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Abstract 
Volume-Synchronized Probability of Informed Trading (VPIN) is a tool de-
signed to predict extreme events like flash crashes in high-frequency trading. 
Its aim is to estimate the Probability of Informed Trading (PIN), which was 
built from a probabilistic framework. Some concerns have been raised about 
its theoretical foundations and its reliability. More precisely, it has been 
shown that theoretically the VPIN does not approximate the PIN as the PIN 
has been built with a time-clock framework and the VPIN with a volume 
clock one. On a practical point of view, the VPIN has been found to be sensitive 
to the starting point of computation of a data set and to different parameters, 
such as the classification rule. In this paper, in order to improve the PIN theo-
retical framework, we firstly analyze the theoretical foundations of the PIN and 
the VPIN models to have a better view of all its different assumption subtle-
ties. It secondly makes it possible to point out some approximation flaws in 
the formula used to approximate the PIN and to propose another exact way 
to compute the PIN. All different results are illustrated with simulations. 
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1. Introduction 

The amount of trading data has exploded in finance thanks to the continuing 
progress of high frequency techniques. It constrains practitioners to use more 
and more state-of-the-art algorithms to deal with this overwhelming amount of 
information. Computers and algorithms are more and more efficient, but still 
decision making is based on both the quantity and the quality of information. 
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Thus, errors and speculations that can make the financial market toxic, i.e. 
conducive to crashes, are still possible. Examples in the past, such as the “Flash 
Crash” of May 6, 2010, have shown that algorithmic trading in finance has 
made it possible to introduce new kind of crashes characterized by their sud-
denness. Such quick crashes seem dangerous because of a kind of inherent un-
predictability. However, theoretical framework to model this new phenomenon 
exists.  

Easley, Engle, O’Hara and Wu [1] designed a model of the high-frequency fi-
nancial market based on flows of informed and uninformed traders. In this 
model, informed traders are aware of the evolution of the price in the future and 
thus of which decision takes (buy or sell). The authors managed to show that 
information is a key parameter of the spread between ask and bid of prices, as 
they demonstrate that the probability of being informed within their theoretical 
framework is proportionally linked with it. They named this key parameter the 
Probability of Informed Trading (PIN). A high value of the PIN is an indicator 
of the level of toxicity of this high frequency trading market, as it would mean it 
relies on too many informed traders. Later, Easley, Lopez de Prado, O’Hara [2] 
[3] designed a tool, nicknamed Volume-synchronized Probability of Informed 
Trading (VPIN), supposed to approximate the PIN. It appeared it could predict 
the “Flash Crash” of May, 6 2010 a few hours before it happened [4]. A number 
of papers have been written [5] [6] [7], and it is proposed to use it for regulation 
through a VPIN contract [4] [8]. However, critics pointed out some flaws, ques-
tioning its reliability. For example, Andersen and Bondarenko have shown [9] 
that the VPIN is quite sensitive to the starting point of when one starts compu-
ting the VPIN on a data set. It indeed questions the VPIN prediction quality. 
Moreover, they have also shown that the VPIN is sensitive to other parameters, 
such as the trade classification rule used [10], or how one defines the average 
daily volume of trades [11]. Changing the classification rule may drastically 
change the VPIN behavior [12]. Tomas Pöppe, Sebastian Moos and Dirk Schie-
reck have arrived to the same conclusions with a different approach. Using a 
different classification rule can change the VPIN prediction power toward a crash 
(in their paper a German blue-chip stock) [13]. Besides, controlling ex-ante para-
meters seem to give poorer prediction quality [10] [11]. This point has also been 
checked by D. Abad, M. Massot and R. Pascual [12]. Controlling for ex-ante rea-
lized volatility, and trading intensity, as did T. G. Andersen and O. Bondarenko 
[11], prediction quality seems to vanish. More deeper, they have also underlined 
that it is not obvious how one should define a VPIN prediction, analyzing more 
precisely toxic and non-toxic halts, as well as toxic events. Furthermore, Torben 
G. Andersen and Oleg Bondarenko interpret the VPIN as being too sensitive to 
trading intensity. They have also explained the VPIN metric is sometimes unex-
pectedly correlated with other usual ones (such as VIX or RV) [9] [10]. Moreo-
ver, it has been shown [14] [15] that the VPIN does not approximate the PIN, as 
the PIN was built on a time-clock theoretical framework, and the VPIN with a 
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volume-clock paradigm. In this study, we propose another way to estimate the 
PIN within its original time-clock framework.  

The purpose of this paper is to improve the PIN theoretical framework. Some 
concerns have been raised about its theoretical foundations. For this reason we 
assess step by step all the different theoretical ideas of the PIN model. More pre-
cisely, we firstly want to explicit all the theoretical framework of the PIN and the 
VPIN model to have a better view of all its different assumption subtleties. It se-
condly makes it possible to point out some approximation errors in the formula 
used to approximate the PIN and to propose another exact way to compute the 
PIN. In the following, we first recall the PIN model (Section 2). Second, after in-
troducing the VPIN original ideas we analyze the original first order approxima-
tion and then recall the difference of time clock and volume clock paradigm 
(Section 3). Finally, we suggest another way to compute the PIN (Section 4). 

2. The PIN Model  
2.1. The Time-Clock Framework  

The Probability of Informed Trading (PIN) is computed on a simple model of 
information among traders [16]. Let’s describe it with the following tree below 
(Figure 1), originally designed in [16]. Suppose prior to the beginning of any 
trading day, Nature determines whether an information event is relevant to the 
value of the asset to occur. Suppose information events are independently dis-
tributed and occur with a Bernoulli probability of value α , which can be seen 
on the first two branches on the left-hand side of the tree. These events are good 
news with a Bernoulli probability 1 δ−  (i.e. signal High), or bad news with 
probability δ  (i.e. signal Low). After the end of trading on any day, and before 
Nature moves again, the full information value of the asset is realized. Hence, for 
any of the three leaves of the tree in Figure 1, an informed trader would know 
which action to take. Trade arises from both informed traders (those who have 
seen any signal) and uninformed traders. On any day, arrivals of uninformed 
buyers and uninformed sellers are described by independent Poisson processes 
of respective intensity   and µ . Individuals trade a single risky asset and 
money with a market maker over 1, ,i I=   trading days. Within any trading 
day, time is continuous and it is indexed by [ ]0,t T∈ . Let’s define for [ ]0,t T∈ , 
for a given trading day, tS  and tB  the events that an order of respectively a 
sell and a buy arrive at time t. Let ( ) ( ) ( )( ), ,t t t tP P n P b P g=  be the market 
maker’s prior belief about the events “no news” (n) “bad news” (b) and “good 
news” (g) at time t1. Within this model we compute the spread at t tΣ  which is 
equal to t ta b− , where ta  and tb  are the ask and bid at time t (respectively 
the minimum price a seller is willing to receive and the maximum price a buyer  

 

 

1We summarize here the theoretic framework as described in [16]. Formally, considering the ran-
dom variables corresponding to order arrival of sells and buys St and Bt we associate the canonical 
respective filtrations to define later conditioned expectations. They are still noted as the events “St” 
and “Bt”. 
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Figure 1. A tree summarizing the theoretical framework. 

 
is willing to pay). Within this framework tb  is the expectation of the asset value, 
we denote tV , conditional on the history prior to t and on sell order tS . Simi-
larly, ta  is the expectation of tV  conditional on the history prior to t and on 
buy order tB . Let note V , *V  and V  respectively the value of the asset 
under the conditions of good new, no information and bad new. We have of 
course the following inequalities: *V V V≤ ≤ .  

