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Abstract

One of the modern applications of geomagnetism is determining the effect of
geomagnetic disturbances on critical infrastructure such as power systems
and pipelines. Assessing the geomagnetic hazard to such systems requires
calculation of the geoelectric fields produced during geomagnetic distur-
bances. Such geoelectric fields can then be used as input to system models to
calculate the impact on the system. This paper describes what is involved in
calculating the geoelectric fields produced during real geomagnetic distur-
bances. The theory of geomagnetic induction is presented and used to derive
the Earth transfer function relating the geoelectric and geomagnetic field var-
iations at the Earth’s surface. It is then shown how this can be used to make
practical calculations of the geoelectric fields and how the calculation process
can be verified by comparison with analytic solutions obtained with synthetic
geomagnetic variation data. The accuracy of the calculated geoelectric fields
for geomagnetic risk assessments is limited, not by the accuracy of the calcu-
lation methods, but by the availability of geomagnetic field measurements
and Earth conductivity information over the whole extent of the affected in-
frastructure.

Keywords
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1. Introduction

Geomagnetism has always been an applied science because of the use of the
magnetic field for navigation purposes, e.g. [1] [2]. In modern times a new ap-
plication of geomagnetism has arisen. This follows the recognition that technol-

ogical systems using long conductors can be affected by the geomagnetically in-
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duced currents (GIC) produced during geomagnetic disturbances [3]. The tele-
graph was the first system to suffer from natural voltages [4], and in 1859 the
“Carrington storm” caused disruption to telegraph systems around the world
[5]. Pipelines represent another type of long conductor subjected to geomagnetic
induction. In this case, geomagnetic induction gives rise to “telluric currents” in
the pipeline that may enhance corrosion and interfere with the corrosion pre-
vention systems for the pipeline [6] [7]. Starting in 1940, geomagnetically in-
duced currents produced in high-voltage power transmission systems during
large geomagnetic disturbances have led to equipment damage and power black-
outs [8] [9] [10] [11]. Concern about these effects has led to extensive work to
understand the geomagnetic effects and to assess the hazard they pose to the op-
eration of these systems, e.g. [12] [13] [14].

Assessing the geomagnetic hazard to grounded networks requires the use of
geomagnetic field data and Earth conductivity models to calculate the geoelectric
fields experienced by the system. The calculated geoelectric fields can then be
used as input to system models to evaluate the geomagnetically induced currents
(telluric currents) and the associated voltages and their impacts on the system.
The method presented here uses standard theory widely used before, e.g. [8] [15]
[16] [17]; however, the details of the numerical calculations are usually ignored
and can lead to errors if not done correctly.

The purpose of this paper is to present the numerical method for calculation
of the geoelectric field. However, to show the origin of the relations used, we
first present the theory of geomagnetic induction starting from Maxwell’s equa-
tions and show how this is used to derive the Earth transfer function relating the
geoelectric field to the geomagnetic field variation at the Earth’s surface. Then
we show how these calculations can be made in practice using a time series of
sampled geomagnetic field data. Further, we show how the numerical calculation
can be tested by use of synthetic magnetic field data and comparison of the cal-
culated geoelectric fields with analytic solutions obtained for two test cases. Fi-
nally, the source of the Earth conductivity models is described and we discuss
how limitations in the availability of such information influence the accuracy of

geomagnetic hazard assessments.

2. Theory

The relations between electric and magnetic fields at the Earth’s surface are go-
verned by Maxwell’s equations. For geomagnetic induction in the Earth we are
dealing with frequencies #and conductivities o such that o > 2nfg, where g
= 8.854 x 107" F/m is the permittivity of free space. Consequently, the displace-
ment current term associated with 2m /%, is negligible and can be dropped from

Maxwell’s equations. Thus the equations can be written as

oB
VxE=-— (1
ot
VxB=u,cE 2)
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where bold denotes vectors and g, = 4n x 107 H/m is the permeability of free
space assumed to be valid in the Earth, too. Any geoelectric field F(# and geo-
magnetic field variation B(#) can be expressed as the sum (Ze. an inverse Fourier
transform) of their frequency components, /£

E(t)= T E(f)e"df (3)

B(t)= [ B(f)e™dt (4)

where i= \/—_1

The rate of change of the magnetic field denoted by g(# can then be written as
dB(t) -

g(t) :T::[OianB( f)e " df (5)

Substituting (3), (4) and (5) into (1) and (2) then gives equations
Vx [ E(f)e?™df =—[i2nfB(f)e*"df (6)
Vx [ B(f)e*™df = [ uyoE (f)e"df (7)

Equations (6) and (7) imply that, in the frequency domain, E(¥) and B(f)
satisfy the following equations

VxE(f)=-i2nfB(f) (8)

V><B(f)=,uOO'E(f) 9)

Using the standard geomagnetic xyz coordinate system in which the Earth’s

surface is the xy plane and x, yand z refer to the northward, eastward and verti-

cally downward directions, respectively, Equation (8) can be written in compo-

nent form as follows

oE oE
T P (SN O o k=-i2nf (B,i+B,j+Bk) (10)
oy oz 0z Ox ox oy

where 7 jand kare the unit vectors in the x, yand z directions, respectively. For

clarity, the dependence of the electric and magnetic components on the fre-
quency £is not explicitly shown in Equation (10). A common assumption made
is that the horizontal spatial variations of the fields are much less than the varia-
tion with depth (Ze. the skin depth in the Earth is much smaller than the hori-
zontal spatial scales of the fields). This assumption is generally valid when
“large-scale” ionospheric-magnetospheric sources are considered or the points
of observation are far from the sources, and there are no significant lateral varia-
tions in the Earth’s conductivity. In this case, the terms with the variation in the
vertical direction (z) dominate on the left-hand side of Equation (10), and so

Equation (10) reduces to

oE,  OE, . . . :
——yl+—xj:—I2nf(BXI+Byj+BZk) (11)
oz oz
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Equating the 7 jand k components on both sides of Equation (11) gives
OE

—L = i2nfB 12
b4 T (12

%, = -i2nfB, (13)
Z

and B,=0.

