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Abstract 
Machine learning consists in the creation and development of algorithms that 
allow a machine to learn itself, gradually improving its behavior over time. 
This learning is more effective, the more representative is the features of the 
dataset used to describe the problem. An important objective is therefore the 
correct selection (and, possibly, reduction of the number) of the most rele-
vant features, which is typically carried out through dimensional reduction 
tools such as Principal Component Analysis (PCA), which is not linear in the 
more general case. In this work, an approach to the calculation of the reduced 
space of the PCA is proposed through the definition and implementation of 
appropriate models of artificial neural network, which allows to obtain an 
accurate and at the same time flexible reduction of the dimensionality of the 
problem. 
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1. Introduction 

The term machine learning [1] refers to one of the fundamental areas of artificial 
intelligence, centred on the development of systems and algorithms capable of 
synthesizing a series of subsequent observations. Starting from more or less wide 
sets of data, the machine—using the themes and algorithms developed—becomes 
able to automatically recognize complex models and take “decisions”. 

Today machine learning technologies [2] are easily accessible (see e.g. 
Google’s TensorFlow [3] or Microsoft’s Cognitive Services [4] [5]) for high-level 
processing with an emphasis on data semantics. These platforms are proposed as 
“open’’ tools, accessible by any developer who wants to use artificial intelligence 
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to perform complex elaborations and analyze large databases from a machine 
learning perspective. 

When it comes to machine learning, you don’t necessarily have to think about 
robotics, driving independently or the games DeepMind won [6]: these auto-
matic learning systems can also be used to combat spam (by better recognising 
unsolicited e-mails), to detect intrusion attempts into a computer network, to 
improve optical character recognition (OCR) skills, and for artificial vision. 
Search engines themselves make extensive use of them to offer users even more 
relevant results by analyzing the meaning (semantics) of the query. 

The effective use of machine learning techniques depends strongly on the 
correct modelling of the problem by the researcher, who must be able to capture 
the fundamental characteristics that allow an effective implementation of the 
predictive model. If the selected features are excessive with respect to the availa-
ble cases, the “power’’ [7] of the corresponding statistical model is compromised, 
being typically necessary a number of cases in exponential ratio with respect to 
the number of features of the model. 

Therefore, it is of fundamental importance to reduce the number of features, 
obviously without losing the model’s informative capacity too much. This reduc-
tion is usually made through the use of mathematical techniques to reduce the 
size of the problem such as the Principal Component Analysis (PCA) [8] or the 
Multi Dimensional Scaling (MDS) [9], which transform the initial data space 
into a new space with a reduced number of components (the so-called principal 
Components) on which the original variables are projected. 

In this paper an approach to feature reduction by non-linear PCA is presented, 
this being the most general case. In our approach, the determination of the re-
duced space of components is done by setting up appropriate artificial neural 
network models, of hierarchical or symmetrical type, so as to arrive at the calcu-
lation of the main components through the progressive self-learning typical of a 
neural network. 

In the following sections, the general principles of artificial neural networks 
and PCA are briefly discussed; then the method of calculating PCA through ap-
propriate neural network models is presented, and the results are discussed, as 
well as the conclusions and future directions of research. 

2. Artificial Neural Networks for Supervised Learning 

Learning by example plays a fundamental role in the process of understanding 
by humans (in newborns for example, learning is done by imitation, rehearsal 
and error): the learner learns on the basis of specific cases, not general theories. 
In essence, learning from examples is a process of reasoning that leads to the 
identification of general rules based on observations of specific cases (inductive 
inference). 

There are two typical characteristics of the process of learning from examples: 
first, the knowledge learnt is more compact than the equivalent form with expli-

https://doi.org/10.4236/jamp.2019.710173


C. Gallo, V. Capozzi 
 

 

DOI: 10.4236/jamp.2019.710173 2539 Journal of Applied Mathematics and Physics 
 

cit examples, therefore requires less memory capacity; second, the knowledge 
learnt contains more information than the examples observed (being a generali-
zation is applicable also to cases never observed). In inductive inference, howev-
er, starting from a set of true or false facts, we arrive at the formulation of a gen-
eral rule that is not necessarily always correct: in fact, only one false assertion is 
sufficient to exclude a rule. An inductive system therefore offers the possibility 
of automatically generating knowledge that can be false. The frequency of errors 
depends strongly on how the set of examples on which the system is to be 
learned was chosen and how representative this is of the universe of possible 
cases. 

