
Journal of Applied Mathematics and Physics, 2019, 7, 2537-2554
https://www.scirp.org/journal/jamp

ISSN Online: 2327-4379
ISSN Print: 2327-4352

DOI: 10.4236/jamp.2019.710173 Oct. 31, 2019 2537 Journal of Applied Mathematics and Physics

Feature Selection with Non Linear PCA: A
Neural Network Approach

Crescenzio Gallo, Vito Capozzi

Department of Clinical and Experimental Medicine, Foggia, Italy

Abstract
Machine learning consists in the creation and development of algorithms that
allow a machine to learn itself, gradually improving its behavior over time.
This learning is more effective, the more representative is the features of the
dataset used to describe the problem. An important objective is therefore the
correct selection (and, possibly, reduction of the number) of the most rele-
vant features, which is typically carried out through dimensional reduction
tools such as Principal Component Analysis (PCA), which is not linear in the
more general case. In this work, an approach to the calculation of the reduced
space of the PCA is proposed through the definition and implementation of
appropriate models of artificial neural network, which allows to obtain an
accurate and at the same time flexible reduction of the dimensionality of the
problem.

Keywords
Feature Selection, Machine Learning, Principal Component Analysis,
Artificial Neural Network

1. Introduction

The term machine learning [1] refers to one of the fundamental areas of artificial
intelligence, centred on the development of systems and algorithms capable of
synthesizing a series of subsequent observations. Starting from more or less wide
sets of data, the machine—using the themes and algorithms developed—becomes
able to automatically recognize complex models and take “decisions”.

Today machine learning technologies [2] are easily accessible (see e.g.
Google’s TensorFlow [3] or Microsoft’s Cognitive Services [4] [5]) for high-level
processing with an emphasis on data semantics. These platforms are proposed as
“open’’ tools, accessible by any developer who wants to use artificial intelligence

How to cite this paper: Gallo, C. and
Capozzi, V. (2019) Feature Selection with
Non Linear PCA: A Neural Network Ap-
proach. Journal of Applied Mathematics
and Physics, 7, 2537-2554.
https://doi.org/10.4236/jamp.2019.710173

Received: September 16, 2019
Accepted: October 28, 2019
Published: October 31, 2019

Copyright © 2019 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

https://www.scirp.org/journal/jamp
https://doi.org/10.4236/jamp.2019.710173
https://www.scirp.org/
https://doi.org/10.4236/jamp.2019.710173
http://creativecommons.org/licenses/by/4.0/

C. Gallo, V. Capozzi

DOI: 10.4236/jamp.2019.710173 2538 Journal of Applied Mathematics and Physics

to perform complex elaborations and analyze large databases from a machine
learning perspective.

When it comes to machine learning, you don’t necessarily have to think about
robotics, driving independently or the games DeepMind won [6]: these auto-
matic learning systems can also be used to combat spam (by better recognising
unsolicited e-mails), to detect intrusion attempts into a computer network, to
improve optical character recognition (OCR) skills, and for artificial vision.
Search engines themselves make extensive use of them to offer users even more
relevant results by analyzing the meaning (semantics) of the query.

The effective use of machine learning techniques depends strongly on the
correct modelling of the problem by the researcher, who must be able to capture
the fundamental characteristics that allow an effective implementation of the
predictive model. If the selected features are excessive with respect to the availa-
ble cases, the “power’’ [7] of the corresponding statistical model is compromised,
being typically necessary a number of cases in exponential ratio with respect to
the number of features of the model.

Therefore, it is of fundamental importance to reduce the number of features,
obviously without losing the model’s informative capacity too much. This reduc-
tion is usually made through the use of mathematical techniques to reduce the
size of the problem such as the Principal Component Analysis (PCA) [8] or the
Multi Dimensional Scaling (MDS) [9], which transform the initial data space
into a new space with a reduced number of components (the so-called principal
Components) on which the original variables are projected.

In this paper an approach to feature reduction by non-linear PCA is presented,
this being the most general case. In our approach, the determination of the re-
duced space of components is done by setting up appropriate artificial neural
network models, of hierarchical or symmetrical type, so as to arrive at the calcu-
lation of the main components through the progressive self-learning typical of a
neural network.

In the following sections, the general principles of artificial neural networks
and PCA are briefly discussed; then the method of calculating PCA through ap-
propriate neural network models is presented, and the results are discussed, as
well as the conclusions and future directions of research.

2. Artificial Neural Networks for Supervised Learning

Learning by example plays a fundamental role in the process of understanding
by humans (in newborns for example, learning is done by imitation, rehearsal
and error): the learner learns on the basis of specific cases, not general theories.
In essence, learning from examples is a process of reasoning that leads to the
identification of general rules based on observations of specific cases (inductive
inference).

