
Journal of Applied Mathematics and Physics, 2019, 7, 2712-2722
https://www.scirp.org/journal/jamp

ISSN Online: 2327-4379
ISSN Print: 2327-4352

DOI: 10.4236/jamp.2019.711185 Nov. 8, 2019 2712 Journal of Applied Mathematics and Physics

An Algorithm for Generating Random Numbers
with Normal Distribution

Pirooz Mohazzabi, Michael J. Connolly

Department of Mathematics and Physics, University of Wisconsin-Parkside, Kenosha, WI, USA

Abstract
A new algorithm is suggested based on the central limit theorem for generat-
ing pseudo-random numbers with a specified normal or Gaussian probability
density function. The suggested algorithm is very simple but highly accurate,
with an efficiency that falls between those of the Box-Muller and von Neu-
mann rejection methods.

Keywords
Random Numbers, Central Limit Theorem, Normal Distribution,
Gaussian Distribution

1. Introduction

Random numbers are extremely important in all areas of computational science.
As a result, any programming compiler comes with some sort of pseudo-random
number generator that normally generates random numbers that are uniformly
distributed in the interval [)0,1 . However, in many situations, one requires ran-
dom numbers that have nonuniform distribution.

Let us suppose that we want to generate random numbers that are distributed
according to the probability density function ()p x . This can be systematically
achieved by first finding the cumulative probability distribution function ()P x
according to [1] [2],

() ()dx
P x p u u

−∞
= ∫ (1)

and then solving the equation

()P x r= (2)

for x in terms of r, where r is a uniform random number in the unit interval
0 1r≤ < . The random numbers x that are generated by this so-called inverse

How to cite this paper: Mohazzabi, P. and
Connolly, M.J. (2019) An Algorithm for
Generating Random Numbers with Normal
Distribution. Journal of Applied Mathemat-
ics and Physics, 7, 2712-2722.
https://doi.org/10.4236/jamp.2019.711185

Received: October 6, 2019
Accepted: November 5, 2019
Published: November 8, 2019

Copyright © 2019 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

https://www.scirp.org/journal/jamp
https://doi.org/10.4236/jamp.2019.711185
https://www.scirp.org/
https://doi.org/10.4236/jamp.2019.711185
http://creativecommons.org/licenses/by/4.0/

P. Mohazzabi, M. J. Connolly

DOI: 10.4236/jamp.2019.711185 2713 Journal of Applied Mathematics and Physics

transform method are distributed according to the probability density function
()p x .
For example, consider the exponential probability density function,

()
1 e if 0

0 if 0

x x
p x

x

λ

λ
− ≥= 

 <

 (3)

where λ is a constant. We have

()
0

1 e d 1 e
x x xP x xλ λ

λ
− −= = −∫ (4)

Then solving

1 e x rλ−− = (5)

we get

()ln 1x rλ= − − (6)

Thus, if r is a uniformly distributed random number in the unit interval
0 1r≤ < , then x is a random number distributed according to the exponential
density function (3).

In principle, the inverse transform method generates random numbers with
any probability density function. However, the method relies on two conditions.
First, the integral in Equation (1) should be evaluated analytically and, second,
one should be able to solve Equation (2) explicitly for x in terms of r. But these
are not always possible. For example, the Gaussian or normal probability density
function,

() ()2 22

2

1 e
2

xp x µ σ

σ
− −=

π
 (7)

is a function for which the integral in Equation (1) cannot be evaluated analyti-
cally. However, based on the Gaussian density function, one can generate a two-
dimensional probability density, and then transform it into plane polar coor-
dinates. After some simple algebraic manipulations, one obtains the random
numbers

() ()1 2 1 22 cos and 2 sinx yρ θ ρ θ= = (8)

each of which is distributed according to the Gaussian probability density (7) [1].
Here ρ is a random number generated according to the exponential distribu-
tion (3) and θ is uniformly distributed in the interval 0 2θ≤ < π . This algo-
rithm is known as the Box-Muller method.