Artificial neural networks (ANNs) [10] [11] are, among the tools capable of 
learning from examples, those with the greatest capacity for generalization, be-
cause they can easily manage situations not foreseen during the learning phase. 
These are computational models that are directly inspired by brain function and 
are at an advanced stage of research. An artificial neural network can be thought 
of as a machine designed to replicate the principles with which the neurons of 
the human brain work. In the field of automatic learning, a neural network is a 
mathematical-informational model called upon to solve engineering problems in 
different fields of application. This allows the creation of an adaptive system that 
changes its structure based on the flow of external or internal information that 
flows through the network during the learning phase. 

Neural networks are non-linear structures that can be used to simulate com-
plex relationships between inputs and outputs that other analytical functions 
cannot represent. The external signals are processed and processed by a set of 
input notes, in turn connected with multiple internal nodes (organized into le-
vels): each node processes the signals received and transmits the result to the 
following nodes. Since neural networks are trained using data, connections be-
tween neurons are strengthened and output gradually forms patterns, which are 
well-defined patterns that can be used by the machine to make decisions. 

Largely abandoned during the winter of artificial intelligence, neural networks 
are now at the centre of most projects focused on artificial intelligence and ma-
chine learning in particular [2]. They consist of a layer of input neurons (ele-
mentary computational units), a layer of output neurons and possibly one or 
more intermediate layers called hidden (see Figure 1). Interconnections range 
from one layer to the next and the signal values can be both discrete and conti-
nuous. The weight values associated with the input of each node can be static or 
dynamic in such a way as to plastically adapt the behaviour of the network ac-
cording to the variations of the input signals. 

The functioning of a neural network can be schematically outlined in two 
phases: the “training’’ (learning) phase and the “testing’’ (recognition) phase. In 
the learning phase the network is instructed on a sample of data taken from the 
set of data that will then be processed; in the testing phase, which is then the 
normal operating phase, the network is used to process the input data based on 
the configuration reached in the previous phase. 
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Figure 1. An example of artificial neural network. 

 
As for the realizations, even if the networks have an autonomous structure, 

generally computer simulations are used in order to allow even substantial mod-
ifications in a short time and with limited costs. However, the first neural chips 
[12] are being created that have a performance considerably higher than that of a 
simulation but that has so far had very little diffusion due mainly to high costs 
and extreme structural rigidity. 

3. Application of Neural Networks for Pattern Classification 

Pattern recognition is currently the area of greatest use of neural networks. It 
consists in the classification of objects of the most varied nature in classes de-
fined a priori or automatically created by the application based on the similari-
ties between the objects in input (in this case we speak of clustering). 

To perform classification tasks through a computer, real objects must be 
represented in numerical form and this is done by performing, in an appropriate 
way, a modeling of reality that associates each object with a pattern (vector of 
numerical attributes) that identifies it. This first phase is called feature extraction 
[13], so you can think of reducing them in order to speed up the classification 
process. This can be done manually or with automatic techniques such as Multi 
Dimensional Scaling [9] or Principal Component Analysis [8] (see next Section), 
resulting in a pattern shift to a new space with features that can be classified 
more simply. After this further phase—which is called preprocessing—we finally 
move on to the construction of the classifier, which can be seen as a black box 
capable of associating each input pattern to a specific class. 

Suppose, more formally, that you need to classify a pattern ( )1, , np p p=   
in a class belonging to the set { }1, , kC c c=  . Against the p input pattern, the 
classifier will output the binary vector ( )1, , kz z z=   where 1iz =  if the pat-
tern belongs to the class ic , otherwise 0. 

Neural networks can be effectively used as classifiers thanks to their ability to 
learn from examples and generalize. The idea is to let the neural network learn 
(through special training algorithms) the correct classification of a representa-
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tive sample of patterns, and then make the same network work on the set of all 
possible patterns. At this point we distinguish two different types of learning: 
supervised and unsupervised. 

In “supervised learning’’, the set of patterns on which the network must learn 
(training set) is accompanied by a set of labels that show the correct classifica-
tion of each pattern. In this way, the network makes a regulation of its structure 
and internal parameters (connection weights and thresholds) until it obtains a 
correct classification of training patterns. Given the above mentioned generali-
zation capabilities, the network will work correctly even on external patterns and 
independent from the training set, provided that the training set itself is suffi-
ciently representative. 