2.2. Computation of the Spread  

We explicit now more the content of [3]. Let’s compute the bid, the ask follows 
exactly the same idea2:  

( )| , .t t tb E V t S=  

It can be re-written this way using the different possibilities of the tree on an 
event:  

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )*

| , , | | , , | | , , |

| | | .
t t t t t t t t t t t t t

t t t t t t

b E V t S n P n S E V t S g P g S E V t S b P b S

V P n S VP g S VP b S

= + +

= + +
 

Let’s compute the first term ( )|t tP n S , others follow the same idea. Using 
Bayes rule one finds the following:  

( ) ( ) ( )
( )

|
| ,t t t

t t
t t

P S n P n
P n S

P S
=  

so, by decomposing the denominator:  

( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

|
| .

| | |
t t t

t t
t t t t t t t t t

P S n P n
P n S

P S n P n P S g P g P S b P b
=

+ +
 

Let’s have a look at the term ( )|t tP S n  which is the probability at t that there 
will be a sell order at t under the constraints of no news. ( )|t tP S n  is a transi-
tion rate. To compute it, one must first calculate the transition probability for a 

 

 

2We use the same notations as the author, distinguishing the events “t” and “ tS ”. 
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strictly positive time length let say h. Formally, if one notes tN  the number of 
jumps of the corresponding Poisson process up to t under conditions of no 
events, we know its intensity is t  under the constraint of no news. For any h 
strictly positive and small enough we look to the limit of the number  
( )1|t t hP N N n

h
−− ≥

 when h goes to zero remaining strictly positive, which de-

fines the transition rate. At first order on h, one finds:  

( ) ( )1| 1 e .h
t t hP N N n h o h−− ≥ = − = +   

Dividing by h, one re-finds indeed the intensity of the Poisson process, which 
is a special case of a Markov jump process. Applying the same for other cases 
(“bad event”, “good event”), we have finally the following:  

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )( )

| | |

.
t t t t t t t t t

t t t

P S n P n P S g P g P S b P b

P n P g P b µ

+ +

= + + +  
 

As the probabilities with   sum to one we get the following expression:  

( ) ( ) ( ) ( ) ( ) ( ) ( )| | | .t t t t t t t t t tP S n P n P S g P g P S b P b P b µ+ + = +  

Finally the bid has this expression:  

( ) ( )( ) ( )
( )

*

.t t t
t

t

P n V P b V P g V
b

P b
µ
µ

+ + +
=

+
  


 

With the same reasoning the ask has this expression:  

( ) ( ) ( )( )
( )

*

.t t t
t

t

P n V P b V P g V
a

P g
µ

µ
+ + +

=
+

  


 

Actually one may simplify a bit these expressions as the expectation of V has 
the following form:   

( ) ( ) ( ) ( )* .t t t tE V V P n VP b VP g= + +  

We find:  

( )
( ) ( ) ( ) ,t

t t
t t

VP b
b E V

P b P b
µ

µ µ
= +

+ +


 
 

and:  

( )
( ) ( ) ( ).t

t t
t t

VP g
a E V

P g P g
µ

µ µ
= +

+ +


 
 

So the spread equals to:  

( ) ( ) ( )
( )
( )

( )
( )

.t t
t t t t

t t t t

VP g VP b
a b E V

P g P b P g P b
µ µ

µ µ µ µ
 

Σ = − = − + −  + + + + 

 
   

 

In the special case where ( ) ( )t tP g P b=  one finds the following simple form:  

( )
( ) ( ) ( )( )

( )( ) ( )1
.

2 1
tt

t
t t

P nP g
V V V V

P g P n
µµ

µ µ

−
Σ = − = −

+ + − 
 

If we make the hypothesis that ( ) ( )0 1tP n P n α= = −  is constant, then we 
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have the following:  

( ) ( )thePIN .
2t V V V Vµα

αµ
Σ = − = −

+
 

Thus, with the assumptions: ( ) ( ) 1t tP g P b δ δ= = = − , i.e. 1
2

δ =  and 

( ) ( )0 1tP n P n α= = − , the PIN equals the following:  

PIN .
2
µα
µα

=
+

 

We will keep the same hypothesis for the rest of the paper. 

3. Analysis of the First Order Approximate within the  
Time-Clock Framework  

The idea behind the VPIN is to find an easy way to compute the last above ex-
pression of the PIN using a volume-clock paradigm. More precisely, it aims at 
finding a way to easily compute the expressions obtained for the numerator αµ  
and denominator ( 2αµ +  ). The key heuristic behind the VPIN is to take ad-
vantage of a supposedly good property of the expectation of the absolute differ-
ence between Poisson random variable within a volume-clock framework to 
approximate αµ , i.e.: ( )E X Y− , where X and Y are Poisson variables. We 
will see this heuristic does not really make it possible to conclude as expected. 
More precisely, in the first subsection we will see which idea has been used to 
approximate the PIN within a time-clock framework. Secondly, we will see that 
first-order approximations used are not correct as the framework does not ve-
rify a required hypothesis. We analyze more precisely the first order approx-
imates which can be made in the time-clock framework. In the third subsec-
tion, we describe the volume-clock framework and explain why its hypotheses 
lead to different results compared to the time-clock framework. Finally, we illu-
strate our results with simulations.  

3.1. The Design of a New Heuristic  

In the first subsection we see which idea has been used to approximate the PIN 
within a time-clock framework. We refer now to the related work of Easley et al. 
[1]. Considering the previous framework the probability to obtain on the same 
time ( ),ty S B= , S sells and B buys for day t of length one is:  

( )( ) ( ) ( ) ( ) ( )

( ) ( )

2 2

2

, 1 e 1 e
! ! ! !

e .
! !

B S B S

t

S B

P y S B
B S B S

B S

µ

µ

µ
δ α α

µ
αδ

+
− + −

− +

+
= = − + −

+
+

 



  

 
 

So, if one notes TT S B= +  the total number of trades for this day, one finds, 
conditioning by all possibilities of the model:  

( ) ( ) ( ) ( ) ( ) ( )1 | | 1 | .E TT E TT g E TT b E TT nα δ αδ α= − + + −  

S and B are independant Poisson process, so one can sum in each case their 
respective intensities to find new Poisson processes. Thus:  
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( ) ( )( ) ( ) ( )( )1 1 ,E TT α δ µ αδ µ α= − + + + + + + − +       

i.e.  

( ) 2 .E TT αµ= +   

Note the following:  
• Remark 1: the time period is fixed, thus S and B can take whatever possible 

positive integer values, which won’t be the case if S + B was fixed.  
• Remark 2: intensities are rates, thus the equation has a meaning because one 

implicitly multiplies it by one (trading day).  
The authors propose to compute the expectation of the absolute value of the 

following random number K = S − B with an approximate. This is the intuition 
behind the computation of the VPIN. They refer to the following paper of Katti 
[17] but do not explicit any calculus. They assert that ( )E K αµ=  thanks to a 
first order approximation without explaining what it does mean. Let’s first de-
scribe the content of this reference and assumptions assumed. Then let’s de-
scribe which computations are involved within this time-clock framework.  

3.1.1. Katti’s Reference Assumptions 
The reference proposes several ways to compute the expectation of the absolute 
value of two random variables that follow same discrete positive distribution but 
with possibly different parameters. The case of Poisson processes is treated. Let’s 
describe the beginning of Katti’s paper [17]. Let’s note 1X  and 2X  two Pois-
son random variables of intensity 1λ  and 2λ . We would like to compute the 
following number 1 1 2E X X∆ = − . One can write the following:  

( ) ( )

( ) ( )

1 2 1 1 1
,

1 2 2 2
,

1 2 2 1

, ,

|

|

,

i k

i k

i i k i i k
i k i k

kP X X k X i P X i

kP X X k X i P X i

kP P kP P+ +

∆ = − = = =

+ − = = =

= +

∑

∑

∑ ∑

 

where the summations are over 1,2,3,  and 11 1e
!

i

iP
i

λ λ−=  and 22 2e
!

i

iP
i

λ λ−= . 