There are two typical characteristics of the process of learning from examples:
first, the knowledge learnt is more compact than the equivalent form with expli-

https://doi.org/10.4236/jamp.2019.710173

C. Gallo, V. Capozzi

DOI: 10.4236/jamp.2019.710173 2539 Journal of Applied Mathematics and Physics

cit examples, therefore requires less memory capacity; second, the knowledge
learnt contains more information than the examples observed (being a generali-
zation is applicable also to cases never observed). In inductive inference, howev-
er, starting from a set of true or false facts, we arrive at the formulation of a gen-
eral rule that is not necessarily always correct: in fact, only one false assertion is
sufficient to exclude a rule. An inductive system therefore offers the possibility
of automatically generating knowledge that can be false. The frequency of errors
depends strongly on how the set of examples on which the system is to be
learned was chosen and how representative this is of the universe of possible
cases.

Artificial neural networks (ANNs) [10] [11] are, among the tools capable of
learning from examples, those with the greatest capacity for generalization, be-
cause they can easily manage situations not foreseen during the learning phase.
These are computational models that are directly inspired by brain function and
are at an advanced stage of research. An artificial neural network can be thought
of as a machine designed to replicate the principles with which the neurons of
the human brain work. In the field of automatic learning, a neural network is a
mathematical-informational model called upon to solve engineering problems in
different fields of application. This allows the creation of an adaptive system that
changes its structure based on the flow of external or internal information that
flows through the network during the learning phase.

Neural networks are non-linear structures that can be used to simulate com-
plex relationships between inputs and outputs that other analytical functions
cannot represent. The external signals are processed and processed by a set of
input notes, in turn connected with multiple internal nodes (organized into le-
vels): each node processes the signals received and transmits the result to the
following nodes. Since neural networks are trained using data, connections be-
tween neurons are strengthened and output gradually forms patterns, which are
well-defined patterns that can be used by the machine to make decisions.

Largely abandoned during the winter of artificial intelligence, neural networks
are now at the centre of most projects focused on artificial intelligence and ma-
chine learning in particular [2]. They consist of a layer of input neurons (ele-
mentary computational units), a layer of output neurons and possibly one or
more intermediate layers called hidden (see Figure 1). Interconnections range
from one layer to the next and the signal values can be both discrete and conti-
nuous. The weight values associated with the input of each node can be static or
dynamic in such a way as to plastically adapt the behaviour of the network ac-
cording to the variations of the input signals.

The functioning of a neural network can be schematically outlined in two
phases: the “training’’ (learning) phase and the “testing’’ (recognition) phase. In
the learning phase the network is instructed on a sample of data taken from the
set of data that will then be processed; in the testing phase, which is then the
normal operating phase, the network is used to process the input data based on
the configuration reached in the previous phase.

https://doi.org/10.4236/jamp.2019.710173

C. Gallo, V. Capozzi

DOI: 10.4236/jamp.2019.710173 2540 Journal of Applied Mathematics and Physics

Figure 1. An example of artificial neural network.

As for the realizations, even if the networks have an autonomous structure,

generally computer simulations are used in order to allow even substantial mod-
ifications in a short time and with limited costs. However, the first neural chips
[12] are being created that have a performance considerably higher than that of a
simulation but that has so far had very little diffusion due mainly to high costs
and extreme structural rigidity.

3. Application of Neural Networks for Pattern Classification

Pattern recognition is currently the area of greatest use of neural networks. It
consists in the classification of objects of the most varied nature in classes de-
fined a priori or automatically created by the application based on the similari-
ties between the objects in input (in this case we speak of clustering).

To perform classification tasks through a computer, real objects must be
represented in numerical form and this is done by performing, in an appropriate
way, a modeling of reality that associates each object with a pattern (vector of
numerical attributes) that identifies it. This first phase is called feature extraction
[13], so you can think of reducing them in order to speed up the classification
process. This can be done manually or with automatic techniques such as Multi
Dimensional Scaling [9] or Principal Component Analysis [8] (see next Section),
resulting in a pattern shift to a new space with features that can be classified
more simply. After this further phase—which is called preprocessing—we finally
move on to the construction of the classifier, which can be seen as a black box
capable of associating each input pattern to a specific class.

Suppose, more formally, that you need to classify a pattern ()1, , np p p= 
in a class belonging to the set { }1, , kC c c=  . Against the p input pattern, the
classifier will output the binary vector ()1, , kz z z=  where 1iz = if the pat-
tern belongs to the class ic , otherwise 0.

Neural networks can be effectively used as classifiers thanks to their ability to
learn from examples and generalize. The idea is to let the neural network learn
(through special training algorithms) the correct classification of a representa-

https://doi.org/10.4236/jamp.2019.710173

C. Gallo, V. Capozzi

DOI: 10.4236/jamp.2019.710173 2541 Journal of Applied Mathematics and Physics

tive sample of patterns, and then make the same network work on the set of all
possible patterns. At this point we distinguish two different types of learning:
supervised and unsupervised.

In “supervised learning’’, the set of patterns on which the network must learn
(training set) is accompanied by a set of labels that show the correct classifica-
tion of each pattern. In this way, the network makes a regulation of its structure
and internal parameters (connection weights and thresholds) until it obtains a
correct classification of training patterns. Given the above mentioned generali-
zation capabilities, the network will work correctly even on external patterns and
independent from the training set, provided that the training set itself is suffi-
ciently representative.