Thus a “transfer function” K= K(#) can be defined that relates the orthogon-
al electric £= E(f) and magnetic B = B(f) field components in the frequency
domain at the Earth’s surface, ie.

E(f)=K(f)B(f) (14)
where E() and B(/) can represent the relation between either £,(/) and B,(f)
or —E(f) and B(f).

This transfer function K(#) is closely related to the “surface impedance”
Z /) commonly used in geoelectromagnetic studies: Z( /) = y,K(f) . The elec-
tric field can also be related to the rate of change of the magnetic field, g(9 =
dB(?)/dt. Noting that in the frequency domain g(/) = 2n/B(f) (see Equation
(5)) we obtain from (14)

E(1)=k(N)B(1) = Dianm(r)=c()g(f) (15)

where (1) given by

ci)-4L0

is called the “magnetotelluric relation”. It should also be noted that C{) is equal

to the complex skin depth p(#) often used in geoelectromagnetic investigations.
To determine the transfer function, K(f) , take the curl of Equation (8). Using

Equation (9) and noting that V-E(f)=0, we then obtain at each frequency

VZE(f)=K°E(f) (17)
where the propagation constant k= 4(#) is defined by
k=k(f)=1/i2nf,u00' (18)

Expanding (17) gives

2 2 2
ZE+%§+2E:WE (19)
X Z

Assuming again that the terms involving the variation with z dominate, Equa-

tion (19) reduces to

0*E
=k?’E 20
p (20)

Equation (20) can be used to obtain an expression for E as a function of z that
can be used in Equations (12) and (13) to obtain an expression for the transfer

function in the Earth relating £ and B. Two types of solution are obtained: the
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first if the Earth is approximated by a uniform conductivity model, and the
second if the Earth is approximated by a layered conductivity model. The second
option provides a model that represents the change of conductivity with depth in
the Earth. Taking account of lateral changes in conductivity is briefly considered

in Section 6.

2.1. Uniform Conductivity Model

A simple first approximation is to model the Earth by a half-space of uniform

conductivity o In this case, Equation (20) has a solution of the form
E(f)=E,(f)e*"" (21)
where E,(f) is the (vector) amplitude of the electric field at the Earth’s surface,

Le at z= 0, and k(f) is given by Equation (18). Substituting the x or y compo-
nents of E(f) given by (21) into Equations (12) and (13) gives

-E i2nf
_y_=" 22
= (22)
E, i2nf
—x = 23
5 " (23)

Equations (22) and (23) show that each pair of electric and magnetic field
components form an orthogonal right-handed pair where the electric field is ro-
tated 90 degrees counter clockwise from the direction of the magnetic field and
the transfer function, K(/) represents the relationship between £, and B, and
between —E, and B, These equations, utilizing (18), show that in the uniform-Earth
case K(f) is given by
_i2nf [i2nf

K=K(f
(D= Vo

(24)

2.2. Layered Conductivity Model

In practice the Earth conductivity varies in all directions, but the greatest varia-
tion is with depth and the Earth is often represented by a one-dimensional (1-D)
model comprised of NV horizontal layers with specified conductivities ( o;,---, 0 )
and thicknesses (l;,---,1; ). Note that the bottom layer is a uniform half-space,
so |y =o0.

As above, we assume that the horizontal variations of the electric and mag-
netic fields are much less than the variations with depth, ie. the fields are consi-
dered to only depend on the z coordinate. Then the electric field satisfies Equa-
tion (20) in each layer with K, =./i2nf g0, (n=1---,N ). As in Section 2.1,
we consider an (£, B) pair where Eand B denote either £, and B, or —F, and B,
In the layered-Earth case the solution of Equation (20) needs to allow for up-
going waves resulting from reflections at layer boundaries (not present in the

uniform-Earth case). Then the solution for £ from (20) is

E=S.e" +Re" (25)
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where 0 < z< /,and S, and R, are the amplitudes of a downward and an upward
propagating wave at the top surface of layer n, respectively (note that, for each
layer, the location of z = 0 is set at the top surface of the particular layer, not at
the Earth’s surface). The bottom layer Nis a uniform half-space, so Ry = 0.
Substituting £ given by (25) into (12) or (13) yields
k

_ n —knz _ knz
B= o (Sne Re ) (26)

As defined by Equation (14), the transfer function K= K{( /) relates £and Bat
the Earth’s surface. Let us denote the ratio of E'to B at the top surface of layer n
by K. The bottom layer (ie. n= N) is a uniform half-space so the value of K}, is
directly obtained from Formula (24) with o = g. Thus

_i2nf |i2nf

Ky
Ky HoOn

(27)

For each layer above, Equations (25) and (26) are combined and we set z=0
to give the ratio of the fields at the top of the layer, ie. K, and set z =1 to give
the ratio of the fields at the bottom of the layer which, because of continuity of
fields across the boundary, is the same as the ratio of the fields at the top of the
underlying layer, i.e. K,