In “unsupervised learning’’, a set of labels cannot be associated with the train-
ing set. This can happen for various reasons: the corresponding classes can be 
simply unknown and not obtainable manually or only inaccurately or slowly or, 
again, the a-priori knowledge could be ambiguous (the same pattern could be 
labeled differently by different experts). In this type of learning, the network 
tries to organize the patterns of the training set into subgroups called clusters [14] 
using appropriate similarity (or distance) measures, so that all the objects be-
longing to the same cluster are as similar (near) as possible while the objects be-
longing to different clusters are as different (distant) as possible. Next, you need 
to use the expert’s a-priori knowledge to label the clusters obtained in the pre-
vious step in order to make the classifier usable. 

These two different approaches to learning give rise to the different types of 
neural networks [15] which are used in this work for the implementation of the 
non-linear PCA calculation algorithm. 

4. Principal Component Analysis 

Rarely are the characteristics obtained during the extraction phase used as input 
for a classification, but often some transformation is necessary to facilitate the 
pattern classification. One of the most frequent problems to solve is the decrease 
of the pattern dimensionality (of the number of characteristics) in order to make 
the machine learning algorithms functioning more efficient and faster. 

Increasing the number of features measured on the objects to be classified 
generally improves network performance because, intuitively, there is more in-
formation available on which to base learning. In reality this is true only to a 
certain extent, after which, the performance of the network tends to decrease 
(more wrong classifications are obtained). This is because we are forced to work 
on a limited set of data and therefore, increasing the size of the pattern space 
involves a thinning out of our training set that will become a poor representation 
of the distribution. We will need larger sets (growth must be exponential) that 
will slow down the training process and bring infinitesimal improvements. This 
problem is known in the literature as curse of dimensionality. It is better to pre-
fer a network with few inputs because it has fewer adaptive parameters to deter-
mine and therefore even small training sets are sufficient. This will create a faster 
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network with greater capacity for generalization. The problem now is to choose, 
among the characteristics we have available, those to be preserved and those to 
be discarded, trying to lose as little information as possible. The PCA helps us in 
this. 

Principal Component Analysis is a statistical technique whose aim is to reduce 
the size of patterns and is based on the selection of the most significant characte-
ristics, that is those that bring more information. It is used in many fields and 
under different names: Karhunen-Loeve expansion, Hotelling transformation, 
approach to signal subspace, etc. 

Given a statistical distribution of data in an L-dimensional space, this tech-
nique examines the properties of distribution and tries to determine the compo-
nents that maximize variance or, alternatively, minimize the misrepresentation. 
These components are called “main components’’ and are linear combinations 
of random variables with the property of maximizing the variance in relation to 
the eigenvalues (and therefore the eigenvectors) of the covariance matrix of the 
distribution. For example, the first main component is a linear normalized com-
bination that has maximum variance, the second main component has second 
maximum variance and so on. Geometrically, the PCA corresponds to a rotation 
of the coordinated axes in a new coordinate system such that the projection of 
the points on the first axis has maximum variance, the projection on the second 
axis has second maximum variance and so on (see Figure 2). Thanks to this 
important property, this technique allows us to reduce a space of features, pre-
serving as much as possible the relevant information. 

Mathematically, the PCA is defined as follows. Consider an M-dimensional 
vector p obtained from some distribution centered around the average 
( ) 0E p =  and define ( )TX E pp=  the distribution’s covariance matrix. The 

i-th main component of p is defined as T
iv p , where v represents the normalized 

eigenvector of X corresponding to the i-th largest eigenvalue λ . The subspace 
obtained by the eigenvectors 1, , Lv v  with L M< , is called the PCA subspace 
 

 
Figure 2. An example of PCA on bidimensional data. 
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of size L. We will then examine the mathematical and neural methods to com-
pute the principal components of a distribution. 