In “unsupervised learning’’, a set of labels cannot be associated with the train-
ing set. This can happen for various reasons: the corresponding classes can be
simply unknown and not obtainable manually or only inaccurately or slowly or,
again, the a-priori knowledge could be ambiguous (the same pattern could be
labeled differently by different experts). In this type of learning, the network
tries to organize the patterns of the training set into subgroups called clusters [14]
using appropriate similarity (or distance) measures, so that all the objects be-
longing to the same cluster are as similar (near) as possible while the objects be-
longing to different clusters are as different (distant) as possible. Next, you need
to use the expert’s a-priori knowledge to label the clusters obtained in the pre-
vious step in order to make the classifier usable.

These two different approaches to learning give rise to the different types of
neural networks [15] which are used in this work for the implementation of the
non-linear PCA calculation algorithm.

4. Principal Component Analysis

Rarely are the characteristics obtained during the extraction phase used as input
for a classification, but often some transformation is necessary to facilitate the
pattern classification. One of the most frequent problems to solve is the decrease
of the pattern dimensionality (of the number of characteristics) in order to make
the machine learning algorithms functioning more efficient and faster.

Increasing the number of features measured on the objects to be classified
generally improves network performance because, intuitively, there is more in-
formation available on which to base learning. In reality this is true only to a
certain extent, after which, the performance of the network tends to decrease
(more wrong classifications are obtained). This is because we are forced to work
on a limited set of data and therefore, increasing the size of the pattern space
involves a thinning out of our training set that will become a poor representation
of the distribution. We will need larger sets (growth must be exponential) that
will slow down the training process and bring infinitesimal improvements. This
problem is known in the literature as curse of dimensionality. It is better to pre-
fer a network with few inputs because it has fewer adaptive parameters to deter-
mine and therefore even small training sets are sufficient. This will create a faster

https://doi.org/10.4236/jamp.2019.710173

C. Gallo, V. Capozzi

DOI: 10.4236/jamp.2019.710173 2542 Journal of Applied Mathematics and Physics

network with greater capacity for generalization. The problem now is to choose,
among the characteristics we have available, those to be preserved and those to
be discarded, trying to lose as little information as possible. The PCA helps us in
this.

Principal Component Analysis is a statistical technique whose aim is to reduce
the size of patterns and is based on the selection of the most significant characte-
ristics, that is those that bring more information. It is used in many fields and
under different names: Karhunen-Loeve expansion, Hotelling transformation,
approach to signal subspace, etc.

Given a statistical distribution of data in an L-dimensional space, this tech-
nique examines the properties of distribution and tries to determine the compo-
nents that maximize variance or, alternatively, minimize the misrepresentation.
These components are called “main components’’ and are linear combinations
of random variables with the property of maximizing the variance in relation to
the eigenvalues (and therefore the eigenvectors) of the covariance matrix of the
distribution. For example, the first main component is a linear normalized com-
bination that has maximum variance, the second main component has second
maximum variance and so on. Geometrically, the PCA corresponds to a rotation
of the coordinated axes in a new coordinate system such that the projection of
the points on the first axis has maximum variance, the projection on the second
axis has second maximum variance and so on (see Figure 2). Thanks to this
important property, this technique allows us to reduce a space of features, pre-
serving as much as possible the relevant information.

Mathematically, the PCA is defined as follows. Consider an M-dimensional
vector p obtained from some distribution centered around the average
() 0E p = and define ()TX E pp= the distribution’s covariance matrix. The

i-th main component of p is defined as T
iv p , where v represents the normalized

eigenvector of X corresponding to the i-th largest eigenvalue λ . The subspace
obtained by the eigenvectors 1, , Lv v with L M< , is called the PCA subspace

Figure 2. An example of PCA on bidimensional data.

https://doi.org/10.4236/jamp.2019.710173

C. Gallo, V. Capozzi

DOI: 10.4236/jamp.2019.710173 2543 Journal of Applied Mathematics and Physics

of size L. We will then examine the mathematical and neural methods to com-
pute the principal components of a distribution.

5. Computation of the Principal Components

Consider N points in an M-dimensional space (which could be a space of fea-
tures) by indicating each of them with []T1, , , 1, ,i i iMp p p i N= =  and sup-
pose, without loss of generality, that () 0iE p = . We can represent the generic
vector ip as a linear combination of a set of M vectors in this way:

1

M

i ij j
j

p a v
=

= ∑ (1)

where the ija are coefficients such that () 0ijE a = when varying by i, while

jv are orthonormal vectors (T
i j ijv v δ=) such that

T
1, , , 1, ,j j jMv v v j M = =   . If we define []T1, , , 1, ,i i iMa a a i N= =  then

Equation (1) can be expressed in matrix form as: i ip V a= ⋅ where v is the
column matrix of the jv vectors. In this case the explicit expression for the
vectors ia is: T

i ia v p= .
Suppose you want to reduce the size of the space from M to L with L M< in

order to lose as little information as possible. The first step is to rewrite equation
(1) this way:

1 1

L M

i ij j ij j
j j L

p a v a v
= = +

= +∑ ∑ (2)

to then replace all ija (for 1, ,j L M= + ) with constant jk so that each ini-
tial ip vector can be approximated by a new ip vector so defined:

1 1

L M

i ij j j j
j j L

p a v k v
= = +

= +∑ ∑ (3)

In this way we get a size reduction, since the second sum is constant and
therefore each M-dimensional vector ip can be expressed in an approximate
way using an L-dimensional vector ia . Let’s now see how to find the base vec-
tors jv and the coefficients jk to minimize the loss of information. The error
on ip obtained from the size reduction is given by:

()
1

M

i i ij j j
j L

p p a k v
= +

− = − ⋅∑ (4)

We can then define a LE function that calculates the sum of the squares of
the errors as follows:

()22

1 1 1

1 1
2 2

N N M

L i ij j
i i j L

E p p a k
= = = +

= − = −∑ ∑ ∑ (5)

where we used the relation of “orthonormality’’. If we put the derivative before

LE compared to jk equal to zero, we get that:

1

1 0
N

j ij
i

k a
N =

= =∑ (6)

by virtue of the fact that we considered ija such that () 0ijE a = . The error

https://doi.org/10.4236/jamp.2019.710173

C. Gallo, V. Capozzi

DOI: 10.4236/jamp.2019.710173 2544 Journal of Applied Mathematics and Physics

function can then be rewritten as:

2 T T T

1 1 1 1 1

1 1 1
2 2 2

M N M N M

L ij j i i j j j
j L i j L i j L

E a v p p v v Xv
= + = = + = = +

 = = =  
∑ ∑ ∑ ∑ ∑ (7)

where the first step follows from the fact that T
ij j ia v p= and X is the covariance

matrix of the distribution so defined:

()() ()() ()T T

1 1

N N

i i i i i i
i i

X p E p p E p p p
= =

= − − =∑ ∑ (8)

having set () 0iE p = . Now you just have to minimize the LE function com-
pared to the choice of base vectors jv .

The best choice is when the base vectors meet the condition: j j jXv vλ= for
constants jλ corresponding to the eigenvectors of the matrix X. It should also
be noted that, since the covariance matrix is real and symmetrical, its eigenvec-
tors can be chosen orthonormal as required. Returning to the analysis of the er-
ror function, we notice that:

1

1
2

M

L i
i L

E λ
= +

= ∑ (9)

so the minimum error is obtained by discarding the smaller M L− eigenva-
lues and their corresponding autovectors, and keeping the larger L that norma-
lized will build the V matrix. The procedure for calculating the principal com-
ponents is shown in Figure 3.

6. Neural Implementation of Standard PCA

The Principal Component Analysis can also be carried out through a neural
network in which the weight vectors of the neurons converge, during the learn-
ing phase, to the main eigenvectors ()1, ,jv j L= 

. Such networks have a
learning of Hebbian type: the value of a synaptic connection in input to a neuron
is increased if and only if the input and the output of the neuron are simulta-
neously active. They are composed of a layer of M input neurons designed to
perform the sole task of passing the inputs to the next layer, and a layer of L
output neurons totally connected to the previous one. The weights of each out-
put neuron form an M-dimensional weight vector representing an eigenvector.
Feedback connections exist during learning: if the output of the generic neuron
reaches all output neurons indiscriminately as input, we are in front of a sym-
metrical network; if instead there is an order of neurons according to which each
neuron sends its output to itself and to neurons with higher indexes we are in
front of a hierarchical network (see Figure 4). After the learning phase these
connections (dashed in the Figure) are removed and the network becomes pure-
ly feedforward.

This network carries out Hebbian learning (therefore unsupervised). The
synaptic modification law, however, is not the standard Hebbian rule:

() () () ()1t t t t
j j jw w z pη+ = + ⋅ ⋅ (10)

https://doi.org/10.4236/jamp.2019.710173

C. Gallo, V. Capozzi

DOI: 10.4236/jamp.2019.710173 2545 Journal of Applied Mathematics and Physics

Figure 3. Identifying the principal components.

Figure 4. Symmetrical PCA network (left) and hierarchical PCA network (right).

where ()tp , ()tw and ()tz are, respectively, the value of j-th input, j-th weight
and the output of the network at time t (the network is supposed to be composed
of a single neuron), while η is the learning rate. Direct application of this rule
would still make the network unstable. Oja [16] proposed another type of rule
for changing weights over time, which turns the network into a principal com-
ponent analyzer. He thought of normalizing the weight vectors at every step and,
starting from (10), he obtained the following equation:

() () () () () ()1t t t t t t
j j j jw w z p z wη+  = + ⋅ ⋅ −  (11)

where () ()t t
jz pη ⋅ ⋅ is the usual Hebbian increase, while () ()t t

jz w− is the stabi-
lizing term that makes the sum of the

()()2

1

L
t

j
j

w
=
∑ (12)

limited and close to 1 without explicit normalisation appearing. The Oja rule can
be generalized for networks that have multiple output neurons by obtaining the
two algorithms in Figure 5 and Figure 6. The first uses a symmetrical network
and the second a hierarchical network. In both algorithms the weight vectors
must be orthonormalized or: TW W I= .