S, +R
Ko=ths ¢ (28)

n n

—knl Kl
S,e"m +R e

Kn+1 =T Sne_knln _ Rnek"'"

(29)

izﬂ:f « .. .
where 77, = " is the “Characteristic Function” of layer n.

n
Dividing the top and bottom of Equation (29) by e gives
S,e % 4R

Ko =71, S.e? R (30)

Multiplying by the denominator on the right-hand side gives
Kﬂ+1 (Sneizknln - Rn ) = 77” (Sneizknln + Rn) (31)

Collecting termsin S, and R, gives

( Kn+1 - 77n ) Sne_2kn|n = (Kn+l + 77n ) Rn (32)
Thus we can write
K —
EKml - Zn ; Sne—anln — Rn (33)
n+l n

Using this expression for R, we can write

(Kn+1+’7n)s +(Kn+1_’7n)

S +R =
' " (Kn+1+’7n) " (Kn+1+77n)

S, e 2 (34)

and
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K K..i—
Sn_Rn:( n+1+77n)8 _( n+l ﬂn)sne—anln (35)

(Kn+1+77n) " (Kn+1+77n)
Substituting these into Equation (28) and cancelling common terms give

(Kn+1 + 77n ) + ( Kn+l _nn )e—anln
' (Kn+1 +1, ) - ( Kn+1 —Th )e_anIn

Collecting termsin K, ,; and 7, gives

Ky (e )4y, (1-e 0t )
K, =1, K (1—efzk“|" )+ 7 <1+e—2kn|n ) (37)

n+l

K, =

(36)

Formula (37) is a recursive relation for calculating K, at the top surface of
layer n from K_,; at the top surface of the underlying layer n + 1. The initial
value in the application of Formula (37) is K}, given by Equation (27) which is
used to calculate K, at the top surface of the next layer up. This is then used in
the calculation for the next layer, and so on, up to the Earth’s surface. The final
value is the transfer function K = K| relating £and B at the Earth’s surface.

It should be noted that the multi-layer transfer function is exact, as is the uni-
form-Earth transfer function, but in the multi-layer case the transfer function
can only be expressed by the recursive relation (37) with the initial value from (27)
whereas the transfer function for a uniform Earth has a simple explicit Formula
(24).

The calculations are repeated for each frequency required to build up the full

description of the dependence of the transfer function on frequency.

2.3. Expression for the Geoelectric Field

To determine the time variation of the electric field, we use Equation (3) and
note that each frequency component of the electric field is given by the transfer
function and the magnetic field at that frequency (Equation (14)). Thus we ob-
tain
E(t)= [ K(f)B(f)e”™df (38)
As shown in Sections 2.1 and 2.2, the Earth transfer function, K{(¥), can be
derived as a function of frequency for a uniform conductivity model or a layered
conductivity model of the Earth. To use this to calculate the geoelectric field,
note that the B(¥) terms in (38) are given by the Fourier transform of the geo-
magnetic field variation B(#). Thus (38) can be written as

E(t)= T K(f)ﬁ B(t')e‘z““'dt’}eiz"“df (39)

—0 —0

This can be more simply written
E(t)=F*[K(f)F{B(1)}] (40)
where Fand F' represent the forward and inverse Fourier transform, respec-

tively.
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Thus the calculation of the geoelectric field comprises three steps:

1) Take the Fourier transform of the geomagnetic field variation B(?):

2) Multiply each frequency component by the transfer function of the Earth
K(f):

3) Take the inverse Fourier transform to obtain the geoelectric field £(#).

3. Sources of Data

Equation (39) shows that the calculation of geoelectric fields requires a time se-
ries of magnetic field measurements 5(¢) and the Earth transfer function K{(/)

dependent on the Earth’s conductivity structure.

3.1. Magnetic Field Measurements

Measurements of the Earth’s magnetic field are made at many observatories
around the world. Most observatories are members of Intermagnet, which pro-
motes common instrument standards and data collection methods. Data from
Intermagnet observatories are available through the Web site

http://www.intermagnet.org. In addition, a number of magnetometer chains are

operated by universities and research institutes, and these data have been col-

lected together on the web site http://supermag.jhuapl.edu/mag/.

Magnetic field measurements are typically made using Fluxgate magnetome-
ters. A set of three orthogonal magnetometers are used to measure the X; Y'and
Z magnetic field components in the northward, eastward and vertically down-
ward directions, respectively (Figure 1).

Magnetic field recordings have traditionally been made with a sampling in-
terval of one minute, with higher frequencies filtered out prior to sampling to
remove frequencies above the Nyquist frequency to prevent aliasing problems
[18]. Recordings have also been made with sampling once every 10 s, or once
every 5 s, and the new Intermagnet standard for observatories is to make re-

cordings with a sampling interval of 1 s.

3.2. Earth Transfer Function

The Magnetotelluric (MT) technique is a geophysical method that uses record-
ings of the geoelectric field and geomagnetic field variations to obtain informa-
tion about the Earth conductivity structure [19] [20] [21]. Because the fields at

X

z

Figure 1. Geomagnetic coordinate system. Magnetic field components, X, Y'and Z meas-
ured in the northward (x), eastward (y) and vertically downward (2) directions.
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different frequencies penetrate to different depths within the Earth, spectral analy-
sis of the geoelectric and geomagnetic field recordings can be used to determine
the relationships between F and B at different frequencies and build up a (1-D)
profile of the Earth conductivity variation with depth. Magnetotelluric surveys
along transects or in arrays can be used to provide 2-D or 3-D models of the
Earth conductivity structure.