A second method for generating random numbers with non-uniform proba-
bility density function if the inverse transform of ()p x fails is the von Neumann
rejection method (also called acceptance-rejection method). This algorithm uses
a so called comparison function ()c x such that () ()c x p x≥ over the entire
interval of the definition of ()p x [3] [4] [5]. Clearly, the simplest compari-
son function in most cases is a constant as shown in Figure 1. Then, a pair of
random numbers (),x y is generated such that a x b≤ < and 0 y c≤ < . This

https://doi.org/10.4236/jamp.2019.711185

P. Mohazzabi, M. J. Connolly

DOI: 10.4236/jamp.2019.711185 2714 Journal of Applied Mathematics and Physics

Figure 1. Probability density function ()p x and a

constant comparison function ()c x for generating

random numbers by acceptance-rejection method.

defines a point within the rectangle shown in Figure 1. If ()y p x< , this point
is below the curve ()p x and the random number x is accepted, otherwise, it is
rejected. The process is then repeated. The random numbers x thus generated
have the probability density function ()p x . Clearly the rejection method works
for any arbitrary probability density function.

Because the normal or Gaussian probability distribution is the most encoun-
tered distribution in nature, in this work we suggest yet another algorithm for
generating random numbers with normal probability density function that is
based on the central limit theorem.

The organization of the contents of this article is as follows: In Section 2, we
develop the theoretical foundation for the investigation. In Section 3, we discuss
random numbers with normal distribution, and suggest a new algorithm for
their generation followed by computer simulation results. In Section 4, we com-
pare the suggested algorithm with other algorithms in terms of accuracy and
speed. Finally, in Section 5, we present a summary of the current investigation
followed by concluding remarks.

2. Theory

Consider a random number x that is distributed according to the normalized
probability density function ()p x . The expected value or the mean value of x
and x2 are given by [6]

()dx xp x x= ∫D (9)

and

()2 2 dx x p x x= ∫D (10)

where D is the domain of ()p x . Then, the variance of the distribution is
given by

22 2
x x xσ = − (11)

Now let us pick n of these random numbers and find their average

1
1

1 n

i
i

y x
n =

= ∑ (12)

https://doi.org/10.4236/jamp.2019.711185

P. Mohazzabi, M. J. Connolly

DOI: 10.4236/jamp.2019.711185 2715 Journal of Applied Mathematics and Physics

Then, repeat this process a large number of times with the same number n to
generate 1 2 3, , ,y y y  . The question is, are the new random numbers y as ran-
dom as the numbers x? In other words, is the probability density function for y
the same as ()p x ? The answer is no. The new random numbers y are not as
random as the numbers x. For example, consider a random number x that is un-
iformly distributed in the interval 0 1x≤ < . Figure 2(a) shows the graph of
1000 of these random numbers. We then generate 1000 pairs of these numbers
and plot the average of them, which is shown in Figure 2(b). As can be seen
from these figures, although both systems have a mean of 0.5, the random num-
bers generated by the average of pairs of the uniformly distributed numbers are
generally closer to their mean than the former ones, and hence they have a dif-
ferent probability distribution function.

Let , , ,x y z  be several uncorrelated random variables with corresponding
probability density functions () () (), , ,f x g y h z  . Let the variances of these

random variables be 2 2 2, , ,x y zσ σ σ  , respectively. Then according to the Bienaymé
formula [7],

2 2 2 2
x y z x y zσ σ σ σ+ + + = + + +



 (13)

where 2
x y zσ + + + is the variance of the random numbers generated by the sum of

the random variables , , ,x y z  . From this equation, we find the variance of the
average ()x y z n+ + + ,

()
2 2 2 2= x n y n z nx y z nσ σ σ σ+ + + + + +



 (14)

where n is the number of random variables to be averaged. But according to Eq-
uation (11), we have

()
2 2 2

22 2
2 2

1 x
x n

x x x x
n n n n

σ
σ  = − = − = 

 
 (15)

with similar results for 2 2, ,y n z nσ σ  . Therefore, Equation (14) reduces to

() ()2 2 2 2
2

1
x y zx y z n n

σ σ σ σ+ + + = + + +


 (16)

(a) (b)

Figure 2. (a) Uniformly distributed random numbers in the interval [)0,1 . (b) Average of

two uniformly distributed random numbers in the same interval.

https://doi.org/10.4236/jamp.2019.711185

P. Mohazzabi, M. J. Connolly

DOI: 10.4236/jamp.2019.711185 2716 Journal of Applied Mathematics and Physics

Finally, if all the random variables have the same distribution, we get
2 2 2 2 2 2 2
x y z nσ σ σ σ σ σ σ+ + + = + + + =  (17)

And, if for the sake of simplicity we denote ()
2
x y z nσ + + + by 2

nσ , Equation (14)

reduces to

n n
σσ = (18)

Furthermore, it can also be shown that the mean of these random numbers is the
same as the mean of the original random numbers, i.e.,

nx x= (19)