The PCA emerges as an excellent solution to several problems of information
representation including:
 Maximization of variances subject to linear transformations or outputs of a

linear network under orthonality constraints;

https://doi.org/10.4236/jamp.2019.710173

C. Gallo, V. Capozzi

DOI: 10.4236/jamp.2019.710173 2546 Journal of Applied Mathematics and Physics

Figure 5. Oja subspace’s algorithm.

Figure 6. Sange’s algorithm (Generalized hebbian algoritm).

 Minimization of quadratic mean error when the input data is approximated

using a linear subspace of smaller size;
 Non correlation of outputs after an orthonormal transformation;
 Minimization of entropy of representation;
 At the same time, the PCA network has some limitations that make it less at-

tractive;
 The network is able to carry out only linear input-output correspondences;
 Eigenvectors can be calculated much more efficiently using mathematical

techniques;
 The principal components take into consideration only the data covariances

that completely characterize only Gaussian distributions;
 The network is not able to separate independent subsignals from their linear

combinations.
For these reasons, it is interesting to study non-linear generalizations of PCA

or learning algorithms derived from the generalization of the optimization
problem of standard PCA. They can be divided into two classes: robust PCA al-
gorithms (paragraphs 6.1 and 6.2) and non-linear PCA algorithms in the strict
sense (Section 7). In the former, the criterion to be optimized is characterized by
a function that grows more slowly than the quadratic function, and the initial
conditions are the same as those of the standard PCA (the neuron weight vectors

https://doi.org/10.4236/jamp.2019.710173

C. Gallo, V. Capozzi

DOI: 10.4236/jamp.2019.710173 2547 Journal of Applied Mathematics and Physics

must be mutually orthonormal). In these algorithms, non-linearity appears only
at certain points. In non-linear PCA algorithms, however, all neuron outputs are
a nonlinear function of the response. It is also interesting to note that, while the
standard PCA to obtain the main components needs some form of hierarchy to
differentiate the output neurons (the symmetric algorithm obtains only linear
combinations of the main components), in the non-linear generalizations the
hierarchy is not so important, since the nonlinear function breaks the symmetry
during the learning phase [17].

6.1. Generalization of Variance Maximization

The standard quadratic problem leading to a PCA solution can also be achieved
by maximizing output variances T T T T

i i i i i iE z z E w pp w w Xw   = =    of a linear
network under orthonality constraints. This problem is not well defined until the
M-dimensional weight vectors of the neurons are bound in some way. In the ab-
sence of a priori knowledge, orthogonality constraints are the most natural be-
cause they allow the measurement of variances along directions that differ in a
maximum way from each other.

If we refer to Hierarchical Networks, the i-th weight vector iw is bound to
have unitary norm and be orthogonal to vectors ()1, , 1jw j i= −

. Mathemati-
cally, this can be expressed as follows: T

i j ijw w δ= for j i≤ . The optimum
vector iw will then be the i-th principal eigenvector iv of the covariance ma-
trix X and the outputs of the PCA network become the principal components of
the data vectors. The same problem can be solved with symmetrical networks by
adopting the following constraint: T

i j ijw w δ= for ?j i . In matrix form you
have TW W I= where []1, , LW w w= 

 and I is the unit matrix. If we now
consider the z output of the linear PCA network, the problem can be expressed
in compact form as maximization of:

() ()2 TtrE z W XW= (13)

The best solution in this casen is any orthonormal basis of the PCA subspace.
It is therefore not unique. The problem of maximizing variance under symme-
trical orthonality constraints therefore leads to symmetrical networks, the
so-called PCA subspace networks.

Let us now consider the generalization of the problem of maximizing variance
for robust PCA. Instead of using the previously defined root mean square, we
can maximize a more general average as follows:

()T
iE c p w 

  (14)

The ()c t function must be a valid cost function that grows slower than the
square, at least for large values of t. In particular we hypothesize that ()c t is
equal, not negative, almost everywhere it continues, differentiable and that
() 2 2c t t≤ for big values of t . In addition its only minimum is reached for

0t = and () ()1 2c t c t≤ if 1 2t t≤ . Valid cost functions are: ()()ln cosh tθ ,
()2tanh tθ where θ represents a scaling factor that depends on the range

https://doi.org/10.4236/jamp.2019.710173

C. Gallo, V. Capozzi

DOI: 10.4236/jamp.2019.710173 2548 Journal of Applied Mathematics and Physics

within which the input values vary. In that case the criterion to maximize, for
each weight vector iw , is:

() ()
()

T T

1

l i

i i tj i j ij
j

G w E c p w w wλ δ
=

   = + −   ∑ (15)

In the summation, the Lagrange λ coefficients impose the necessary ortho-
normality constraints.

