation (29), which reduces 
to  

( )2 15 2 1 1x x ′ = − −                     (32) 

These calculations can be performed using any computer programming lan-
guage, such as Python. The random numbers x′  thus generated have the re-
quired probability distribution, as shown in Figure 6. 

4. Comparison with Other Algorithms  

As stated earlier, throughout the computer simulations 106 random numbers were 
generated. These numbers were then placed in bins, each of width 0.01dx = . The 
bin contents were then normalized and plotted in the figures described above. 

In order to compare the suggested algorithm with the Box-Muller and the von 
Neumann rejection methods, we investigated two measures; accuracy and effi-
ciency. For accuracy, we considered the root-mean-square deviation between the 
bin contents and the values of the corresponding normal distribution for each 
algorithm. In doing so, we compared the probability density functions in differ-
ent intervals about the mean of the distribution, namely, 0.5µ σ± , µ σ± , 

2µ σ± , 3µ σ± , 4µ σ± , and 5µ σ± . We have considered several intervals 
because the fluctuation of the bin contents is normally higher near the peak of 
the distribution. The results are shown in Table 1 for 0µ = , which clearly shows 
the accuracy of the three algorithms is nearly identical in all cases. 

 

 

Figure 6. Probability density function for a Gaussian dis- 
tribution with 2µ = −  and 1σ =  generated by the algo- 
rithm described in this article. The solid curve is the corres- 
ponding Gaussian function given by Equation (31). 
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Table 1. Root-mean-square deviation between the bin contents and the values of the 
corresponding normal distribution for the suggested algorithm, the Box-Muller, and the 
von Neumann rejection algorithms.  

 Root-Mean-Square Deviation 

3-6 Test Interval This Work Box-Muller von Neumann 

( )1 2µ σ±  16.09 10−×  16.09 10−×  16.09 10−×  

µ σ±  11.58 10−×  11.59 10−×  11.59 10−×  

2µ σ±  21.30 10−×  21.35 10−×  21.35 10−×  

3µ σ±  34.20 10−×  34.08 10−×  34.15 10−×  

4µ σ±  34.20 10−×  33.56 10−×  33.53 10−×  

5µ σ±  33.26 10−×  33.13 10−×  33.11 10−×  

 
As a measure of efficiency, we compared the central processing unit (CPU) 

times of the computer during the execution of the program using each algorithm. 
The results consistently showed that our algorithm is slower than the Box-Muller 
method by about a factor of two, but faster that the von Neumann rejection me-
thod by about a factor of four. 

5. Summary and Conclusions  

Since random numbers are extensively used in various fields, such as computa-
tional physics and other science, we have reviewed them in this work. But spe-
cifically we have focused on machine generated pseudo-random numbers that  
are in most cases uniformly distributed over the interval [ )0,1 . 

However, in many situations non-uniform random numbers, often with nor-
mal or Gaussian distribution, are needed. These random numbers are generated 
by two common methods, namely, the Box-Muller and the von Neumann rejec-
tion methods, which we have briefly reviewed in this article. 

We have then suggested a third, yet very simple and efficient, algorithm for 
generating random numbers with a specified normal or Gaussian distribution. 
The suggested algorithm relies on a modified central limit theorem, and uses the  
average of uniformly distributed random numbers in the interval [ )0,1 . The  

algorithm generates random numbers with the required normal probability 
distribution function very accurately using a small number of uniform random 
numbers in the averaging process. 

In comparison with other methods, the suggested algorithm is as accurate as 
the Box-Muller and the von Neumann rejection algorithms. In terms of the effi-
ciency or the speed with which the random numbers are generated, however, 
our algorithm is slower than the Box-Muller method by about a factor of two, 
but faster than the von Neumann rejection method by about a factor of four. 

Considering the accuracy, simplicity, and the efficiency of the suggested algo-
rithm, it can justifiably compete with the existing methods. 

At this time, the authors intend no future work based on the current study. 
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