5. Computation of the Principal Components 

Consider N points in an M-dimensional space (which could be a space of fea-
tures) by indicating each of them with [ ]T1, , , 1, ,i i iMp p p i N= =   and sup-
pose, without loss of generality, that ( ) 0iE p = . We can represent the generic 
vector ip  as a linear combination of a set of M vectors in this way: 

1

M

i ij j
j

p a v
=

= ∑                         (1) 

where the ija  are coefficients such that ( ) 0ijE a =  when varying by i, while 

jv  are orthonormal vectors ( T
i j ijv v δ= ) such that 

T
1, , , 1, ,j j jMv v v j M = =   . If we define [ ]T1, , , 1, ,i i iMa a a i N= =   then 

Equation (1) can be expressed in matrix form as: i ip V a= ⋅  where v is the 
column matrix of the jv  vectors. In this case the explicit expression for the 
vectors ia  is: T

i ia v p= . 
Suppose you want to reduce the size of the space from M to L with L M<  in 

order to lose as little information as possible. The first step is to rewrite equation 
(1) this way: 

1 1

L M

i ij j ij j
j j L

p a v a v
= = +

= +∑ ∑                    (2) 

to then replace all ija  (for 1, ,j L M= +  ) with constant jk  so that each ini-
tial ip  vector can be approximated by a new ip  vector so defined: 

1 1

L M

i ij j j j
j j L

p a v k v
= = +

= +∑ ∑                    (3) 

In this way we get a size reduction, since the second sum is constant and 
therefore each M-dimensional vector ip  can be expressed in an approximate 
way using an L-dimensional vector ia . Let’s now see how to find the base vec-
tors jv  and the coefficients jk  to minimize the loss of information. The error 
on ip  obtained from the size reduction is given by: 

( )
1

M

i i ij j j
j L

p p a k v
= +

− = − ⋅∑                  (4) 

We can then define a LE  function that calculates the sum of the squares of 
the errors as follows: 

( )22

1 1 1

1 1
2 2

N N M

L i ij j
i i j L

E p p a k
= = = +

= − = −∑ ∑ ∑           (5) 

where we used the relation of “orthonormality’’. If we put the derivative before 

LE  compared to jk  equal to zero, we get that: 

1

1 0
N

j ij
i

k a
N =

= =∑                       (6) 

by virtue of the fact that we considered ija  such that ( ) 0ijE a = . The error 
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function can then be rewritten as: 

2 T T T

1 1 1 1 1

1 1 1
2 2 2

M N M N M

L ij j i i j j j
j L i j L i j L

E a v p p v v Xv
= + = = + = = +

 = = =  
∑ ∑ ∑ ∑ ∑       (7) 

where the first step follows from the fact that T
ij j ia v p=  and X is the covariance 

matrix of the distribution so defined: 

( )( ) ( )( ) ( )T T

1 1

N N

i i i i i i
i i

X p E p p E p p p
= =

= − − =∑ ∑            (8) 

having set ( ) 0iE p = . Now you just have to minimize the LE  function com-
pared to the choice of base vectors jv . 

The best choice is when the base vectors meet the condition: j j jXv vλ=  for 
constants jλ  corresponding to the eigenvectors of the matrix X. It should also 
be noted that, since the covariance matrix is real and symmetrical, its eigenvec-
tors can be chosen orthonormal as required. Returning to the analysis of the er-
ror function, we notice that: 

1

1
2

M

L i
i L

E λ
= +

= ∑                         (9) 

so the minimum error is obtained by discarding the smaller M L−  eigenva-
lues and their corresponding autovectors, and keeping the larger L that norma-
lized will build the V matrix. The procedure for calculating the principal com-
ponents is shown in Figure 3. 

6. Neural Implementation of Standard PCA 

The Principal Component Analysis can also be carried out through a neural 
network in which the weight vectors of the neurons converge, during the learn-
ing phase, to the main eigenvectors ( )1, ,jv j L= 

. Such networks have a 
learning of Hebbian type: the value of a synaptic connection in input to a neuron 
is increased if and only if the input and the output of the neuron are simulta-
neously active. They are composed of a layer of M input neurons designed to 
perform the sole task of passing the inputs to the next layer, and a layer of L 
output neurons totally connected to the previous one. The weights of each out-
put neuron form an M-dimensional weight vector representing an eigenvector. 
Feedback connections exist during learning: if the output of the generic neuron 
reaches all output neurons indiscriminately as input, we are in front of a sym-
metrical network; if instead there is an order of neurons according to which each 
neuron sends its output to itself and to neurons with higher indexes we are in 
front of a hierarchical network (see Figure 4). After the learning phase these 
connections (dashed in the Figure) are removed and the network becomes pure-
ly feedforward. 