Both the hierarchical and the symmetrical problem can be discussed under the
general G criterion. In the symmetrical standard case the upper limit of the
summation index is ()l i L= ; in the hierarchical case it is ()l i i= . The optimal
weight vector of the i-th neuron then defines the robust component of the i-th
principal eigenvector iv . The gradient of ()iG w relative to iw is:

() () ()
()

T

1,
2

l i
i

i ii i ij j
j j ii

G w
d i E pe x w w w

w
λ λ

= ≠

∂  = = + + ∂ ∑ (16)

where ()e t is the derivative ()c t t∂ ∂ of ()c t . At optimum the gradient
must be zero for 1, ,i L=  . In addition, Lagrange coefficients’ differentiation
leads to orthonality constraints T

i j ijw w δ= .
A gradient descent algorithm to maximize Equation (14) is obtained by en-

tering the ()d i estimation of the gradient vector (Equation (16)) at the step of
the weight update, which becomes:

() () () ()1t t t
i iw w d iη+ = + ⋅ (17)

To obtain estimates of the standard instantaneous gradient, the average values
are simply omitted and the instantaneous values of the quantities in question are
used instead. The update then becomes:

() ()
()

() () () () ()1 T T

1

l i
t t t t t t t

i i j j i
j

w w I w w p f p wη+

=

   = + ⋅ − ⋅ ⋅    
∑ (18)

Reconsidering the cost function, the assumptions made about it imply that its
derivative ()f t is a non-decreasing odd function of t. For stability reasons, it
is required to be at least () 0f t ≤ for 0t < or () 0f t ≤ for 0t > . If we de-
fine the instantaneous representation error vector as:

() ()
()

() ()() () ()
()

() ()T

1 1

l i l i
t t t t t t t t

i j j j j
j j

e p p w w p z w
= =

= − ⋅ = −∑ ∑ (19)

we can summarize the step of weight updating (Equation (18)) as in Figure 7
Please note that since in the symmetrical case ()ie k is the same for all neurons,
Equation (18) can also be expressed in matrix form as:

() () () ()() ()() () () ()()1 T TTt t t t t t t tW W I W W p f p W W e f zη η+ = + ⋅ − ⋅ ⋅ = + ⋅ ⋅ (20)

It is interesting to note that the optimal solution for the robust criterion in
general does not coincide with the standard solution but is very close to it. For
example if we consider ()c t t= , the iw directions that maximize T

iE p w 
 

are, for some arbitrary non-symmetrical distribution, different from the directions
that maximize the ()2T

iE p w 
  

 variance under orthonormality conditions.

https://doi.org/10.4236/jamp.2019.710173

C. Gallo, V. Capozzi

DOI: 10.4236/jamp.2019.710173 2549 Journal of Applied Mathematics and Physics

Figure 7. Robust PCA algorithm for generalization of variance maximization.

6.2. Generalization of Error Minimization

Let’s consider the linear approximation p of the vectors p in terms of a set of
vectors jw for ()1, ,j l i= 

. Since the ()l i number of base vectors jw is
usually smaller than the M size of the data vectors, there will be some error said
instantaneous error of representation () () ()t t t

i i ie p p= − for each vector ()tp . The
standard PCA solutions are obtained by minimizing the square of this error,
namely the quantity: 2 2

i i iE e E p p   = −    . Now let’s see how to carry out
the robust generalization of the quadratic mean representation error. Robust
PCA algorithms can be achieved by minimizing the criterion:

() ()T1i iG e E c e =   (21)

where the M-dimensional vector 1 and ()c t meet the above mentioned as-
sumptions. By minimizing (21) against w we obtain the gradient descent algo-
rithm shown in Figure 8. The algorithm can be applied, as usual, both to the
symmetrical and hierarchical case; but in the symmetrical case it is ()l i L=
and therefore:

() () () ()() () ()() () ()()1 T Tt t t t t t t tW W p f e W f e p Wη+ = + ⋅ ⋅ ⋅ + ⋅ ⋅ (22)

The first term () ()() ()Tt t t
jw f e p⋅ ⋅ in the equation of Figure 8 is proportional

to p for all weight vectors. In addition we can assume that the average value of
the coefficient () ()()Tt t

jw f e⋅ is close to zero because the error vector ()te must
be relatively small after an initial convergence. This term can therefore be over-
looked without making a big mistake, which leads us to the algorithm in Figure
9.

Comparing the algorithms of Figure 9 (robust approximate generalization of
error minimization) and Figure 7 (robust generalization of variance optimiza-
tion) we notice that they, although derived from two different optimization cri-
teria, are very similar. The only difference that is noticeable is that the
non-linear ()f t function is applied to the ()te error in the first case and the

()tz output in the second. This has an important consequence: if the network
learns through the algorithm of Figure 9, the final input-output match will still
be linear; if the algorithm of Figure 7 is used, this does not happen, since the
outputs of the network are non-linear: () ()()Tt t

if p w .

https://doi.org/10.4236/jamp.2019.710173

C. Gallo, V. Capozzi

DOI: 10.4236/jamp.2019.710173 2550 Journal of Applied Mathematics and Physics

Figure 8. Robust PCA generalization algorithm of error minimization.

Figure 9. Robust PCA approximate algorithm of generalization of error minimization.