As an example, the normalized probability density function for a random
number that is uniformly distributed over the interval [)0,1 is () 1p x = . Then,

1
2

x = (20)

and

2 1
3

x = (21)

Therefore,

21 1 1
3 2 2 3

σ  = − = 
 

 (22)

Therefore,

2
1

2 2 6
σσ = = (23)

This explains why the random numbers in Figure 2(b) are less random than
those in Figure 2(a). Likewise, if we average n of the uniformly distributed ran-
dom numbers in the interval [)0,1 to obtain new random numbers, we obtain

1 1and
2 2 3n nx

n
σ= = (24)

According to the central limit theorem, the random numbers thus obtained
tend toward normal or Gaussian distribution as n →∞ [8] [9] [10] [11]. In
fact, according to this theorem, the shape of the initial distribution of the ran-
dom numbers is immaterial and the distribution of the mean approximates a
normal distribution if the sample size is sufficiently large, with a mean and
standard deviation given by Equations (18) and (19) [12]. It is also worth noting
that as n →∞ , 0nσ → , the resulting normal distribution approaches the Di-
rac delta function [13] [14] [15].

3. Random Numbers with Specific Normal Distribution

Most common computer programming languages come with some sort of built-
in pseudo-random number generator that generates numbers in some interval

https://doi.org/10.4236/jamp.2019.711185

P. Mohazzabi, M. J. Connolly

DOI: 10.4236/jamp.2019.711185 2717 Journal of Applied Mathematics and Physics

[16] [17]. However, most generators use the linear congruential or power resi-
due method and generate pseudo-random numbers in the interval [)0,1 , which
is perhaps the most convenient interval in many applications [18] [19] [20].

Figures 3-5 show the results of computer simulations for progression to-
ward a normal or Gaussian distribution for 2n = , 3n = , and 20n = starting
with a uniform initial distribution in the interval [)0,1 . In each case 106 random

numbers are generated. The corresponding probability density function for a
normal distribution with mean and standard deviation given by Equations (24)
is also shown for comparison in each case. As can be seen from Figure 5, the
agreement between the sample mean of 20 random numbers with Gaussian dis-
tribution is nearly perfect. Therefore, excellent Gaussian approximations can be
achieved with fairly small samples.

In Figure 5, the mean and standard deviation of ()p x for the sample means
and the Gaussian distribution are both 1 2µ = and 1 240σ = , respectively.
This is due to the fact that the mean and the standard deviation in this case are
given by Equations (24). Furthermore, because n is an integer, the standard dev-
iation is quantized, with values given by

1 , 1, 2,3,
2 3n n

n
σ = =  (25)

But this is certainly a limitation because we may need to generate random num-
bers that have Gaussian distribution with an arbitrary mean µ and standard
deviation σ that are not necessarily one of these quantities.

Let us suppose that we need to generate random numbers with Gaussian dis-
tribution given by Equation (7), with arbitrary values of the mean µ and stan-
dard deviation σ . We start by generating uniform random numbers in the interval
[)0,1 , and take the average of n of these numbers, say 20 of them, to generate
new random numbers with Gaussian distribution as in Figure 5. The random
numbers thus generated have a mean 1/2 and a standard deviation 1 2 3n .

To adjust the generated random numbers to match the specified Gaussian
distribution, we have to change two things; the mean µ and the standard dev-
iation σ . The standard deviation needs to be adjusted first. To do so, we divide
each random number by 1 2 3n and multiply by the required σ . Thus, we
multiply each of the random numbers by a factor α , where

2 3
1 2 3

n
n

σα σ= = (26)

This changes the standard deviation to the required value. But this also changes
the mean from 1/2 to

1 3
2

nµ α σ = = 
 

 (27)

We now have to shift the mean to the required value µ . This is done by
shifting each of the new random numbers by xδ , given by

3x nδ σ µ= − + (28)

https://doi.org/10.4236/jamp.2019.711185

P. Mohazzabi, M. J. Connolly

DOI: 10.4236/jamp.2019.711185 2718 Journal of Applied Mathematics and Physics

Figure 3. Probability density generated by averaging two
random numbers from a uniform distribution in the
interval [)0,1 (the bullets). The solid curve is the Gaussian

function with the same mean and standard deviation
calculated from Equation (24).

Figure 4. Same legends as in Figure 3 but
with averaging three random numbers.

Figure 5. Same legends as in Figure 3 but
with averaging twenty random numbers.