Then, one can develop it as follows:  

( )
( )

( )
( ) ( )1 2 1 21 2 2 1 2 1

1 1 2
0 0 0 0

e e ,
! ! ! !

i ik k

i i i i

k k
A B

i i k i i k
λ λ λ λλ λ λ λ λ λ∞ ∞ ∞ ∞

− − − −

= = = =

 
 ∆ = + = +
 + + 
∑∑ ∑∑  

with 1A  and 1B  the two different sums. The author, in order to simplify the 
calculus and use a trick, makes the following assumptions: 1 2λ λ ν= , where ν  
is a constant not linked anymore to 2λ  nor 1λ . It implies thus a relation be-

tween the two variables (for example 1
2

1λ
λ

= ). Thanks to this assumption he 

can do the following:  

2
1 2 2 0

0 02 2

,
!( )!

i k

i k
A A

i i k
ν λδ δλ λ

δλ δλ

∞ ∞

= =

    
= =    +    

∑∑  

say, with:  
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( )
( )0 1 22

0
1; 1; ,

!

i

i
A F i

i
ν λ

∞

=

= +∑  

where ( )1 , ,F xα γ  is a confluent hypergeometric function. Operating by 

( 2
2

δλ
δλ

) it finally leads to:  

2
1 2 0 1 1

2 2

3 1e ;3; 4 ;1; 4 .
2 2

A A F Fνν νλ ν ν ν
λ λ

     = − + − + −     
    

 

The particular case of 1 2λ λ λ= =  cannot be treated with this trick because it 
would imply equal numbers are linked by an inverse relation, so that the product 
is independant of 2λ . But 1 2λ λ ν= = , ν  is not anymore a constant of the 
main parameters 1λ  and 2λ , so applying the operator does not give the pre-
vious results. One may use here another reference, one cited by Katti [18]. We 
will detail later the same ideas for our precise the VPIN framework. Anyway, 
this case leads to the following:  

( ) ( )( )2
1 0 12 e 2 2 ,I Iλλ λ λ−∆ = +  

where ( ) ( )

2

0
2

! !

n i

n i

x

I x
i n i

+

∞

=

 
 
 =

+∑  is a modified Bessel function of first kind.  

3.1.2. How to Use as Far as Possible References’ Work to Approximate  
the VPIN in a Time-Clock Framework 

First, let’s put ourselves in the context where we have the differences of only 
Poisson processes. It’s pretty simple, one just have to condition the expectation 
of ( )E K  for each case:  

( ) ( ) ( ) ( ) ( ) ( )1 | | 1 | .E K E K g E K b E K nα δ αδ α= − + + −  

Then, remind K S B= − . S and B are, under the model assumption, Poisson 
processes describing the number of sells and buys in one day of trade. We only 
need two different kinds of Poisson processes to describe the mixture of Poisson 
processes resulting of informed and uninformed traders in each case (“good 
event”, “bad event” and “no event”). Let’s note them as follows ( )~SX    , 

( )~BX    , ( )~BYµ µ  and ( )~SYµ µ , S and B labelling buys or sells. One 
finds then:  

( ) ( ) ( )( ) ( )
( ) ( )
1

1 .

S B B B B S

S B

E K E X Y X E Y X X

E X X

µ µα δ αδ

α

= − − + + + −

+ − −

   

 

 

As all Poisson processes are independant one can sum them to produce new 
Poisson processes, as follows3:  

( ) ( ) ( ) ( ) ( ) ( ) ( )( )1 21 1 .E K E X Y E Y X E X Xµ µα δ αδ α+ += − − + − + − −       

One can thus sum the two first terms and obtain the following:  

 

 

3S and B labels do not have any more importance, to differenciate Poisson processes of the last ex-
pectation we have thus just put label one and two to distinguish the “no event” case. 
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( ) ( ) ( ) ( ) ( )( )1 21 .E K E X Y E X Xµα α+= − + − −     

One has to treat finally two different cases:  
• different intensities: first term  
• same intensities: second term  

3.2. How to Reach a First Order Approximate  

In this subsection we will first see that main assumption to use Katti’s result 
cannot be used to approximate the PIN. Therefore to approximate the PIN using 
authors’ intuition we describe then the following two steps:  
• one way to reach numerator exact value consists in using Ramasubban’s ideas 

[18],  
• first order asymptotic analysis involves separate cases to study sensitivity of 

the approximate to parameter’s values.  

3.2.1. Katti’s Assumptions Are Not Met in the New Setting 
We have seen that Katti’s reference use the assumption that Poisson intensities 

are linked by a relation of the form 1
2

νλ
λ

=  where ν  is independent of these  

parameters. Here the respective parameters would be µ +   and  . The prod-
uct ( )µ+   has clearly no single reason to be a constant. One could create 
some tricky cases, but it does not seem that the model would like to be limited to 
these cases (indeed, one may consider for example to fit the PIN parameters 
maximising likelihood, like in [1]). Thus the assumptions are not met and the 
reference [17] cannot be invoked to say E K αµ≈  at first order, as it was done 
in [1] for example.  

3.2.2. Computation of ( )E K   

Anyway, let’s do nevertheless calculations to compute ( )E S B− . We follow 
the same natural ideas of T. A. Ramasubban in this paper which treats only the 
case of same Poisson intensities [18]. We begin with: 

( ) ( ) ( )1 2
1 1 .E X Y E X Xµα α+∆ = − + − −     

Let’s start with the easier calculation: the case where Poisson intensities are 
equal.  

( ) ( ) ( )

( ) ( )( )

( )

( ) ( )

1 2 1 2

,

1 2

0

2

0

1 1
2

* 0 1

2

2e
! !

2 e .
1 ! ! ! 1 !

i j

i

i j

i ji

i j

i j i ji i

j ji

E X X P X i P X j i j

P X i P X j i j

i j
i j

i j i j

∈

∈ =

−

∈ =

− −
−

= =∈

− = = = −

= = = −

= −

= −
− −

∑

∑∑

∑∑

∑∑ ∑









   

 





 

   


 

All the sums separately exist, we can split them in two different ones:  
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( )
1 1

1 2 2

*0 0

1
2

2 1 2
2

2

2 e
! ! ! !

2 e
! ( 1)! !

2 e .
!( 1)! !

i j i ji i

i j ji

i i i

i

i i

i i

E X X
i j i j

i i i

i i i

+ −
−

∈ = =∈

+
−

∈

+
−

∈ ∈

 
− = −  

 
  

= +   +  
 

= + + 

∑∑ ∑∑

∑

∑ ∑







 


 





   


  


 


 

One recognizes here a modified Bessel functions of first kind: for an integer n 

and, say scalar x, ( ) ( )

2

2
! !

i n

n i

x

I x
i n i

+

∈

 
 
 =

+∑


. Here we obtain:  

( ) ( ) ( )( )2
0 12 e 2 2 .B SE Y Y I I−− = +    

which is the result of Ramasubban’s quoted paper. The computation with dif-
ferent intensities follow the same idea, expect that the symmetry of the two ini-
tial sums is broken, so we have to compute them separately.  