The results from MT studies can be used in several ways. Published results
from MT surveys usually describe the conductivity structure. These can be used
to construct a 1-D layered Earth model, which is then used to calculate the Earth
transfer function as shown in Sections 2.1 and 2.2. The MT results may show
different conductivity values in different zones and a 1-D model can be con-
structed for each zone with the results being used to obtain “piecewise” calcula-
tions of the geoelectric fields affecting critical infrastructure [22]. Alternatively,
where they are available, 2-D or 3-D models could be used to determine the
transfer functions at the Earth’s surface.

Magnetotelluric studies, in the course of their data processing, generate sur-
face impedance functions for each of their measuring sites. Some studies make
these impedance functions available online (e.g. the Lithoprobe studies in Cana-
da available at http://lithoprobe.eos.ubc.ca/ and the Earthscope studies in the US

available at http://www.earthscope.org. Using the relation K(/) = ZA)/u, the sur-

face impedance Z( ) directly gives the Earth transfer function K(#) to be ap-
plied to the calculation of the geoelectric field.

4. Numerical Calculations

The first main step in numerical calculation of geoelectric fields, as specified in
Section 2.3, is to take the Fourier transform of the magnetic field data for the in-
terval of interest. However, before taking the Fourier transform some precondi-
tioning of the magnetic field data is needed. This follows standard practice for
time series analysis, e.g. [18]. To reduce spectral leakage it is desirable to remove
the mean and linear trend from the time series and taper the ends by multiplying
the time series with a split cosine bell window (or another suitable window). The

split cosine bell window is given by

l[l—cos(ﬂjj, Ost<£
2 p 2

Wp (t) =1L

1[1—003(MJJ, 1—£st<1
2 p 2

where pis the proportion (usually 10%) of the time series to be tapered [23].

N o

p
<t<l-— 41
= 2 (1)

The tapering prevents any spurious frequency components from being intro-
duced by the discontinuity represented by the end of the time series, but has the
disadvantage that the calculated geoelectric fields will also be tapered. To over-

come this when calculating the geoelectric fields for a particular day, it is rec-
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ommended that the days on either side be included in the time series for analy-
sis. The geoelectric field is then calculated for the set of 3 days and the results for
the first and last day, which are affected by the tapering, are discarded leaving
the correct geoelectric field values for the middle day of the set.

The Fourier transform of the geomagnetic data time series can be performed
using a Fast Fourier Transform (FFT) that is built into many software packages.
There is no standard convention for the definition of a forward transform or an
inverse transform and these can differ from one software package to another.
Fortunately, in this application where the forward and inverse transforms are
always used as a pair, the choice of definition does not matter, although this is
not the case when an individual transform is used [24]. Many FFT routines ex-
pect the input data to be of a length that is a power of 2 and be comprised of
complex numbers. This is easily achieved by padding the geomagnetic data set
with zero values at the end to extend the data length to a power of 2 and by as-
signing the geomagnetic data values to be the real parts and setting the imagi-
nary parts to zero. This complex array is often overwritten by the output array
from the FFT routine.

The Discrete Fourier Transforms to go between the samples of the continuous

time recording (x) and discrete frequency components (X) can be defined as [24]

[25].
lN,l 7i2nkn
X(k):n x(n)e N (42)
n=0
N-1 iann
x(n)=> X(k)e N (43)

n=|

When performing the forward FFT from the time domain to the frequency
domain the output is the complex spectral components at positive and negative
frequencies. However, the negative frequency components are output at the end
of the array (Figure 2), which is a mathematical property of the Discrete Fourier
Transform, not just a property of the FFT routine used. This needs to be taken

into account when multiplying by the Earth transfer function values.

— Real
................................. Imaginary

Negative fregs.- Positive freqs

1 Array position

Figure 2. Spectral values at negative frequencies are output at end of array.
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The output of the FFT is the spectral components of the magnetic field varia-
tion at a set of frequencies determined by the time-domain sampling interval, A¢
and the length of the time series, NV, in the time domain that is transformed.

These frequencies

A N_g) N (N
+1 42 2 2 2 -2 -1

i ’ ) y " ) ’ TR ’ (44)
NAt NAt N At N At N At NAt NAt

are those for which the Earth transfer function must be calculated. For each of
the positive frequencies multiply the magnetic field spectral value by the Earth
transfer function to give the corresponding electric field spectral value. The elec-
tric field spectral values for negative frequencies should then be set to the com-
plex conjugates of the values for positive frequencies.

The resulting electric field spectrum (as with the magnetic field spectrum) has
an even real part and an odd imaginary part. The odd imaginary part goes
through zero at the Nyquist frequency (/= 1/2A%) (and at zero frequency). This
requires setting the imaginary part of the £ spectrum at #, equal to zero.

Now perform an inverse FFT on the electric field spectrum. This will give an
array of complex values that contains the electric field in the time domain. Just
as with the original magnetic field data, the electric field data must be real. Thus
the computed array of electric field values should comprise complex values for
which the imaginary parts are all zero. In practice, non-zero values are obtained
for the imaginary parts but these should be many orders of magnitude (~10)
smaller than the real part values. This should be checked as a test that the calcu-
lations have been made correctly. Small differences in the above procedure, e.g.
not setting the imaginary part at #, to zero can make the imaginary parts of the

computed electric field values much larger than they should be.