The random numbers thus generated have the required normal or Gaussian dis-
tribution.

Combining the above transformations, if x is the average of n uniformly dis-
tributed random numbers in the interval [)0,1 , then x′ obtained through the
transformation

()3 2 1x n xσ µ′ = − + (29)

is distributed according to the normalized Gaussian distribution

https://doi.org/10.4236/jamp.2019.711185

P. Mohazzabi, M. J. Connolly

DOI: 10.4236/jamp.2019.711185 2719 Journal of Applied Mathematics and Physics

() ()2 22

2

1 e
2

xp x µ σ

σ
′− −′ =

π
 (30)

As an example, suppose we want to generate random numbers having a nor-
mal probability distribution with 2µ = − and 1.0σ = , i.e.,

() ()22 21 e
2

xp x − +=
π

 (31)

To do so, we generate random numbers x so that each is the average of 20 un-
iformly distributed random numbers in the interval [)0,1 . We then transform
these into new random numbers x′ according to Equation (29), which reduces
to

()2 15 2 1 1x x ′ = − −  (32)

These calculations can be performed using any computer programming lan-
guage, such as Python. The random numbers x′ thus generated have the re-
quired probability distribution, as shown in Figure 6.

4. Comparison with Other Algorithms

As stated earlier, throughout the computer simulations 106 random numbers were
generated. These numbers were then placed in bins, each of width 0.01dx = . The
bin contents were then normalized and plotted in the figures described above.

In order to compare the suggested algorithm with the Box-Muller and the von
Neumann rejection methods, we investigated two measures; accuracy and effi-
ciency. For accuracy, we considered the root-mean-square deviation between the
bin contents and the values of the corresponding normal distribution for each
algorithm. In doing so, we compared the probability density functions in differ-
ent intervals about the mean of the distribution, namely, 0.5µ σ± , µ σ± ,

2µ σ± , 3µ σ± , 4µ σ± , and 5µ σ± . We have considered several intervals
because the fluctuation of the bin contents is normally higher near the peak of
the distribution. The results are shown in Table 1 for 0µ = , which clearly shows
the accuracy of the three algorithms is nearly identical in all cases.

Figure 6. Probability density function for a Gaussian dis-
tribution with 2µ = − and 1σ = generated by the algo-
rithm described in this article. The solid curve is the corres-
ponding Gaussian function given by Equation (31).

https://doi.org/10.4236/jamp.2019.711185

P. Mohazzabi, M. J. Connolly

DOI: 10.4236/jamp.2019.711185 2720 Journal of Applied Mathematics and Physics

Table 1. Root-mean-square deviation between the bin contents and the values of the
corresponding normal distribution for the suggested algorithm, the Box-Muller, and the
von Neumann rejection algorithms.

 Root-Mean-Square Deviation

3-6 Test Interval This Work Box-Muller von Neumann

()1 2µ σ± 16.09 10−× 16.09 10−× 16.09 10−×

µ σ± 11.58 10−× 11.59 10−× 11.59 10−×

2µ σ± 21.30 10−× 21.35 10−× 21.35 10−×

3µ σ± 34.20 10−× 34.08 10−× 34.15 10−×

4µ σ± 34.20 10−× 33.56 10−× 33.53 10−×

5µ σ± 33.26 10−× 33.13 10−× 33.11 10−×

As a measure of efficiency, we compared the central processing unit (CPU)

times of the computer during the execution of the program using each algorithm.
The results consistently showed that our algorithm is slower than the Box-Muller
method by about a factor of two, but faster that the von Neumann rejection me-
thod by about a factor of four.

5. Summary and Conclusions

Since random numbers are extensively used in various fields, such as computa-
tional physics and other science, we have reviewed them in this work. But spe-
cifically we have focused on machine generated pseudo-random numbers that
are in most cases uniformly distributed over the interval [)0,1 .

However, in many situations non-uniform random numbers, often with nor-
mal or Gaussian distribution, are needed. These random numbers are generated
by two common methods, namely, the Box-Muller and the von Neumann rejec-
tion methods, which we have briefly reviewed in this article.

We have then suggested a third, yet very simple and efficient, algorithm for
generating random numbers with a specified normal or Gaussian distribution.
The suggested algorithm relies on a modified central limit theorem, and uses the
average of uniformly distributed random numbers in the interval [)0,1 . The

algorithm generates random numbers with the required normal probability
distribution function very accurately using a small number of uniform random
numbers in the averaging process.