( ) ( )( )

( ) ( )( )

0

0
.

i

i j

i

i j

E X Y P X i P Y j i j

P X j P Y i i j

µ µ

µ

+ +
∈ =

+
∈ =

− = = = −

+ = = −

∑∑

∑∑





   

 

 

Let’s calculate the first sum and then the second:  

( ) ( )( )

( )
( ) ( )

( )

( ) ( )

0

2

1 0 1 1

111 1
2

0 0 1 0

e
1 ! ! ! 1 !

e ,
! ! ! !

i

i j

j ji ii i

i j i j

j ji ii i

i j i j

P X i P Y j i j

i j i j

i j i j

µ

µ

µ

µ µ

µ µ

+
∈ =

+∞ +∞
− −

= = = =

+++∞ + +∞ −
− −

= = = =

= = −

 + +
 = −
 − − 
 + +
 = −
 
 

∑∑

∑∑ ∑∑

∑∑ ∑∑



 





  

  

 

which separates as follows as all sums exist separately:  

( ) ( )( )

( ) ( )
( )

( )
0

1 1
2 2

0 0 0
e e .

! ( 1)! ! 1 ! !

i

i j

i i ji ii

i i j

P X i P Y j i j

i i i i j

µ

µ µµ µ µ
µ

+
∈ =

+ ++∞ +∞
− − − −

= = =

= = −

 + + +
 = + −
 + + 

∑∑

∑ ∑∑



 

    


 

Replacing first sum of the rigth hand side by Bessel functions of second kind, 
we finally find:  

( ) ( )( )

( ) ( )( ) ( ) ( )( )

( )
( )

0

2
1 0

1
2

0 0

e 2 e 2

e .
1 ! !

i

i j

jii

i j

P X j P Y i i j

I I

i j

µ

µµ

µ

µ µ µ

µ
µ

+
∈ =

+− −

++∞
− −

= =

= = −

= + + + +

+
−

+

∑∑

∑∑



 

 



      



 

For the second sum, we do an equivalent calculus and find the following:  
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( ) ( )( )

( )
( ) ( )

( )
0

1 1
2 2

0 0 0
e e ,

! 1 ! ! 1 ! !

i

i j

i ji i ii

i i j

P X j P Y i i j

i i i i j

µ

µ µµ µ
µ

+
∈ =

+ ++∞ +∞
− − − −

= = =

= = −

 + +
= + −  + + 

∑∑

∑ ∑∑



 

    


 

thus:  

( ) ( )( )

( )
( )( ) ( )( )

( )

0

2
2 2

1 0

1
2

0 0

e 2 e 2

e .
! !

i

i j

i ji

i j

P X j P Y i i j

I I

i j

µ

µ µ

µ

µ µ
µ

µ
µ

+
∈ =

− − − −

+∞ +
− −

= =

= = −

= + + +
+

+
+

∑∑

∑ ∑



 

 




    

 

 

 

If we put together all the terms we find:  

( )
( )( ) ( )( )

( )
( ) ( )

2
2

1 0

1 1

0 0 0 0

2e 2 2 2

.
1 ! ! ! !

j ii ji i

i j i j

E X Y I I

i j i j

µ
µ

µ µ µ
µ

µ µ
µ µ

− −
+

++∞ +∞ +

= = = =

 +− = + + +
 +

+ +
− +
+ 

∑∑ ∑ ∑


 

 
    

 

  
 

Arranging the last two sums of the left hand side of the equality we finnaly get:  

( )
( )( ) ( )( )

( ) ( ) ( )( )

2
2

1 0

0

2e 2 2 2

1 1 .
i

E X Y I I

P Y i P X i P X i

µ
µ

µ

µ µ µ
µ

µ

− −
+

+∞

+
=

 +− = + + +
 +

+ = ≤ + − ≥ +∑


 

  

 
    

   

Thus E K  equals:  

( ) ( ) ( )

( )
( )( ) ( )( )

( ) ( ) ( )( )

2
0 1

2
2

1 0

0

2 1 e 2 2

2e 2 2 2

1 1 .
i

E K I I

I I

P Y i P X i P X i

µ

µ

α

µα µ µ
µ

αµ

−

− −

+∞

+
=

= − +  
 + + + + +
 + 

+ = ≤ + − ≥ +∑





  

  

 
    

 
 

With an arbitrarily time length t for a trading period, we find:  

( ) ( ) ( )

( )
( )

( )( ) ( )( )

( )( ) ( ) ( )( )

2
0 1

2 2
2

1 0

0

2 1 e 2 2

2
e 2 2 2

1 1 .

t

t t

t tt
i

E K t I t I t

t t
I t tI t

t

t P Y i P X i P X i

µ

µ

α

µ
α µ µ

µ

αµ

−

− −

+∞

+
=

= − +  
 +
 + + + +
 + 

+ = ≤ + − ≥ +∑





 

  

 
    

 
 

3.2.3. Analysis of the First Order Approximate 
Recall that   and µ  are rates of uninformed and informed traders per day (in 
the original the PIN model). Thus, these parameters are pretty high integers: this 
is the first intuition behind first order approximate. Moreover, Hankel [19] de-

https://doi.org/10.4236/jmf.2019.94032


A. Bambade 
 

 

DOI: 10.4236/jmf.2019.94032 648 Journal of Mathematical Finance 
 

rived an asymptotic expansion of modified Bessel function of first kind as fol-
lows: 

( )
( )( )

( )

( )( )( )
( )

2 22

2

2 2 2

3

4 1 4 9e 4 1~ 1
82 2! 8

4 1 4 9 4 25

3! 8

z

I z
zz z

z

α

α αα

α α α

 − −− − +
π 

− − −
− +





 

for 1z   and arg
2

z π
<  

We first apply this expansion to E K  with the condition 1µ   and 1 , 
as we consider there are a lot of informed and uninformed traders per day 
(compared to 1). We find the following:  

( )( )
( )( )

( )

( ) ( ) ( )( )

2

2 2
3
4

0

~ 2 (1 ) e
2

1 1 .
i

E K

P Y i P X i P X i

µ µ

µ

µαα
µ

αµ

+ − −

+∞

+
=

+ +
− +

π π +

+ = ≤ + − ≥ +∑

  

  

  

   

Let’s now distinguish these three cases:  
• µ  and   are of same order,  
• ( )oµ =  ,  
• ( )o µ= ,  

If µ  and   are of same order, 
in this case: ( ) 2µ µ+ < −   , thus one can neglect the corresponding term. 

We obtain: 

( ) ( ) ( ) ( )( )
0

~ 2 1 1 1 .
i

E K P Y i P X i P X iµα αµ
+∞

+
=

− + = ≤ + − ≥ +
π ∑   


 

Thus PIN ~
2

αµ
αµ + 

 and 

( )

( ) ( ) ( ) ( )( )02 1 1 1
~ .

2

i P Y i P X i P X iE S B
E S B

µα αµ

αµ

+∞
+=

− + = ≤ + − ≥ +− π
+ +

∑   



 

if µ  then it reduces to: 

( ) ( ) ( )( )
0

~ 1 1 .
i

E K P Y i P X i P X iµαµ
+∞

+
=

= ≤ + − ≥ +∑     

Thus: 

( ) ( ) ( ) ( )( )
0

~ 1 1 .
2 i

E S B
P Y i P X i P X i

E S B µ
αµ

αµ

+∞

+
=

−
= ≤ + − ≥ +

+ + ∑   
 

If ( )oµ =  , 
we find: 

( )

( ) ( ) ( )( )02 1 1
~ .

2

i P Y i P X i P X iE S B
E S B

µαµ +∞
+=

+ = ≤ + − ≥ +− π
+

∑   



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And: PIN ~ 1
2
αµ




. 

If µ , then: 

( )
1~ .