This network carries out Hebbian learning (therefore unsupervised). The 
synaptic modification law, however, is not the standard Hebbian rule: 

( ) ( ) ( ) ( )1t t t t
j j jw w z pη+ = + ⋅ ⋅                 (10) 
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Figure 3. Identifying the principal components. 

 

 
Figure 4. Symmetrical PCA network (left) and hierarchical PCA network (right). 

 
where ( )tp , ( )tw  and ( )tz  are, respectively, the value of j-th input, j-th weight 
and the output of the network at time t (the network is supposed to be composed 
of a single neuron), while η  is the learning rate. Direct application of this rule 
would still make the network unstable. Oja [16] proposed another type of rule 
for changing weights over time, which turns the network into a principal com-
ponent analyzer. He thought of normalizing the weight vectors at every step and, 
starting from (10), he obtained the following equation: 

( ) ( ) ( ) ( ) ( ) ( )1t t t t t t
j j j jw w z p z wη+  = + ⋅ ⋅ −                  (11) 

where ( ) ( )t t
jz pη ⋅ ⋅  is the usual Hebbian increase, while ( ) ( )t t

jz w−  is the stabi-
lizing term that makes the sum of the 

( )( )2

1

L
t

j
j

w
=
∑                            (12) 

limited and close to 1 without explicit normalisation appearing. The Oja rule can 
be generalized for networks that have multiple output neurons by obtaining the 
two algorithms in Figure 5 and Figure 6. The first uses a symmetrical network 
and the second a hierarchical network. In both algorithms the weight vectors 
must be orthonormalized or: TW W I= . 

The PCA emerges as an excellent solution to several problems of information 
representation including: 
 Maximization of variances subject to linear transformations or outputs of a 

linear network under orthonality constraints; 
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Figure 5. Oja subspace’s algorithm. 

 

 
Figure 6. Sange’s algorithm (Generalized hebbian algoritm). 

 
 Minimization of quadratic mean error when the input data is approximated 

using a linear subspace of smaller size; 
 Non correlation of outputs after an orthonormal transformation; 
 Minimization of entropy of representation; 
 At the same time, the PCA network has some limitations that make it less at-

tractive; 
 The network is able to carry out only linear input-output correspondences; 
 Eigenvectors can be calculated much more efficiently using mathematical 

techniques; 
 The principal components take into consideration only the data covariances 

that completely characterize only Gaussian distributions; 
 The network is not able to separate independent subsignals from their linear 

combinations. 
For these reasons, it is interesting to study non-linear generalizations of PCA 

or learning algorithms derived from the generalization of the optimization 
problem of standard PCA. They can be divided into two classes: robust PCA al-
gorithms (paragraphs 6.1 and 6.2) and non-linear PCA algorithms in the strict 
sense (Section 7). In the former, the criterion to be optimized is characterized by 
a function that grows more slowly than the quadratic function, and the initial 
conditions are the same as those of the standard PCA (the neuron weight vectors 
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must be mutually orthonormal). In these algorithms, non-linearity appears only 
at certain points. In non-linear PCA algorithms, however, all neuron outputs are 
a nonlinear function of the response. It is also interesting to note that, while the 
standard PCA to obtain the main components needs some form of hierarchy to 
differentiate the output neurons (the symmetric algorithm obtains only linear 
combinations of the main components), in the non-linear generalizations the 
hierarchy is not so important, since the nonlinear function breaks the symmetry 
during the learning phase [17]. 

6.1. Generalization of Variance Maximization 

The standard quadratic problem leading to a PCA solution can also be achieved 
by maximizing output variances T T T T

i i i i i iE z z E w pp w w Xw   = =     of a linear 
network under orthonality constraints. This problem is not well defined until the 
M-dimensional weight vectors of the neurons are bound in some way. In the ab-
sence of a priori knowledge, orthogonality constraints are the most natural be-
cause they allow the measurement of variances along directions that differ in a 
maximum way from each other. 

