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Abstract 
The mixed solutions of the derivative nonlinear Schrödinger equation from 
the trivial seed (zero solution) are derived by using the determinant repre-
sentation. By adjusting the interaction and degeneracy of mixed solutions, it 
is possible to obtain different types of solutions: phase solutions, breather so-
lutions, phase-breather solutions and rogue waves. 
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1. Introduction 

The Derivative Nonlinear Schrödinger(DNLS) equation  

( )2 0,t xx x
iq q i q q∗− + =                       (1) 

plays an important role in plasma physics and nonlinear optics. Firstly, the 
DNLS equation is used to describe the evolution of small but finite amplitude 
Alfvén waves that propagate quasi-parallel to the magnetic field [1] [2] and 
large-amplitude magnetohydrodynamic waves in plasmas [3] [4]. Secondly, the 
DNLS equation governs the propagation of sub-picosecond or femtosecond 
pulses in single-mode optical fibers [5] [6] [7]. Here “*” denotes the complex 
conjugation, and subscript of x (or t) denotes the partial derivative with respect 
to x (or t). 

For the DNLS equation with vanishing boundary condition, Kaup and Newell 
[8] firstly obtained the one-soliton solutions of the DNLS equation by the in-
verse scattering transform, and showed that this solution becomes the algebraic 
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soliton in a certain limiting condition. Determinant expression of the N-soliton 
solution [9] for the DNLS equation can be expressed by Darboux transformation. 
Under non-vanishing boundary conditions, Kawata and Inoue [10] developed 
an inverse scattering transform of the DNLS equation and introduced the 
so-called “paired soliton”, which is now regarded as the breather solution. With 
the help of introducing an affine parameter, Chen and Lam [11] revised the in-
verse scattering transform and then got the single breather solution, which can 
become the dark soliton and the bright soliton. The rogue waves [12] [13] [14] 
[15] can be derived from the degeneration of breather solutions by the Darboux 
transformation [16] [17], which is a very powerful method in integrable nonli-
near systems [18] [19] [20] [21]. 

Rogue waves have recently been studied in a plethora of physical settings, such 
as deep ocean waves [26], optical fibers [22] [23], and water tanks [24] [25]. The 
physical mechanisms of rogue wave’s generation in many physical systems have 
been the subject of many research studies [27] [28] [29] [30] [31]. Rogue wave, 
“appear from nowhere and disappear without a trace” [33], is credited with the 
Peregrine soliton [32] of the nonlinear Schrödinger (NLS) equation. The Pere-
grine soliton, which possesses a high amplitude and two hollows, is usually ex-
pressed in terms of a simple rational algebraic formula. By the limitation of the 
infinitely large period of the Kuznetsov-Ma breather [34] [35] and the Akhme-
diev breather [36] of the NLS equation, the rogue waves can be generated. 

The large amplitude waves can be generated from the instability of small am-
plitude perturbations that are usually chaotic and may contain many frequencies 
in their spectra. This fact strongly suggests that rogue waves are generally de-
scribed by adjusting the relative phases of the multiphase solutions and breather 
solutions of the corresponding nonlinear evolution equations [37] [38] [39]. 

The aim of this paper is to study the mixed solutions of the DNLS equation 
and their degeneration mechanism, which implies the obtaining of rogue waves 
by the synchronization of the mixed solutions: phase solutions and breather so-
lutions. Further, a superposition of mixed solutions may create a hybrid solution, 
such as a breather solution with periodic conditions, by means of different 
choices of the phases in the corresponding analytical formulas. 

The structure of this paper is as follows. In Section 2, we provide analytically 
the determinant representation of the mixed solutions. In Section 3, the mixed 
solutions and their key properties such as the interaction and the degeneration 
mechanism are discussed. In the limitation i cλ λ→ , rogue waves, and breather 
solution with periodic conditions, are generated from the degeneration tech-
nique of the mixed solutions: the phase solutions and breather solutions. Finally, 
we summarize our main results in Section 4.  

2. Mixed Solutions  

The DNLS equation [8] can be given by the integrability condition  
[ ], 0t xU V U V− + =  of the following Kaup-Newell spectral system (Lax pair) 

with the reduction condition r q∗= − . The Lax pairs can be constructed as 
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follows:  

( )2 ,x J Q Uψ λ λ ψ ψ∂ = + =                    (2) 

( )4 3 2
3 2 12 ,t J V V V Vψ λ λ λ λ ψ ψ∂ = + + + =              (3) 

with  

0 0
, , ,

0 0
i q

J Q
i r

φ
ψ

ϕ
     

= = =     −     
              (4) 

2

3 2 1 2

0
2 , , .

0
x

x

iq q r
V Q V Jqr V

ir r q
 − +

= = =  
+ 

          (5) 

here λ , an arbitrary complex number, is called the eigenvalue (or the spectral 
parameter), and ψ  is called the eigenfunction associated with the eigenvalue 
λ  of the Kaup-Newell system. 