5. Verification of the Calculations

Analytic expressions have been derived for synthetic magnetic test data and
electric fields at the surface of a uniform Earth and a layered Earth [26] [27].
A synthetic test magnetic field variation has been constructed as the sum of

six sine waves:
B(t)zzsmzlﬁ\71 sin(2nf t+®,) (45)

with amplitudes, A, approximately proportional to 1//,, and phases, @, as-
signed arbitrary values as shown in Table 1.

Test calculations are performed using two Earth models: 1) a uniform Earth
model with a resistivity of 1000 Q-m; 2) a layered Earth model, used for Québec
and consisting of 5 layers with, from the top down, thicknesses and resistivities:
15 km, 20,000 Q-m; 10 km, 200 Q-m; 125 km, 1000 Q-m; 200 km, 100 Q-m;
above a half-space of 3 Q-m [28].

The formulas for a uniform Earth model (24) or a layered Earth model (37)

give the transfer function as a complex number at each frequency. The transfer
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Table 1. Parameters of the synthetic test magnetic field variations.

m Ay @, (deg) S (Hz) T, =1//, (min)
1 200 10 0.00009259 180

2 90 20 0.00020833 80

3 30 30 0.00047619 35

4 17 40 0.00111111 15

5 8 50 0.00238095 7

6 3.5 60 0.00555555 3

function amplitude is the square root of the sum of the squares of the real and

imaginary parts

|K(f)|:\/[RE{K(f)}]2+[IM{K(f)}]z (46)

And the phase is given by

Phase{K (f )} =tan™ {%} (47)

In the case of a uniform Earth model the transfer function is given by (24).

" wp = 1+ .
Writing the square root of “/” as a complex number +/i =—= we can write Equ-

V2

ation (24) as

. | «f
K(F)=(a+i) |5 (48)
Thus the real and imaginary parts of K(#) are equal and given by /;fo_ .
0
Substituting these into (46) gives
Amplitude {K ( )} :\/ L \/M (49)
MO O HO

Substituting into (47), because the real and imaginary parts are equal, gives
Phase{K ()} =tan™ {1} = 45’ (50)

This shows that a uniform medium, regardless of the conductivity, o, gives a
transfer function with a phase of 45°.

For a layered Earth model the recursive Formula (37) gives complex values for
K(¥) which do not have a simple analytic expression. In this case, the appropri-
ate way to calculate the amplitude and phase is to use the calculated real and
imaginary parts of K(¥) in Equations (46) and (47).

The transfer function amplitudes |K,| and phases 8, for the uniform and layered
Earth models, for the six frequencies in the synthetic magnetic data, are shown
in Table 2 and Table 3.

Combining the six magnetic field frequency components with the correspond-

ing transfer function values gives the electric field.
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Table 2. Transfer function for the uniform Earth model.

m S (Hz) Amplitude, |K,,| (mV/km/nT) Phase, 6,, (deg)
1 0.000093 0.6804 45.00
2 0.000208 1.0206 45.00
3 0.000476 1.5430 45.00
4 0.001111 2.3570 45.00
5 0.002381 3.4503 45.00
6 0.005556 5.2705 45.00

Table 3. Transfer function for the layered Earth model.

m S (Hz) Amplitude, |K,,| (mV/km/nT) Phase, 6,, (deg)
1 0.000093 0.2188 77.15
2 0.000208 0.4480 73.76
3 0.000476 0.8681 67.17
4 0.001111 1.5392 62.08
5 0.002381 2.5935 60.58
6 0.005556 4.6625 54.97
E(t)=3" |Ku|A,sin(2nf, + @, +6,) (51)

Multiplying the |K,,| and A, terms and adding the phases in (51) gives the
electric field

E(t)=3° E,sin(2xf, +¢,) (52)

with the six electric field waves as given in Table 4 for the uniform Earth model,
and in Table 5 for the layered Earth model.

The synthetic geomagnetic field variation given by Equation (45) and Table 1
is shown in Figure 3. The exact geoelectric fields obtained from Equation (52)
and Table 4 for the uniform Earth model and Table 5 for the layered Earth
model are shown in Figure 4(a) and Figure 4(b), respectively. These waveforms
provide analytic test cases that can be used to test the accuracy of numerical cal-
culations. It is necessary to emphasize, referring to Section 2, that B expressed by
Equation (45) with the parameter values given in Table 1 and shown in Figure 3
and £ expressed by Equation (52) with the parameter values given in Table 4 or
Table 5 and shown in Figure 4(a) or Figure 4(b) represent either E, and B, or
—E,and B,

The synthetic magnetic field data, as shown in Figure 3, comprise a set of 3
days of geomagnetic field variations with a sampling interval of 1-minute. This
was used as input to the process for numerical computation described in Section
4. The resulting calculated geoelectric fields for Day 2 of the interval were then
compared with Day 2 of the exact analytic solutions shown in Figure 4(a) and
Figure 4(b). The results of that comparison are shown in Figures 5(a) (uniform
Earth) and Figure 5(b) (layered Earth).
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Figure 3. Test magnetic field variation.
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Figure 4. Exact electric fields. (a) For the uniform Earth model; (b) For the layered Earth
model.