E S B
E S B

−

+ π
 

If ( )o µ= , 
we find: 

( ) ( ) ( ) ( )( )
0

~ 1 1 .
i

E S B
P Y i P X i P X i

E S B µ

+∞

+
=

−
= ≤ + − ≥ +

+ ∑     

and ~ 1PIN  
Thus, we can see that first order approximation depends a lot of:  

• the respective values of µ  and  ,  
• and in a lot of cases of the weighted average of a given Poisson distribution of 

the difference between cumulative density functions from opposite parts of 
the tail of another Poisson distribution, i.e.:  

( ) ( ) ( )( )0 1 1i P Y i P X i P X iµ
+∞

+=
= ≤ + − ≥ +∑      

The first order approximation ~E S B αµ−  proposed in [1] is not incorrect 
as we will see in the simulations, but sometimes, imprecise. 

3.3. The Volume-Clock Paradigm: The Implicit Change of Model  
Assumptions  

In this subsection, we describe the volume-clock framework and explain why its 
hypotheses lead to different results the PIN compared to the time-clock frame-
work. More precisely, we first describe the new assumptions. Secondly, we make 
the computations within this new framework, which lead to a new value of the 
PIN.  

3.3.1. The New Assumptions 
In [3] D. Easley, M. de Prado and M. O’Hara describe a new model to compute 
easily the VPIN and therefore the PIN using the above previous results: 
• ( )E S B αµ− = , supposedly at first order,  
• ( ) 2E S B αµ+ = +    

They introduce the paradigm of volume clock and time bars. Let’s first de-
scribe it and see that the assumptions are implicitly changed, but ignored. The 
idea is pretty simple. Consider a trade described by a time serie of price, say tp , 
labelled with time t. First, They package trades in objects called “bars” that have a 
fixed time volume, i.e.: they aggregate the time serie in, for example, one-minute 
time bars. It is equivalent to a sampling of the time serie. Each bar is a kind of 
new trade with several rules to guess its price. Second they agreggate these time 
bars to form fixed in volum “buckets”. Say these buckets have a volume V. 
• Remark 1: nothing can ensure us that buckets will have a fixed volume size. 

Indeed, each time bar is sensitive to trading intensity. The last time bar can 
often be too big to be aggregated to a fixed size bucket. Which mean, that if 
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one wants to force bucket size to be constant then, a lot of time bar won’t be 
of one minute lenght. If one on the contrary wants to preserve time size to be 
constant, a lot of buckets might not be of constant volume size.  

Suppose anyway that everything is ideal and that each bucket is of constant 
volume. Authors note τ  the label of a bucket of volume V, Vτ , and SVτ  and 

BVτ  respectively the total number of sells and buys that occured in this bucket. 
They then refer to their previous work [1] result: ( )S BE V Vτ τ αµ− ≈ . But even if 
the result does not hold as previously shown, one must note the following: 
• First: here the bucket is constant in volume, thus filling volume time is ran-

dom, it is a really strong hypothesis, as we have then: S BV V Vτ τ+ =  that 
holds almost surely,  

• Second: they use the result indeed to say that as S BV V Vτ τ+ =  then the ex-
pectation equals 2V αµ= + .  

• But finally, one should remark that this equality lacks a time, as we are talk-
ing of rates of traders. In the first model, the time was one day, and implicitly 
one would multiply within the time-clock framework, rates by one day. Here, 
in the volume-clock framework, one does not control anymore time. One 
should take into account filling bucket time which is a new random variable. 
At first glance, the expression is inhomogenous and even if right, it is far 
from being trivial. 

Indeed the authors preciss us “recall that we divide the trading day into 
equal-sized volume buckets and treat each volume bucket as equivalent to a pe-
riod for information arrival”. It’s misleading. Recall that in the initial model time 
is fixed (one day) and thus volum is random. Here one has the contrary, volume 
is fixed and time is thus random. Let’s detail a bit more the calculus with the new 
assumptions. To do so let’s precise a bit more the new implicit framework.  

3.3.2. A New Computation of ( )S B
t tE V V V|−   

In fact we want to compute now ( )1 |S BE V V Vτ τ−∆ = , as bucket volume is 
fixed. Note t t′−  the filling time of the bucket τ  and then note the following:  

( )( )1 | ,tot tot tot tot
t t t tE S S B B V′ ′∆ = − − −  

with tot
tS , tot

tS ′ , tot
tB  and tot

tB ′  the Poisson processes of the total sell up to t 
and t′  and the total buys up to t and t′ . One has in distribution the following:  
• ,

tot tot tot
t t S t tS S N′ ′−− =   

• ,
tot tot tot
t t B t tB B N′ ′−− =   

where ,
tot
S t tN ′−  and ,

tot
B t tN ′−  are Poisson processes describing total sells and buys 

in the bucket labelled with τ . The variables being independent, we can thus 
write the following: 

( )1 , , | .tot tot
S t t B t tE N N V′ ′− −∆ = −  

One must note that there is still the constraint of the volume of a bucket: 

, , .tot tot
S t t B t tN N V′ ′− −+ =  
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Thus, imposing one value, imposes the other. Let’s calculate 1∆ . First, one 
can condition the events: “good event” (g), “bad event” (b) and “no event” (n): 

( ) ( ) ( )
( ) ( )

1 , , , ,

, ,

1 | , | ,

1 | , .

tot tot tot tot
S t t B t t S t t B t t

tot tot
S t t B t t

E N N g V E N N b V

E N N n V

α δ αδ

α

′ ′ ′ ′− − − −

′ ′− −

∆ = − − + −

+ − −
 

On each event, one knows the distribution of ,
tot
S t tN ′−  and ,

tot
B t tN ′− . One can 

then re-write it the following way4:  

( ) ( ) ( )( )( ) ( )( ) ( )( )
( ) ( ) ( )( )

,1 ,1 ,2 ,2
1

,3 ,4

1 | |

1 | .

tot tot tot tot
t t t t t t t t

tot tot
t t t t

E N N V E N N V

E N N V

µ µα δ αδ

α

′ ′ ′ ′− + − + − −

′ ′− −

∆ = − − + −

+ − −

   

 

 

The two first terms corresponding to “good” or “bad events” are equal in dis-
tribution, that’s why we have:  

( ) ( )( )( ) ( ) ( ) ( )( ),1 ,2 ,3
1 | 1 | .tot tot tot tot

t t t t t t t tE N N V E N N Vµα α′ ′ ′ ′− + − − −∆ = − + − −     

Before going further, let’s implement the joint probability density function of 
for example, sells and buys and respective filling bucket time t-t’ in the case of a 
bad event. Let’s note it ( ), , | ,f S B t t V b′− . Now, we synthetise and refer to the 
great ideas of the proof of Kin and Le [14]. Remark first the following:   

( ) ( ) ( ), , | , , | , , | , ,f S B t t V b f S B V t t b f t t V b′ ′ ′− = − −  

and as ( )| ,f V t t b′−  follows a Poisson law of intensity ( )( )2t t µ′− + , then 
( )| ,f t t V b′−  classically follows an Erlang law with the following parameters 
( ); , 2t t V µ′Γ − + . Second, as S B V+ =  almost surely, we have the following 

equalities: 

( ) ( ) ( ), | , , | , , | , , ,f S B t t V b f S t t V b f B t t V b′ ′ ′− = − = −  

and:  

( ) ( ) ( ), | , | , , | , .f S V t t b f B V t t b f V t t b′ ′ ′− = − −  

We know ( ) ( )( )( )| , ~ 2f V t t b t tµ′ ′− + −   and considering for example a 

continuous bounded function g, one can guess easily ( )| , ,f B V t t b′−  compu-

ting ( )( ), | ,E g S V t t b′−  using that  

( )( ) ( )( ), | , , | ,E g S V t t b E g S S B t t b′ ′− = + − . We find a binomial law 