7. Nonlinear PCA

Now let’s consider the non-linear version of PCA. One heuristic way of doing
this is to require that neuron outputs are always non-linear and that they are:
() ()T

i if z f w p= . Applying this to the equation in Figure 7 we arrive at the fol-
lowing rule of weight adaptation:

() () ()() ()1t t t t
j j j jw w f z kη+ = + ⋅ ⋅ (23)

which is similar to the previous one except that now the error vector is defined
as:

() ()
()

()() ()

1

l j
t t t t

j i i
i

k p f z w
=

= −∑ (24)

All this is summarised in Figure 10. In the symmetrical case the algorithm
derives directly from the generalization of the algorithm of Oja’s PCA subspace
and can be expressed in matrix form as:

() () () ()()1 Tt t t tW W k f zη+ = + ⋅ ⋅ (25)

The biggest advantage of this network seems to be the fact that non-linear
coefficients implicitly take into account statistical information of degree higher
than two, and outputs become more independent than standard PCA networks.

8. Comparison Analysis between Standard and Nonlinear
PCA

In this context, let’s go on to illustrate the experiments done to identify the type
of PCA with the best performance.

https://doi.org/10.4236/jamp.2019.710173

C. Gallo, V. Capozzi

DOI: 10.4236/jamp.2019.710173 2551 Journal of Applied Mathematics and Physics

Figure 10. Nonlinear PCA algorithm.

Different types of images from Wolfram Mathematica’s public image reposi-

tory CIFAR-1001 were selected for performance testing. After fixing some sig-
nificant parts on each of these, we ran the PCA algorithms of the previous sec-
tions to get the main components. The average convergence speed performance
for a training set of 10000 images and a learning threshold of 0.00001 is shown
in Table 1. As we can see, the fastest converging networks were the nonlinear
PCA, followed by the linear PCA (GHA and Oja subspace) and, immediately af-
ter, the PCA obtained by the generalization of the maximization of the variance.

In order to choose the most effective method, PCA networks have been di-
vided into two main classes: networks with linear input-output matching and
networks with non-linear input-output matching. The networks of the first type
(linear) identify in the images only very bright objects and/or with a clearly dis-
tinct outline, confusing the weakest objects with the background. The networks
of the second type allow, instead, under certain conditions, to identify also less
defined objects. The condition to obtain this result is the use, in the algorithms
of Figure 7 and Figure 10, of an activation function of sigmoidal type (hyper-
bolic tangent) [11]: this type of net gives a greater relief to the pixels of the weak
objects detaching them from the background.

9. Discussion and Conclusions

The aim of this paper is to construct an algorithm capable of implementing both
standard (linear) and non-linear Principal Component Analysis (PCA) through
the use of artificial neural network models. PCA is mainly used to reduce the
size (number of features) of a problem but, in the traditional approach, the de-
termination of the main components most representative of the phenomenon
has the following limitations:

1) The computation is of algebraic (matrix) nature and, for a high number of
variables, can involve a high processing time;

2) The standard PCA is suitable for problems with linear relationships be-
tween variables.

The approach presented is an algorithm for calculating the principal compo-
nents for both standard and non-linear problems. The algorithm makes use of

1https://datarepository.wolframcloud.com/resources/CIFAR-100

https://doi.org/10.4236/jamp.2019.710173
https://datarepository.wolframcloud.com/resources/CIFAR-100

C. Gallo, V. Capozzi

DOI: 10.4236/jamp.2019.710173 2552 Journal of Applied Mathematics and Physics

Table 1. Comparison between the standard (linear) and nonlinear PCA.

 Network type
Average convergence

speed (epochs/sec)

Nonlinear PCA (hierarchical and symmetrical) 0.722

Linear PCA (GHA and Oja subspace) 0.703

Variance maximization (robust hierarchical and symmetrical) 0.696

Approximate algorithm (robust hierarchical and symmetrical) 0.455

Error minimization (robust hierarchical and symmetrical) 0.382

artificial neural network models, with an iterative processing given by the “con-
vergence’’ of the network towards the optimal weights, which correspond to the
final solution of the problem. The neural network models proposed in the algo-
rithm make use of multiple layers of neurons (see Section 6) with the application
of the hyperbolic tangent function to the PCA output.

The performance of the proposed approach has been evaluated in a test im-
plementation, and can be further improved both in the definition phase of the
neural network architecture (number of hidden layers and neurons) and in the
learning and validation phase (e.g. through the introduction of cross-validation
or leave-one-out depending on the size of the input dataset).

The scaled conjugate gradient learning algorithm leads to a rapidly decreasing
average error, up to a level of stabilization. Newton’s method has much slower
iterations but, on the other hand, is able to reach values lower than the average
error. You can then think of hybridizing the two algorithms using the first one
until the average error drops to then exploit the second one starting from the fi-
nal weight configuration of the first one. This will lower the error function
without wasting too much time.

The performance of the proposed approach, while very good, can be further
improved at both the detection and classification stages:
 In order to improve the percentage of correctness of the recognition, it is de-

sirable to create an algorithm capable of automatically recognising and eli-
minating only spurious objects present on a plate;

 In order to speed up the learning of the supervised networks for the
classification it is possible to think of a hybrid training that exploits the po-
tentialities of more algorithms in contemporary.