Table 4. Parameters of six electric field waves for the uniform Earth model.

m S (Hz) Amplitude, E,, (mV/km) Phase, ¢,, (deg)
1 0.000093 136.0827 55.00
2 0.000208 91.85587 65.00
3 0.000476 46.29100 75.00
4 0.001111 40.06939 85.00
5 0.002381 27.60262 95.00
6 0.005556 18.44662 105.00

Table 5. Parameters of six electric field waves for the layered Earth model.

m S (Hz) Amplitude, E,, (mV/km) Phase, ¢, (deg)
1 0.000093 43.76735 87.15
2 0.000208 40.32327 93.76
3 0.000476 26.04161 97.17
4 0.001111 26.16634 102.08
5 0.002381 20.74819 110.58
6 0.005556 16.31864 114.97
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Figure 5. Comparison between numerical and analytic electric field values. (a) For the
uniform Earth model; (b) For the layered Earth model.

Making a least-square fit to the data points in Figure 5(a) and Figure 5(b) as
follows

Enumerical = aEanaIytic +b (53)

gives the values a = 0.999939118 (uniform), a = 1.000000135 (layered), 6= 0.3250377
mV/km (uniform) and b = 0.042586 mV/km (layered). The good agreement
between the numerical and analytic geoelectric fields shown by these numbers
and correlation coefficients of 0.999999343 (uniform) and 0.999999989 (layered)

confirm the accuracy of the numerical computation of geoelectric fields.

6. Calculation Using Tensor Transfer Functions

In the situations considered above where the Earth is approximated by a uni-
form half-space or a layered conductivity model the geoelectric fields produced
are always orthogonal to the geomagnetic field variations producing them.
However, in reality the Earth has a three-dimensional structure featuring large-
scale conductivity changes such as at a coastline or smaller scale geological fea-
tures with different conductivities. These all create situations where the electric
field direction is deflected away from the orthogonal direction as shown in Fig-
ure 6.
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Figure 6. Deflection of electric fields by conductivity structure in the Earth.

In these cases the geoelectric fields and geomagnetic field variations are re-

lated by a tensor transfer function in the frequency domain:

Ex _ Kxx ny Bx (54)
Ey ny KW By

Thus the northward component of the geoelectric field, E,, can be written

E, () =E,(t)+E, (1) (55)

where
Eo (t)=F*[Ko (f)F{B,(1)}] (56)
E,y (1)=F*[K, (f)F{B, (1)}] (57)

Similarly, the eastward component of the geoelectric field, £, can be written

E,(t)=E, (t)+E, (1) (58)

where
E,. (t)= F [ K (F)F {B, (1)} ] (59)
E, (1)=F[K, (T)F{8,(t)}] (60)

It can be seen that these equations are just repeating the process used in the
1-D calculation. Therefore the numerical calculation method described in Sec-
tion 4 can be used with the components of the tensor transfer function values
and the verification process described in Section 5 can be used to test the calcu-
lation of the geoelectric field parts given by (56), (57), (59) and (60).

In Equation (54) the minus sign in the relationship between E(/) and B,(f)
mentioned in connection with the 1-D transfer function K(#) used in (14) is
absorbed into the K, (/) term. The K,,(/) and K, (/) terms can be positive or
negative depending on the conductivity structure. In an area where the structure

is 1-D the tensor transfer function terms K,,(/) and K, (f) are zero, and the
diagonal terms are given by K, (/) = K(/) and K,,(/) =-K(/f).

7. Discussion

The above verification tests relate to the process for numerical computation of
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geoelectric fields. The accuracy of electric fields calculated for any particular site
also depends on how well the Earth models for that location represent the Earth
conductivity structure that is actually there. As mentioned above, the Earth has a
complicated 3-dimensional conductivity structure and any Earth model used is
inevitably an approximation to the real situation. One-dimensional models only
take account of the variation of conductivity with depth, while 2-dimensional
and 3-dimensional models attempt to represent some of the lateral variations in
conductivity.

The Earth transfer functions used in the above calculations can either be ob-
tained from models or directly from magnetotelluric (MT) measurements. The
Earth conductivity models are also derived from MT measurements, so the two
approaches should be equivalent. However, 2-D and 3-D models are derived by
combining data from an array of MT sites so the Earth transfer function based
on the model may not exactly reproduce the transfer functions measured at in-
dividual MT sites.

MT measurements are not available everywhere. To provide Earth conductiv-
ity information for areas with no MT measurements, zones with similar geologic
structure have been identified and the MT results from a survey crossing part of
a zone are applied to the rest of the zone. The geoelectric field can then be calcu-
lated in each zone. These “piecewise” calculations then provide geoelectric field
values across the whole region covered by a power grid and provide a simple
approximate way of including Earth conductivity changes in the calculation of

geomagnetically induced currents in a power network [13] [22] [29] [30] [31].

8. Conclusions

Calculation of the geoelectric fields produced during geomagnetic disturbances
at the Earth’s surface is a key requirement for assessing the geomagnetic hazard
to critical infrastructures such as power systems and pipelines.

The geoelectric field can be calculated by taking a Fourier Transform of a time
series of magnetic field data, multiplying the magnetic field spectral compo-
nents by the Earth transfer function to obtain the electric field spectrum, and
then taking the inverse Fourier transform to obtain the geoelectric field in the
time domain.

Accurate calculations require preprocessing (remove mean and trend and ta-
per with a split cosine bell) of the magnetic field data as well as taking care of the
placement of positive and negative frequency terms in the transform array and
combining these with the appropriate Earth transfer function terms.