; ,
2

S V
µ

 
 + 





 i.e.:  

( ) ( )| , , | , , ; , ; , .
2 2

f S V t t b f B V t t b S V B V µ
µ µ

   +′ ′− = − = =   + +   

 
 

 
 

So finally:  

 

 

4the label 1, 2, 3, … are used to note that these are the same distributions, but these are still different 
random variables. 
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( ) ( ), , | , ; , , 2 .
2

f S B t t V b S V V µ
µ

 ′− = Γ + + 


 


 

The “no event” case is similar. We thus find the following: 

( )

( ) ( ) ( )

, , |

1; , ; , 2 1 ; , ; , 2 ,
2 2

f S B t t V

S V t t V S V t t Vα α µ
µ

′−

   ′ ′= Γ − + − Γ − +   +   


   



 

And after an integration on the random variable t-t’:  

( ) ( )1, | ; 1 ; , .
2 2

f S B V S V S Vα α
µ

  = + −    +   


 


 

Taking the previous joint probability into account we are thus computing the 
following expectations of let say X and Y in fact: 

( ) ( ) ( )1 2 1 2E V X E V Yα α∆ = − + − −  

with 1~ ; ,
2

Y S V 
 
 
  and ~ , ,

2
X V S

µ
 
 + 





 

Moreover, if x follows the binomail distribution of which p.d.f is ( ); ,x m p , 
then using Jensen inequality for the concave function y y→  we have: 

• 
( ) ( ) ( ) ( )1

2 22
2 4 1

2 2 1 2 1
E m x p p

E m x m p p
m m

 − − = − ≤ − + ≈ −   
 

 for 

large enough m and p differing from 1
2

  

• 
( ) ( )22

2 1
E m xE m x

p
m m

−−
≥ = − .  

Thus, for large enough V: 

1 2 1 0,
2

Vα
µ

∆ ≈ − +
+



 

i.e.  

1 .
2

V αµ
µ

∆ ≈
+

 

Thus the VPIN metric approximates the following for large enough n as 
shown by Kin and Le [14]:  

( )1
|

VPIN ,
2

n
S B S BV V E V V V

nV V

τ τ τ ττ αµ
µ

=

− −
= ≈ ≈

+

∑


 

which is indeed different of PIN
2

αµ
αµ +

=


. 

3.4. Some Simulation Verification 

We present here some simulation verification. First we present the framework 
and the experienced tested. Second, we present the results.  
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3.4.1. Framework and Experience Tested 

For purpose of illustration, we compare the empirical form of 
( )
( )

E B S
E S B

−

+
 with  

the PIN and the asymptotic limit5 found within the time clock framework for 
different cases of   and µ . It is pretty easy to do, as controlling ex-ante all the 
parameters of the model one then just has to generate the appropriate Poisson 
processes to obtain all the values. We illustrate the results with three examples:  
• ( )o µ=  and µ  of same order than  : we took 100=  and  

{ }10000,20000,30000µ ∈ ,  
• ( )oµ =   and   of same order than µ : we took 100µ =  and  

{ }10000,20000,30000∈ ,  
•   of same order than µ : we took6 10000=  and  

{ }10000,2000,30000µ ∈ .  
Remarks:  

• We compute 20 values for each choice of   and µ  in the three cases 
above,  

• For each of the 20 values, the empirical expectations are computed with an 
average of 10,000 values,  

• To compute the sum ( ) ( ) ( )( )0 1 1i P Y i P X i P X iµ
+∞

+=
= ≤ + − ≥ +∑    , consi-

dering the values of   and µ+ , we have bounded the sum to 100000i = , 
when probability values starts to be then very little.  

3.4.2. Results 
On each case, we plot first the empirical numerator ( )E S B− , αµ , and the 

asymptotic limit found (Figure 2, Figure 4 and Figure 6). Second, we plot 

( )
( )

E B S
E S B

−

+
, the PIN (i.e. 

2
αµ

αµ + 
 and the asymptotic limit divided by 

2αµ +   (Figure 3, Figure 5 and Figure 7). 

Case1: { }100, 10000,20000,30000µ= ∈  

On Figure 2, first order and asymptotic estimations are very close. 
Case 2: { }100, 10000,20000,30000µ = ∈  

On Figure 3 and Figure 4, one can see better the difference when one does 
not change µ  anymore. 

Case 3: { }10000, 10000,2000,30000µ= ∈  

This last case on Figure 6 and Figure 7 illustrates a market where the number 
of informed and uninformed traders are of same order. 

 

 

5
( )

( )( )
( )( )

( )

( ) ( ) ( )( )

2

2 2
3
4

0

~ 2 1 e
2

1 1 .
i

E K

P Y i P X i P X i

µ µ

µ

µαα
µ

αµ

+ − −

+∞

+=

+ +
− +

π π +

+ = ≤ + − ≥ +∑

  

  

  

  . 

6This case is more tricky and actually the asymptotic limit is closer to the empirical value than the 
first order approximate proposed by the authors, but the trend is not obvious and need more study. 
We present here the good case that works fine. Further study must maybe be done. 
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Figure 2. Empirical, asymptotic and first order numerators. 

 

 
Figure 3. Empirical, asymptotic and first order approximations of the PIN. 

 

 
Figure 4. Empirical, asymptotic and first order numerators. 
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Figure 5. Empirical, asymptotic and first order approximations of the PIN. 

 

 
Figure 6. Empirical, asymptotic and first order numerators. 

 

 
Figure 7. Empirical, asymptotic and first order approximations of the PIN. 
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4. Another Suggestion to Compute the PIN  

In this section, we propose another way to compute the PIN. Indeed, as it was 
seen in the last section, the first order approximation of the PIN within the 
time-clock is not always precise and its theoretical foundation is not correct. 
Furthermore, the one we propose is only asymptotic and not easy to compute. 
Hence we propose an exact formula to compute the PIN in the time-clock 
framework. More precisely, in the first subsection we describe how to compute 
exactly the numerator αµ  and then the PIN. Secondly, we describe how nu-
merically one can design at least one methodology to compute the PIN. Finally, 
we present some simulation verification of our results.  

4.1. One PIN Upgrade  

In this subsection, we detail how to compute exactly the PIN. Recall that the 
probability to obtain S sells and B buys during a period of length t is:  

( )( ) ( ) ( ) ( )( ) ( )
( ) ( )

( ) ( )( )

2 2

2

, 1 e 1 e
! ! ! !

e .
! !

B S B S
t t

t

S B
t

t t t
P z S B

B S B S
t

B S

µ

µ

µ
δ α α

µ
αδ

+
− + −

− +

+
= = − + −

+
+

 



  

 
 

Recall that to compute the PIN we have the assumption: 1
2

δ = , thus we have:  

( )( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )

( ) ( )

2 2

2

, e e
2 ! ! 2 ! !

1 e .
! !

B SS B
t t

t

B S
t

t t t t
P z S B

B S B S
t

B S

µ µµ µα α

α

− + − +

+
−

+ +
= = +

+ −

 



   


 

So, if one notes TT S B= +  the total number of trades for this day, we find:  

( ) ( ) ( ) ( )( ) ( )1 2 ,
2 2

E TT t t t tα αµ µ α αµ= + + + + + + − + = +        

and we even have:   

( ) ( ) ( )
.

2 2
E TT

E S E B tαµ = = + = 
 
  

So to estimate the PIN denominator, one can first use for an arbitrary time pe-
riod an average of S, B or TT. Let’s work with S and take a time period of length t.  