As for the second point, it has been noted that using the scaled conjugate gra-
dient learning algorithm, the average error quickly decreases to a certain level,
after which, it tends to stabilise. Newton’s method has much slower iterations
but, on the other hand, manages to reach values lower than the mean error. One
can therefore think of hybridizing the two algorithms using the first one until
the average error drops and then exploit the second one starting from the final
weight configuration of the first one. In this way, it would be possible to go low-

https://doi.org/10.4236/jamp.2019.710173

C. Gallo, V. Capozzi

DOI: 10.4236/jamp.2019.710173 2553 Journal of Applied Mathematics and Physics

er on the error function without an excessive loss of time.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this
paper.

References
[1] Bishop, C. (2007) Pattern Recognition and Machine Learning (Information Science

and Statistics). Springer, New York.

[2] Schmidt, A. (2016) Cloud-Based AI for Pervasive Applications. IEEE Pervasive
Computing, 15, 14-18. https://doi.org/10.1109/MPRV.2016.11

[3] Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat,
S., Irving, G., Isard, M., et al. (2016) Tensor Flow: A System for Large-Scale Ma-
chine Learning. Proceedings of the 12th USENIX Conference on Operating Systems
Design and Implementation, Vol. 16, 265-283.

[4] Del Sole, A. (2018) Introducing Microsoft Cognitive Services. In: Microsoft Com-
puter Vision APIs Distilled, Springer, Berlin, 1-4.
https://doi.org/10.1007/978-1-4842-3342-9_1

[5] Project Oxford—Microsoft Cognitive Services.
https://azure.microsoft.com/en-us/try/cognitive-services

[6] Gregor, K., Besse, F., Rezende, D.J., Danihelka, I. and Wierstra, D. (2016) Towards
Conceptual Compression. Advances in Neural Information Processing Systems, 16,
265-283.

[7] Kraemer, H.C. and Blasey, C. (2015) How Many Subjects? Statistical Power Analysis
in Research. Sage Publications, Thousand Oaks.
https://doi.org/10.4135/9781483398761

[8] Abdi, H. and Williams, L.J. (2010) Principal Component Analysis. Wiley Interdis-
ciplinary Reviews: Computational Statistics, 2, 433-459.
https://doi.org/10.1002/wics.101

[9] Borg, I. and Groenen, P.J.F. (2005) Modern Multidimensional Scaling: Theory and
Applications. Springer Science & Business Media, Berlin.

[10] Demuth, H.B., Beale, M.H., De Jess, O. and Hagan, M.T. (2014) Neural Network
Design. Martin Hagan, Oklahoma State University, Stillwater.

[11] Gallo, C. (2015) Artificial Neural Networks Tutorial. In: Encyclopedia of Informa-
tion Science and Technology, Third Edition, IGI Global, Hershey, 6369-6378.
https://doi.org/10.4018/978-1-4666-5888-2.ch626

[12] Maass, W. (2016) Energy-Efficient Neural Network Chips Approach Human Recogni-
tion Capabilities. Proceedings of the National Academy of Sciences, 113, 11387-11389.
https://doi.org/10.1073/pnas.1614109113

[13] Kuo, B.-C. and Landgrebe, D.A. (2004) Nonparametric Weighted Feature Extrac-
tion for Classification. IEEE Transactions on Geoscience and Remote Sensing, 42,
1096-1105. https://doi.org/10.1109/TGRS.2004.825578

[14] Everitt, B. (1977) Cluster Analysis Social Science Research Council. Heinemann
Educational Books, London.

[15] Beale, R. and Jackson, T. (1990) Neural Computing: An Introduction. CRC Press,
Boca Raton. https://doi.org/10.1201/9781420050431

https://doi.org/10.4236/jamp.2019.710173
https://doi.org/10.1109/MPRV.2016.11
https://doi.org/10.1007/978-1-4842-3342-9_1
https://azure.microsoft.com/en-us/try/cognitive-services
https://doi.org/10.4135/9781483398761
https://doi.org/10.1002/wics.101
https://doi.org/10.4018/978-1-4666-5888-2.ch626
https://doi.org/10.1073/pnas.1614109113
https://doi.org/10.1109/TGRS.2004.825578
https://doi.org/10.1201/9781420050431

C. Gallo, V. Capozzi

DOI: 10.4236/jamp.2019.710173 2554 Journal of Applied Mathematics and Physics

[16] Oja, E. (1991) Learning in Nonlinear Constrained Hebbian Networks. Artificial
Neural Networks. Elsevier Science Publishers, Amsterdam.

[17] Schmidhuber, J. (2015) Deep Learning in Neural Networks: An Overview. Neural
Networks, 61, 85-117. https://doi.org/10.1016/j.neunet.2014.09.003

https://doi.org/10.4236/jamp.2019.710173
https://doi.org/10.1016/j.neunet.2014.09.003

	Feature Selection with Non Linear PCA: A Neural Network Approach
	Abstract
	Keywords
	1. Introduction
	2. Artificial Neural Networks for Supervised Learning
	3. Application of Neural Networks for Pattern Classification
	4. Principal Component Analysis
	5. Computation of the Principal Components
	6. Neural Implementation of Standard PCA
	6.1. Generalization of Variance Maximization
	6.2. Generalization of Error Minimization

	7. Nonlinear PCA
	8. Comparison Analysis between Standard and Nonlinear PCA
	9. Discussion and Conclusions
	Conflicts of Interest
	References