If we refer to Hierarchical Networks, the i-th weight vector iw  is bound to 
have unitary norm and be orthogonal to vectors ( )1, , 1jw j i= −

. Mathemati-
cally, this can be expressed as follows: T

i j ijw w δ=  for j i≤ . The optimum 
vector iw  will then be the i-th principal eigenvector iv  of the covariance ma-
trix X and the outputs of the PCA network become the principal components of 
the data vectors. The same problem can be solved with symmetrical networks by 
adopting the following constraint: T

i j ijw w δ=  for ?j i . In matrix form you 
have TW W I=  where [ ]1, , LW w w= 

 and I is the unit matrix. If we now 
consider the z output of the linear PCA network, the problem can be expressed 
in compact form as maximization of: 

( ) ( )2 TtrE z W XW=                      (13) 

The best solution in this casen is any orthonormal basis of the PCA subspace. 
It is therefore not unique. The problem of maximizing variance under symme-
trical orthonality constraints therefore leads to symmetrical networks, the 
so-called PCA subspace networks. 

Let us now consider the generalization of the problem of maximizing variance 
for robust PCA. Instead of using the previously defined root mean square, we 
can maximize a more general average as follows: 

( )T
iE c p w 

                       (14) 

The ( )c t  function must be a valid cost function that grows slower than the 
square, at least for large values of t. In particular we hypothesize that ( )c t  is 
equal, not negative, almost everywhere it continues, differentiable and that 
( ) 2 2c t t≤  for big values of t . In addition its only minimum is reached for 

0t =  and ( ) ( )1 2c t c t≤  if 1 2t t≤ . Valid cost functions are: ( )( )ln cosh tθ , 
( )2tanh tθ  where θ  represents a scaling factor that depends on the range 
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within which the input values vary. In that case the criterion to maximize, for 
each weight vector iw , is: 

( ) ( )
( )

T T

1

l i

i i tj i j ij
j

G w E c p w w wλ δ
=

   = + −   ∑           (15) 

In the summation, the Lagrange λ  coefficients impose the necessary ortho-
normality constraints. 

Both the hierarchical and the symmetrical problem can be discussed under the 
general G criterion. In the symmetrical standard case the upper limit of the 
summation index is ( )l i L= ; in the hierarchical case it is ( )l i i= . The optimal 
weight vector of the i-th neuron then defines the robust component of the i-th 
principal eigenvector iv . The gradient of ( )iG w  relative to iw  is: 

( ) ( ) ( )
( )

T

1,
2

l i
i

i ii i ij j
j j ii

G w
d i E pe x w w w

w
λ λ

= ≠

∂  = = + + ∂ ∑         (16) 

where ( )e t  is the derivative ( )c t t∂ ∂  of ( )c t . At optimum the gradient 
must be zero for 1, ,i L=  . In addition, Lagrange coefficients’ differentiation 
leads to orthonality constraints T

i j ijw w δ= . 
A gradient descent algorithm to maximize Equation (14) is obtained by en-

tering the ( )d i  estimation of the gradient vector (Equation (16)) at the step of 
the weight update, which becomes: 

( ) ( ) ( ) ( )1t t t
i iw w d iη+ = + ⋅                    (17) 

To obtain estimates of the standard instantaneous gradient, the average values 
are simply omitted and the instantaneous values of the quantities in question are 
used instead. The update then becomes: 

( ) ( )
( )

( ) ( ) ( ) ( ) ( )1 T T

1

l i
t t t t t t t

i i j j i
j

w w I w w p f p wη+

=

   = + ⋅ − ⋅ ⋅    
∑         (18) 

Reconsidering the cost function, the assumptions made about it imply that its 
derivative ( )f t  is a non-decreasing odd function of t. For stability reasons, it 
is required to be at least ( ) 0f t ≤  for 0t <  or ( ) 0f t ≤  for 0t > . If we de-
fine the instantaneous representation error vector as: 

( ) ( )
( )

( ) ( )( ) ( ) ( )
( )

( ) ( )T

1 1

l i l i
t t t t t t t t

i j j j j
j j

e p p w w p z w
= =

= − ⋅ = −∑ ∑          (19) 

we can summarize the step of weight updating (Equation (18)) as in Figure 7 
Please note that since in the symmetrical case ( )ie k  is the same for all neurons, 
Equation (18) can also be expressed in matrix form as:  

( ) ( ) ( ) ( )( ) ( )( ) ( ) ( ) ( )( )1 T TTt t t t t t t tW W I W W p f p W W e f zη η+ = + ⋅ − ⋅ ⋅ = + ⋅ ⋅  (20) 

It is interesting to note that the optimal solution for the robust criterion in 
general does not coincide with the standard solution but is very close to it. For 
example if we consider ( )c t t= , the iw  directions that maximize T

iE p w 
   

are, for some arbitrary non-symmetrical distribution, different from the directions 
that maximize the ( )2T

iE p w 
  

 variance under orthonormality conditions. 
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Figure 7. Robust PCA algorithm for generalization of variance maximization. 