Let’s estimate the numerator 
2

tαµ . To do this, we firstly explicit the margin  

probability function to obtain S sells in a time period of length t and secondly we 
compute its first three moments. Thirdly we explain how to compute α  and 
hence the numerator, which finally leads to a new PIN formula. 

4.1.1. Margin Function 
The probability to obtain S sells during a time period of length t is the following: 
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( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( )( )

e 1 e e
2 ! ! 2 !

1 e e .
2 ! 2 !

SS S
tt t

t

SS
tt

tt t
P z S

S S S
tt

S S

µ

µ

µα αα

µα α

− +− −

− +−

+
= = + − +

+ = − + 
 

 



 


 

4.1.2. Computation of First Three Moments 
Let’s compute the moment-generating function of this process. We will estimate 
the numerator using relations between moments. Let u be a real value, let SV  
be the random variable representing the volume of sells and t the fixed time pe-
riod associated. We have: 

( ) ( ) ( ) ( )e 1 e 1
e 1 e e .

2 2

u u
S

t tV uE
µα α− + − = − + 

 

 
 

Let’s compute the first three moments of SV : 
• First moment:  

( ) ( ) ( ) ( ) ( )e 1 e 1
e 1 e e e e ,

2 2

u u
S

t tV u u u
SE V t t

µα α µ
− + − = − + + 

 

 
   

so:  

( ) .
2SE V tαµ = + 

 
  

• Second moment:  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( ) ( ) ( )

e 1 e 122 2

e 1 e 12 2

e 1 e e 1 e e
2 2

e e e e ,
2 2

u u
S

u u

t tV u u u
S

t tu u

E V t t

t t
µ µ

α α

α αµ µ

− −

+ − + −

   = − + −   
   

+ + + +

 

 

 

 
 

so:  

( )
2

2 2 2 ,
2 2SE V t tαµ αµαµ

  = + + + +  
   
    

i.e. we have the classic decomposition:  

( ) ( ) ( )( )2 1 .S S S SE V E V E V V= + −  

• Third moment:  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( ) ( ) ( )

( )( ) ( ) ( ) ( )( ) ( ) ( )

e 1 e 123 2

e 1 e 12 32 3

e 1 e 12 2

e 1 e 12 32 3

e 1 e e 1 e e
2 2

2 1 e e 1 e e
2 2

e e e e
2 2

2 e e e e ,
2 2

u u
S

u u

u u

u u

t tV u u u
S

t tu u

t tu u

t tu u

E V t t

t t

t t

t t

µ µ

µ µ

α α

α α

α αµ µ

α αµ µ

− −

− −

+ − + −

+ − + −

   = − + −   
   

   + − + −   
   

+ + + +

+ + + +

 

 

 

 

 

 

 

 

 

so:  

( )
2 3

3 2 2 3 2 2 33 33 ,
2 2 2 2 2SE V t t tαµ αµ µαµ αµ α µ α

    = + + + + + + + +    
     
       
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i.e. we just wrote:  

( ) ( ) ( )( ) ( )( )( )3 3 1 1 2 .S S S S S S SE V E V E V V E V V V= + − + − −  

4.1.3. Estimation of α  
Remark the following:  

( )( ) ( )( )2

22
2 2

22 2 2
2

1

2 2

2 .
2 4 2

S S SE V V E V

t

tt

αµ αµαµ

µ α α µ αµ α
α

− −

  = + + − +     

  −   = − =         

    

Then with the same idea let’s compute the following:  

( )( )( ) ( )( )3

33
3 2 2 3

2 3 2

2

2 2

1 2

3 3
2 2 2 2

2 43
2 2

2 2 23 ,
2 2 2

S S S SE V V V E V

t

t tt

t t tt

µ αµαµ α µ α

αµ α αµ α
α α

αµ α αµ α αµ α
α α α

− − −

    = + + + − +    
    

 − −     = +             

− − +     = +         

   





 

and we know that ( )
2S

tt E V αµ
= −  and that  

( )( ) ( )( )
2

22 1
2 S S S

t E V V E Vαµ α
α
−  = − − 

 
, so: 

( )( )( ) ( )( )

( )( ) ( )( )( ) ( ) ( )

3

2

1 2

31 3 2 ,
2 2

S S S S

S S S S

E V V V E V

t tE V V E V E V αµ µ α

− − −

 = − − − + + 
 

 

i.e.  

( )( )( ) ( )( )
( )( ) ( )( )

( ) ( )
3

2

1 2 2 1
3 ,

21
S S S S

S

S S S

E V V V E V tE V
E V V E V

ααµ
α

− − − −
= +

− −
 

If we use again the formula, we can then replace 
2

tαµ  by 

( )( ) ( )( )2
1

2
S S SE V V E V

α
α

− −
−

: 

( )( )( ) ( )( )
( )( ) ( )( )( )

( )
( )( ) ( )( ) ( )

3

2

2

1 2

1

1 2 1
3 ,

2

S S S S

S S S

S S S
S

E V V V E V

E V V E V

E V V E V
E V

α
α α

α

− − −

− −

− − −
= +

−
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so:  

( )( )( ) ( )( )
( )( ) ( )( )

( )

( )( ) ( )( )
( )
( )

3

2

2

1 2
3

1 2 1
.

21

S S S S
S

S S S

S S S

E V V V E V
E V

E V V E V

E V V E V

α

α α

− − −
−

− − −
=

−− −
 

If we arrange a bit the expression on denominator and numerator on the left 
hand side of the equation, we remark the following: 
• Remark 1:  

( )( ) ( )( ) ( ) ( )2
1 ,S S S S SE V V E V Var V E V− − = −  

• Remark 2:  

( )( )( ) ( )( ) ( ) ( ) ( ) ( )( )
( )( )( ) ( ) ( )

3 322

3

1 2 3 3 3

3 2 .

S S S S S S S S

S S S S

E V V V E V E V E V E V E V

E V E V Var V E V

− − − − + +

= − − +
 

Thus: 

( )( )( ) ( ) ( )

( ) ( )( )
( )
( )

3

3
2

3 2 2 1
.

2

S S S S

S S

E V E V Var V E V

Var V E V

α

α α

− − + −
=

−−
 

Introducing the skewness γ  and the following notations: ( )SVar Vσ = , 

( ) 3
S SV E V

Eγ
σ

  − =      
 and ( )Sm E V= , we obtain finally:  

( )
( )
( )

3 2

3
2 2

2 13 2 .
2

m

m

αγσ σ
α ασ

−− +
=

−−
 

Skewness, standard deviation and expectation are measured from data. To es-
timate α  we thus just have to solve the following second order equation on 
α :  

( )
( )

2
23 2

32

42 0.
2

4
m

m

α α
γσ σ

σ

− + =
− +

+
−

 

The discriminant is positive: 
( )

( )

23 2

32

44 1
2

4
m

m

γσ σ

σ

 
 
 
 ∆ = − − + +  − 

. As α  is a 

probability, we finally find:  

( )
( )

23 2

32

41 1 ,
2

4
m

m

α
γσ σ

σ

= − −
− +

+
−

 

which is indeed between 0 and 1.  
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4.1.4. Estimation of t
2

αµ   

We know that ( )( ) ( )( )
2

2 21
2S S S

tE V V E V αµ α
α
−   − − =       

, so let’s replace the 

α  of the right hand side of the equality (not with tµ ) by previous expresion. 