The numerical calculation process has been verified by testing with a synthetic
magnetic field time series for which an exact analytic solution of the geoelectric
field is available. Comparison of the calculated geoelectric fields with the analytic
solution gives effectively perfect agreement (correlation coefficients better than
0.9999).

Uncertainties in calculation of geoelectric fields for critical infrastructure are
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not a result of the computation process. Instead, they arise from uncertainties in
the data used in the calculations. The sparsity of magnetic observing sites means
that the magnetic field disturbances experienced by the parts of a power system,
pipeline, or other affected infrastructure between observing sites are not neces-
sarily accurately specified. Similarly, Earth transfer functions are based on mag-
netotelluric surveys that only cover part of a network so they may not exactly
represent the Earth conductivity structure throughout the entire system. When
more magnetic data and Earth conductivity information become available they
can be used with the methods described here to calculate better values of the

geoelectric fields affecting critical infrastructure.

Acknowledgements

This work was performed as part of the space weather activities of the Public
Safety Geoscience program at Natural Resources Canada. Contribution number:
20180404.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this pa-

per.

References

[1] Turner, G. (2011) North Pole, South Pole. The Epic Quest to Solve the Great Mys-
tery of Earth’s Magnetism. The Experiment, New York, 272 p.

2] Campbell, W.H. (2003) Introduction to Geomagnetic Fields. 2nd Edition, Cam-
bridge University Press, Cambridge.

[3] Boteler, D.H.,, Pirjola, R.J. and Nevanlinna, H. (1998) The Effects of Geomagnetic
Disturbances on Electrical Systems at the Earth’s Surface. Advances in Space Re-
search, 22, 17-27. https://doi.org/10.1016/S0273-1177(97)01096-X

[4] Prescott, G.B. (1866) History, Theory and Practice of the Electric Telegraph. IV Edi-
tion, Ticknor and Fields, Boston.

[5] Boteler, D.H. (2006) The Super Storms of August/September 1859 and Their Effects
on the Telegraph System. Advances in Space Research, 38, 159-172.
https://doi.org/10.1016/j.asr.2006.01.013

[6] Gummow, R.A. (2002) GIC Effects on Pipeline Corrosion and Corrosion Control
Systems. Journal of Atmospheric and Solar- Terrestrial Physics, 64, 1755-1764.
https://doi.org/10.1016/S1364-6826(02)00125-6

[7] Boteler, D.H. and Trichtchenko, L. (2015) Telluric Influence on Pipelines. In: Revie,
RW., Ed., Oil and Gas Pipelines. Integrity and Safety Handbook, Chapter 21, John
Wiley & Sons, Inc., Hoboken, 275-288. https://doi.org/10.1002/9781119019213.ch21

[8] Boteler, D.H. (1994) Geomagnetically Induced Currents: Present Knowledge and
Future Research. JEEE Transactions on Power Delivery, 9, 50-58.
https://doi.org/10.1109/61.277679

[9] Bolduc, L. (2002) GIC Observations and Studies in the Hydro-Québec Power Sys-
tem. Journal of Atmospheric and Solar- Terrestrial Physics, 64, 1793-1802.

[10] Pulkkinen, A., Lindahl, S., Viljanen, A. and Pirjola, R. (2005) Geomagnetic Storm of

DOI: 10.4236/ijg.2019.1010053

947 International Journal of Geosciences


https://doi.org/10.4236/ijg.2019.1010053
https://doi.org/10.1016/S0273-1177(97)01096-X
https://doi.org/10.1016/j.asr.2006.01.013
https://doi.org/10.1016/S1364-6826(02)00125-6
https://doi.org/10.1002/9781119019213.ch21
https://doi.org/10.1109/61.277679

D. H. Boteler, R. J. Pirjola

(16]

(17]

(18]

(19]

(20]

[21]

[22]

(23]

[24]

[25]

[26]

29-31 October 2003; Geomagnetically Induced Currents and Their Relation to
Problems in the Swedish High-Voltage Power Transmission System. Space Weath-
er, 3, S08C03. https://doi.org/10.1029/2004SW000123

Guillon, S., Toner, P., Gibson, L. and Boteler, D. (2016) A Colorful Blackout. /EEE
Power & Energy Magazine, 14, 59-71.

Boteler, D.H. (2001) Assessment of Geomagnetic Hazard to Canadian Power Sys-
tems. Natural Hazards, 23, 101-120.

Viljanen, A., Pirjola, R., Wik, M., Adam, A., Pracser, E., Sakharov, Y. and Katkalov,
J. (2012) Continental Scale Modelling of Geomagnetically Induced Currents. Jour-
nal of Space Weather and Space Climate, 2, A17.
https://doi.org/10.1051/swsc/2012017

Viljanen, A., Pirjola, R., Précser, E., Katkalov, J. and Wik, M. (2014) Geomagneti-
cally Induced Currents in Europe. Modelled Occurrence in a Continent-Wide Pow-
er Grid. Journal of Space Weather and Space Climate, 4, A09.
https://doi.org/10.1051/swsc/2014006

Wik, M., Viljanen, A., Pirjola, R., Pulkkinen, A., Wintoft, P. and Lundstedt, H.
(2008) Calculation of Geomagnetically Induced Currents in the 400 kV Power Grid
in Southern Sweden. Space Weather, 6, S07005.
https://doi.org/10.1029/2007SW000343

Boteler, D.H. (2015) The Evolution of Québec Earth Models Used to Model Geo-
magnetically Induced Currents. JEEE Transactions on Power Delivery, 30, 2171-2178.