In comparison with other methods, the suggested algorithm is as accurate as
the Box-Muller and the von Neumann rejection algorithms. In terms of the effi-
ciency or the speed with which the random numbers are generated, however,
our algorithm is slower than the Box-Muller method by about a factor of two,
but faster than the von Neumann rejection method by about a factor of four.

Considering the accuracy, simplicity, and the efficiency of the suggested algo-
rithm, it can justifiably compete with the existing methods.

At this time, the authors intend no future work based on the current study.

https://doi.org/10.4236/jamp.2019.711185

P. Mohazzabi, M. J. Connolly

DOI: 10.4236/jamp.2019.711185 2721 Journal of Applied Mathematics and Physics

Acknowledgements

This work was supported by a URAP grant from the University of Wisconsin-
Parkside.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this pa-
per.

References
[1] Gould, H. and Tobochnik, J. (1996) An Introduction to Computer Simulation Me-

thods. 2nd Edition, Addison-Wesley, New York, 358-361.

[2] Landau, R.H. and Páez, M.J. (1997) Computational Physics. John Wiley and Sons,
New York, 104-105.

[3] Gould, H. andTobochnik, J. (1996) An Introduction to Computer Simulation Me-
thods. 2nd Edition, Addison-Wesley, New York, 371-372.

[4] Giordano, N.J. (1997) Computational Physics. Prentice Hall, Upper Saddle River,
NJ, 161-163.

[5] Allen, M.P. and Tildesley, D.J. (1987) Computer Simulation of Liquids. Clarendon
Press, Oxford, Great Britain, 349-351.

[6] Grinstead, C.M. and Snell, J.L. (1997) Introduction to Probability. 2nd Revised Edi-
tion, American Mathematical Society, Providence, RI, 269-270.

[7] Wikipedia (2019) Variance. https://en.wikipedia.org/wiki/Variance

[8] Pitman, J. (1993) Probability. Springer-Verlag, New York, 196.
https://doi.org/10.1007/978-1-4612-4374-8

[9] Wani, J.K. (1971) Probability and Statistical Inference. Appleton Century Crofts,
Meredith Corporation, New York, 154-156.

[10] Wallace, P.R. (1984) Mathematical Analysis of Physical Problems. Dover Publica-
tions, Inc., New York, 431.

[11] Burington, R.S. and May Jr., D.C. (1970) Handbook of Probability and Statistics
with Tables. 2nd Edition, McGraw-Hill, New York, 190.

[12] Witte, R.S. and Witte, J.S. (2007) Statistics. 8th Edition, John Wiley & Sons, Hobo-
ken, NJ, 199-204.

[13] Wikipedia (2019) Dirac Delta Function.
https://en.wikipedia.org/wiki/Dirac_delta_function

[14] Byron Jr., F.W. and Fuller, R.W. (1970) Mathematics of Classical and Quantum
Physics. Dover Publications, New York, 447-448.

[15] Liboff, R.L. (2003) Introductory Quantum Mechanics. 4th Edition, Addison Wesley,
New York, 74-75.

[16] Press, W.H., Flannery, B.P., Teukolsky, S.A. and Vetterling, W.T. (1986) Numerical
Recipes. Cambridge University Press, New York.

[17] Haile, J.M. (1997) Molecular Dynamics Simulation. John Wiley & Sons, New York,
376-377.

[18] Gould, H. and Tobochnik, J. (1996) An Introduction to Computer Simulation Me-
thods. 2nd edition, Addison-Wesley, New York, 401-403.

https://doi.org/10.4236/jamp.2019.711185
https://en.wikipedia.org/wiki/Variance
https://doi.org/10.1007/978-1-4612-4374-8
https://en.wikipedia.org/wiki/Dirac_delta_function

P. Mohazzabi, M. J. Connolly

DOI: 10.4236/jamp.2019.711185 2722 Journal of Applied Mathematics and Physics

[19] Landau, R.H. and Páez, M.J. (1997) Computational Physics. John Wiley and Sons,
New York, 84-86.

[20] Harrison, P. (2001) Computational Methods in Physics, Chemistry and Biology.
John Wiley & Sons, New York, 116-117.

https://doi.org/10.4236/jamp.2019.711185

	An Algorithm for Generating Random Numbers with Normal Distribution
	Abstract
	Keywords
	1. Introduction
	2. Theory
	3. Random Numbers with Specific Normal Distribution
	4. Comparison with Other Algorithms
	5. Summary and Conclusions
	Acknowledgements
	Conflicts of Interest
	References