6.2. Generalization of Error Minimization 

Let’s consider the linear approximation p  of the vectors p in terms of a set of 
vectors jw  for ( )1, ,j l i= 

. Since the ( )l i  number of base vectors jw  is 
usually smaller than the M size of the data vectors, there will be some error said 
instantaneous error of representation ( ) ( ) ( )t t t

i i ie p p= −  for each vector ( )tp . The 
standard PCA solutions are obtained by minimizing the square of this error, 
namely the quantity: 2 2

i i iE e E p p   = −    . Now let’s see how to carry out 
the robust generalization of the quadratic mean representation error. Robust 
PCA algorithms can be achieved by minimizing the criterion: 

( ) ( )T1i iG e E c e =                       (21) 

where the M-dimensional vector 1 and ( )c t  meet the above mentioned as-
sumptions. By minimizing (21) against w we obtain the gradient descent algo-
rithm shown in Figure 8. The algorithm can be applied, as usual, both to the 
symmetrical and hierarchical case; but in the symmetrical case it is ( )l i L=  
and therefore: 

( ) ( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )1 T Tt t t t t t t tW W p f e W f e p Wη+ = + ⋅ ⋅ ⋅ + ⋅ ⋅      (22) 

The first term ( ) ( )( ) ( )Tt t t
jw f e p⋅ ⋅  in the equation of Figure 8 is proportional 

to p for all weight vectors. In addition we can assume that the average value of 
the coefficient ( ) ( )( )Tt t

jw f e⋅  is close to zero because the error vector ( )te  must 
be relatively small after an initial convergence. This term can therefore be over-
looked without making a big mistake, which leads us to the algorithm in Figure 
9. 

Comparing the algorithms of Figure 9 (robust approximate generalization of 
error minimization) and Figure 7 (robust generalization of variance optimiza-
tion) we notice that they, although derived from two different optimization cri-
teria, are very similar. The only difference that is noticeable is that the 
non-linear ( )f t  function is applied to the ( )te  error in the first case and the 

( )tz  output in the second. This has an important consequence: if the network 
learns through the algorithm of Figure 9, the final input-output match will still 
be linear; if the algorithm of Figure 7 is used, this does not happen, since the 
outputs of the network are non-linear: ( ) ( )( )Tt t

if p w . 
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Figure 8. Robust PCA generalization algorithm of error minimization. 

 

 
Figure 9. Robust PCA approximate algorithm of generalization of error minimization. 

7. Nonlinear PCA 

Now let’s consider the non-linear version of PCA. One heuristic way of doing 
this is to require that neuron outputs are always non-linear and that they are: 
( ) ( )T

i if z f w p= . Applying this to the equation in Figure 7 we arrive at the fol-
lowing rule of weight adaptation: 

( ) ( ) ( )( ) ( )1t t t t
j j j jw w f z kη+ = + ⋅ ⋅                     (23) 

which is similar to the previous one except that now the error vector is defined 
as: 

( ) ( )
( )

( )( ) ( )

1

l j
t t t t

j i i
i

k p f z w
=

= −∑                    (24) 

All this is summarised in Figure 10. In the symmetrical case the algorithm 
derives directly from the generalization of the algorithm of Oja’s PCA subspace 
and can be expressed in matrix form as: 

( ) ( ) ( ) ( )( )1 Tt t t tW W k f zη+ = + ⋅ ⋅                 (25) 

The biggest advantage of this network seems to be the fact that non-linear 
coefficients implicitly take into account statistical information of degree higher 
than two, and outputs become more independent than standard PCA networks. 

8. Comparison Analysis between Standard and Nonlinear 
PCA 

In this context, let’s go on to illustrate the experiments done to identify the type 
of PCA with the best performance. 
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Figure 10. Nonlinear PCA algorithm. 