Love, J.J., Lucas, G.M., Kelbert, A. and Bedrosian, P.A. (2018) Geoelectric Hazard
Maps for the Mid-Atlantic United States: 100 Year Extreme Values and the 1989
Magnetic Storm. Geophysical Research Letters, 45, 5-14.
https://doi.org/10.1002/2017GL076042

Kavanagh, E.R. (1974) Time Sequence Analysis in Geophysics. Third Edition, Univ.
of Alberta Press, Edmonton, 492.

Kaufman, A.A. and Keller, G.V. (1981) The Magnetotelluric Sounding Method.
Methods in Geochemistry and Geophysics Vol. 15, Elsevier Scientific Publishing Com-
pany, Amsterdam.

Simpson, F. and Bahr, K. (2005) Practical Magnetotellurics. Cambridge University
Press, Cambridge, 272 p. https://doi.org/10.1017/CBO9780511614095

Chave, A.D. and Jones, A.G. (2012) The Magnetotelluric Method, Theory and Prac-
tice. Cambridge University Press, Cambridge, 552 p.
https://doi.org/10.1017/CB0O9781139020138

Marti, L., Yiu, C., Rezaei-Zare, A. and Boteler, D. (2014) Simulation of Geomagnet-
ically Induced Currents with Piecewise Layered-Earth Models. /EEE Transactions
on Power Delivery, 29, 1886-1893. https://doi.org/10.1109/TPWRD.2014.2317851

Bloomfield, P. (2000) Fourier Analysis of Time Series: An Introduction. John Wiley
& Sons, New York, 2nd Edition, 269 p.

Boteler, D.H. (2012) On Choosing Fourier Transforms for Practical Geoscience Ap-
plications. International Journal of Geosciences, 3, 952-959.
https://doi.org/10.4236/ijg.2012.325096

Bracewell, R.N. (1978) The Fourier Transform and Its Applications. Second Edition,
McGraw-Hill Book Company, New York, 444 p.

Pirjola, R.J. and Boteler, D.H. (2017) Truncation of the Earth Impulse Responses
Relating Geoelectric Fields and Geomagnetic Field Variations. Geosciences Research,
2,72-92. https://doi.org/10.22606/gr.2017.22002

DOI: 10.4236/ijg.2019.1010053

948 International Journal of Geosciences


https://doi.org/10.4236/ijg.2019.1010053
https://doi.org/10.1029/2004SW000123
https://doi.org/10.1051/swsc/2012017
https://doi.org/10.1051/swsc/2014006
https://doi.org/10.1029/2007SW000343
https://doi.org/10.1002/2017GL076042
https://doi.org/10.1017/CBO9780511614095
https://doi.org/10.1017/CBO9781139020138
https://doi.org/10.1109/TPWRD.2014.2317851
https://doi.org/10.4236/ijg.2012.325096
https://doi.org/10.22606/gr.2017.22002

D. H. Boteler, R. J. Pirjola

[27]

(28]

[29]

(31]

Boteler, D.H., Pirjola, R.J. and Marti, L. (2019) Analytic Calculation of Geoelectric
Fields Due to Geomagnetic Disturbances: A Test Case. [EEE Access, 7, 147029-
147037. https://doi.org/10.1109/ACCESS.2019.2945530

Boteler, D.H. and Pirjola, R.J. (1998) The Complex-Image Method for Calculating
the Magnetic and Electric Fields Produced at the Surface of the Earth by the Auroral
Electrojet. Geophysical Journal International, 132, 31-40.
https://doi.org/10.1046/j.1365-246x.1998.00388.x

Viljanen, A. and Pirjola, R. (1994) On the Possibility of Performing Studies on the
Geoelectric Field and Ionospheric Currents Using Induction in Power Systems.
Journal of Atmospheric and Terrestrial Physics, 56, 1483-1491.

Viljanen, A., Pulkkinen, A., Amm, O., Pirjola, R., Korja, T. and BEAR Working
Group (2004) Fast Computation of the Geoelectric Field Using the Method of Ele-

mentary Current Systems and Planar Earth Models. Annales Geophysicae, 22,
101-113. https://doi.org/10.5194/angeo-22-101-2004

Adam, A., Pracser, E. and Wesztergom, V. (2012) Estimation of the Electric Resis-
tivity Distribution (EURHOM) in the European Lithosphere in the Frame of the
EURISGIC WP2 Project. Acta Geodaetica et Geophysica Hungarica, 47, 377-387.
https://doi.org/10.1556/AGeod.47.2012.4.1

DOI: 10.4236/ijg.2019.1010053

949 International Journal of Geosciences


https://doi.org/10.4236/ijg.2019.1010053
https://doi.org/10.1109/ACCESS.2019.2945530
https://doi.org/10.1046/j.1365-246x.1998.00388.x
https://doi.org/10.5194/angeo-22-101-2004
https://doi.org/10.1556/AGeod.47.2012.4.1

	Numerical Calculation of Geoelectric Fields That Affect Critical Infrastructure
	Abstract
	Keywords
	1. Introduction
	2. Theory
	2.1. Uniform Conductivity Model
	2.2. Layered Conductivity Model
	2.3. Expression for the Geoelectric Field

	3. Sources of Data
	3.1. Magnetic Field Measurements
	3.2. Earth Transfer Function

	4. Numerical Calculations
	5. Verification of the Calculations
	6. Calculation Using Tensor Transfer Functions
	7. Discussion
	8. Conclusions
	Acknowledgements
	Conflicts of Interest
	References