The general forms of the the mixed solutions [15] are given by using the Dar-
boux transformation and determinant representation of the DNLS equation,  

[ ]2 1 11 12
2

11

2 , 1, 2, ,kq i k+
∗

Ω Ω
= =

Ω
                    (6) 
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( ) ( )2 4 2 4
1 1 1exp 2 , exp 2 , ,k k k ki x t i x t ihφ λ λ ϕ λ λ λ   = + = − + =     

( ) ( )2 4 2 4
2 2 2 2 2 2 2exp 2 , exp 2 , ,k k k k k k k ki x t i x t il sφ λ λ ϕ λ λ λ   = + = − + = +     
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k k k k k k
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i x t i x t

il s s R iR

φ λ λ ϕ λ λ

λ
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+
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= − ∈ 

 

Notice that the denominators 11Ω  are moduli of two non-zero complex func-
tions from Darboux transformation, so the new solution [ ]2 1kq +  is non-sin- 
gular.  

3. The Interaction and Degeneracy of Mixed Solutions  

The interaction and degeneration of mixed solutions of the DNLS equation can 
be illustrate by the Equation (6). We mainly consider the function of the para-
meters ks  and h on the generation of the large amplitude waves and rogue 
waves. For convenience without losing generality, we only consider 1k = . The  

density plot of the 2-phase solution [ ]3q  with the fixed parameters 1
3

l =  and 
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1
3

h =  and the variable parameter 1s  ( 1
1
5

s i= , 1
1

10
s i= , and 1 0s → ) is  

shown in Figure 1. Since the variable parameter 1s  is a purely imaginary, the 
phase solutions are given by Equation (6). It can give that the rogue waves can 
constructed by adjusting the the variable parameter 1s , i.e. 1 0s → . Given that 
the variable parameter 1s  is a real number, the density plot of the 1-breather  

solution [ ]3q  with the fixed parameters 1
3

l =  and 1
3

h =  and the variable pa-

rameter 1s  ( 1
1
5

s = , 1
1

10
s = , and 1 0s → ) is shown in Figure 2. Note that the  

degeneration procedure of the 2-phase solutions and 1-breather solution is con-
structed by performing the limitation 1 0s →  and h l= , i.e.  

( )1,2,3k ck ilλ λ= → = . In this limitation, we obtain the same rational solution  

[ ] ( ) ( )( )
( )

4 2 2
3 2 2

24 2

64 8 8 3
2 exp 2 2 ,

64 8
r

Hi i l t l x H il x
q il il x tl

Hi i l t l x

+ + − + −
 = − − +  + − +

 

( )24 216 4 .H l t l x= −                        (7) 

By letting ,x t→∞ →∞ , so [ ] 23 24rq l→ , the maximum amplitude of [ ] 23
rq  

occurs at ( 0, 0x t= = ) and is equal to 236l , and the minimum amplitude of 

[ ] 23
rq  occurs at ( 4

30,
16

x t
l

= = ± ) and is equal to 0. Obviously, this rational so-

lution is a rogue wave; see the panel (c) in Figure 1 and Figure 2. 
In order to have a better understanding of the degeneration procedure of the 

mixed solutions, a hybrid solution,  

[ ] ( )( ) ( )( )((
( )( ) ( )( )

( )( ) ( )( )
( )( ) )) ( )( )(

3 2 2 2 4 2 2 6
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= − − − − − −

− − − + − −

+ − − + − −

− − − + −
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        (8) 

is considered as a phase-breather solution shown in Figure 3.  
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(a)                                    (b)                                     (c)  

Figure 1. (Color online) The evolution of profiles for the 2-phase solution [ ] 23q  with the parameters 1
3

l =  and 1
3

h = . 

 (a) 1
1
5

s i= , (b) 1
1

10
s i= , (c) 1 0s → .  

 

 
(a)                                     (b)                                      (c)  

Figure 2. (Color online) The evolution of profiles for the 1-breather solution [ ] 23q  with the parameters 1
3

l =  and 1
3

h = .  

(a) 1
1
5

s = , (b) 1
1

10
s = , (c) 1 0s → .  

 

 

Figure 3. (Color online) The evolution of profiles for the 1-phase-breather solution [ ] 23q  with the parameters 1
3

l = , 1
2

h = , 

1 0s → .  
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The solution is constructed by letting 1 0s → , i.e. 2 3, cλ λ λ→ , where 

c ilλ = , 1 ihλ = , 1
3

l =  and 1
2

h = . Thus by adjusting the relative phases of the  

mixed solutions in the interacting area, namely, taking the limitation h l→ , i.e. 

1 cλ λ→ , it can obtain the same rogue wave solution (see in Equation (7)).  

4. Summary  

In this paper, we have shown that rogue waves and some hybrid solutions can be 
obtained by the synchronization of the mixed solutions: phase solutions and 
breather solutions. The rogue wave is generated by adjusting the parameters ks  
and h, the limitation i cλ λ→ , where c ilλ = , l  being an arbitrary real num-
ber. The results provide new insights into the generation of the large amplitude 
waves and rogue waves, and thus are useful in the application or prevention of 
the large amplitude waves and rogue waves in the propagation of sub-picosecond 
or femtosecond pulses. Next we will consider the application of these results to 
physical theory and experiments and its relation with the initial boundary value 
problem is also considered.  
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