 
Different types of images from Wolfram Mathematica’s public image reposi-

tory CIFAR-1001 were selected for performance testing. After fixing some sig-
nificant parts on each of these, we ran the PCA algorithms of the previous sec-
tions to get the main components. The average convergence speed performance 
for a training set of 10000 images and a learning threshold of 0.00001 is shown 
in Table 1. As we can see, the fastest converging networks were the nonlinear 
PCA, followed by the linear PCA (GHA and Oja subspace) and, immediately af-
ter, the PCA obtained by the generalization of the maximization of the variance. 

In order to choose the most effective method, PCA networks have been di-
vided into two main classes: networks with linear input-output matching and 
networks with non-linear input-output matching. The networks of the first type 
(linear) identify in the images only very bright objects and/or with a clearly dis-
tinct outline, confusing the weakest objects with the background. The networks 
of the second type allow, instead, under certain conditions, to identify also less 
defined objects. The condition to obtain this result is the use, in the algorithms 
of Figure 7 and Figure 10, of an activation function of sigmoidal type (hyper-
bolic tangent) [11]: this type of net gives a greater relief to the pixels of the weak 
objects detaching them from the background. 

9. Discussion and Conclusions 

The aim of this paper is to construct an algorithm capable of implementing both 
standard (linear) and non-linear Principal Component Analysis (PCA) through 
the use of artificial neural network models. PCA is mainly used to reduce the 
size (number of features) of a problem but, in the traditional approach, the de-
termination of the main components most representative of the phenomenon 
has the following limitations: 

1) The computation is of algebraic (matrix) nature and, for a high number of 
variables, can involve a high processing time; 

2) The standard PCA is suitable for problems with linear relationships be-
tween variables. 

The approach presented is an algorithm for calculating the principal compo-
nents for both standard and non-linear problems. The algorithm makes use of  

 

 

1https://datarepository.wolframcloud.com/resources/CIFAR-100  
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Table 1. Comparison between the standard (linear) and nonlinear PCA. 

 Network type 
Average convergence 

speed (epochs/sec) 

Nonlinear PCA (hierarchical and symmetrical) 0.722 

Linear PCA (GHA and Oja subspace) 0.703 

Variance maximization (robust hierarchical and symmetrical) 0.696 

Approximate algorithm (robust hierarchical and symmetrical) 0.455 

Error minimization (robust hierarchical and symmetrical) 0.382 

 
artificial neural network models, with an iterative processing given by the “con-
vergence’’ of the network towards the optimal weights, which correspond to the 
final solution of the problem. The neural network models proposed in the algo-
rithm make use of multiple layers of neurons (see Section 6) with the application 
of the hyperbolic tangent function to the PCA output. 

The performance of the proposed approach has been evaluated in a test im-
plementation, and can be further improved both in the definition phase of the 
neural network architecture (number of hidden layers and neurons) and in the 
learning and validation phase (e.g. through the introduction of cross-validation 
or leave-one-out depending on the size of the input dataset). 

The scaled conjugate gradient learning algorithm leads to a rapidly decreasing 
average error, up to a level of stabilization. Newton’s method has much slower 
iterations but, on the other hand, is able to reach values lower than the average 
error. You can then think of hybridizing the two algorithms using the first one 
until the average error drops to then exploit the second one starting from the fi-
nal weight configuration of the first one. This will lower the error function 
without wasting too much time. 

The performance of the proposed approach, while very good, can be further 
improved at both the detection and classification stages: 
 In order to improve the percentage of correctness of the recognition, it is de-

sirable to create an algorithm capable of automatically recognising and eli-
minating only spurious objects present on a plate; 

 In order to speed up the learning of the supervised networks for the 
classification it is possible to think of a hybrid training that exploits the po-
tentialities of more algorithms in contemporary. 

As for the second point, it has been noted that using the scaled conjugate gra-
dient learning algorithm, the average error quickly decreases to a certain level, 
after which, it tends to stabilise. Newton’s method has much slower iterations 
but, on the other hand, manages to reach values lower than the mean error. One 
can therefore think of hybridizing the two algorithms using the first one until 
the average error drops and then exploit the second one starting from the final 
weight configuration of the first one. In this way, it would be possible to go low-
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er on the error function without an excessive loss of time. 
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