We then estimate 
2

tαµ . We finally obtain the following as 

( )( ) ( )( )2 21S S SE V V E V mσ− − = −  with the previous notations:  

( )
( )

( )
( )

( )

23 2

32
2

23 2

32

41 1
2

4

2 41 1
2

4

m

mt m

m

m

γσ σ

σαµ σ

γσ σ

σ

− −
− +

+
−

= −
+ −

− +
+

−

 

4.1.5. A New PIN Formula 
Finally we obtain the following equivalent exact formula: 

2PIN ,

2

t

tt

αµ

αµ
=

+
 

i.e.:   

( )
( )

( )
( )

( )

23 2

32
2

23 2

32

41 1
2

4
1PIN ,

41 1
2

4

m

m
m

m

m

m

γσ σ

σ
σ

γσ σ

σ

− −
− +

+
−

= −
+ −

− +
+

−

 

or after simplifying a bit:  

( )
( ) ( )

22

3 22 3 2 3 2

2PIN .
4 3 2 3 2

m

m m m m

σ

σ γσ σ γσ σ

−
=

− + − + + − +
 

One then just have to estimate on a arbitrary time lenght t, m, σ  and γ  to 
estimate the PIN number. The difficulty is then put on estimating on this time 
period the volume of direction of trades. We describe further a possible frame-
work to compute this number. One can verify numerically that these two 
formula give the exact same numbers of the PIN. 

4.2. A New Framework to Compute the PIN  

In this subsection we explain, how at least one framework can be designed to 
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compute the PIN. We would like to compute the PIN number from time, let say 
t, and period length, let say η , i.e. from t to t η+ . With previous framework, 
we obviously have: 

, ,

,
, ,

,

2PIN ,

2

t t t t

t t
t t t t

t t

t

t
t

η η

η
η η

η

α µ

α µ

+ +

+
+ +

+

=
+

 

as, all numbers α , µ  and   are defined on these time t and period η . And 
we also have: 

( )
( ) ( )

22

, 3 22 3 2 3 2

2PIN ,
4 3 2 3 2

t t

m

m m m m
η

σ

σ γσ σ γσ σ
+

−
=

− + − + + − +
 

where, m, γ  and σ  are calculated for the volume of sell , ,S t tV η+ , between t 
and t η+ . 

Thus two things must be implemented to well estimate the PIN: 
• the empirical averages implicitly behind m, σ  and γ : we will have to put 

some hypothesis on the time series of volumes to use classic theorems.  
• the volume of sells: one needs a model of classifier to guess on a given 

amount of time the number of sells within the total volume of sells.  

Estimation of m, σ and γ 
We would like to use the law of large number. We basically need random varia-
ble independant and identically distributed. Here: noting ,S tN  the Poisson 
process of sells at time t (i.e. the number of sells at t). Then we have:  

, , , , .S t t S t S tV N Nη η+ += −  

According to the model, Nature chooses at each time period η  the parame-
ters and independently each day. So ( ), ,S t t t

V η+  is a sequence of (successive 
non-overlapping) in dependant random variables. But, the , ,S t tV η+  are not 
identically distributed. Nothing guarantees it. Indeed, Nature’s choices won’t 
necessarily be the same, and so ,t t ηα + , ,t t ηγ +  and ,t t ησ + . To handle with this, 
one can do the following. We need a statistically significant mean. Within the 
time period: [ [,t t η+ 7, Nature’s choice is the same, so considering n intervals of  

length 
n
η

 within [ [,t t η+ , the random variables ( )1
, ,

1, ,

i iS t t
n n i n

V η η−
+ +

=

 
  
 



 are then 

independent and identically distributed. For n high enough the following ap-
proximations hold: 

• ( )11 , ,

1 ,n
i ii S t t

n n

m V
n η η−=

+ +
≈ ∑   

• ( ) ( )

2

1 11 1, , , ,

1 1 ,
1 1

n n
i ii ii iS t t S t t

n n n n

V V
n nη ηη ησ − −= =

+ + + +

 
≈ −  − − 

∑ ∑   

 

 

7Let’s suppose that choices are made in this time interval, to not bother about possibly overlapping 
Nature’s choice. 

https://doi.org/10.4236/jmf.2019.94032


A. Bambade 
 

 

DOI: 10.4236/jmf.2019.94032 662 Journal of Mathematical Finance 
 

• 
( ) ( )

( ) ( )

3

1 11, , , ,

1 2

1 11 1, , , ,

1
1 ,

1 1
1 1

n
i ii iiS t t S t tn n n n n

i

n n
i ii ii iS t t S t t

n n n n

V V
n

n
V V

n n

η ηη η
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Thus the choices to make here are:  
• the time length η ,  
• the number n of sub-intervals to have a precise average.  

To reduce standard variation of ,PINt t η+ , one direct way to do it is to take 
both the averages of the PIN estimated using volume of sells (let’s note it now 

,the PINS
t t η+  and the PIN estimated using volume of buys (let’s note it ,PINV

t t η+ ). 
Indeed, the previous calculations are exactly the same if one would have use vo-
lume of buys instead of sells. And within the PIN framework SV  and BV  are 
independent random variables. So: 

( ), , ,
1PIN PIN PIN ,
2

S V
t t t t t tη η η+ + += +  

and so, an estimate of ,PINS
t t η+  is only a function of the process ( SV ) and 

,PINV
t t η+  the same function but depending of the process ( BV ). Thus, these two 

estimates being independent, if one notes PINS
σ  the standard deviation using 

only the process SV , now the standard deviation PINσ  with both process 
equals the following: 

PIN
PIN .

2
S

σ
σ =  

4.3. Some Simulation Verification  

We present finally some simulation verification. First we describe its framework. 
Second we present the results. The values of parameter tested are exactly the 
same as in the last framework, as we would like to compare previous results with 
the values of our new formula. The only difference which slightly change our 
framework, is that to compute the new formula one needs more sample. We de-
tail it now.  

4.3.1. Framework and Experience Tested 

For purpose of illustration, we compare the empirical form 
( )
( )

E B S
E S B

−

+
 with  

the PIN and the new formula8 found within the time clock framework for dif-

 

 

8We use in these simulations for symmetry reasons this formula. 
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ferent cases of   and µ . It is pretty easy to do, as controlling ex-ante all the 
parameters of the model one then just has to generate the appropriate Poisson 
processes to obtain all the values. We illustrate the results with three examples:  
• ( )o µ=  and µ  of same order than  : we took 100=  and  

{ }10000,20000,30000µ ∈ ,  
• ( )oµ =   and   of same order than µ : we took 100µ =  and  

{ }10000,20000,30000∈ ,  
•   of same order than µ : we took9 10000=  and  

{ }10000,2000,30000µ ∈ .  
Remarks:  

• We compute 20 values for each choice of   and µ  in the three cases 
above,  

• For each of the 20 values, for a choice of   and µ , we generate 1,000,000 
Poisson processes, we divide them in 100 consecutive intervals of 10,000 val-
ues. For each of the 100 intervals we compute empirical average to approx-
imate mean m, standard deviation σ  and skewness γ . We then compute 
an approximation of the PIN with an average of these 100 values10.  

4.3.2. Results 

On each case (Figure 8, Figure 9 and Figure 10), we plot 
( )
( )

E B S
E S B

−

+
 (VPIN), 

the PIN (
2

αµ
αµ + 

) and the new PIN value (labelled as NPIN). 

Case1: { }100, 10000,20000,30000µ= ∈  

On Figure 8, new formula (NPIN) and PIN are very close. 
Case 2: { }100, 10000,20000,30000µ = ∈  

Here on Figure 9 one can see better the difference when one does not change 
µ  anymore. 

Case 3: { }10000, 10000,2000,30000µ= ∈  

This last case on Figure 10 illustrates a market where the number of informed 
and uninformed traders are of same order. The VPIN really slightly 
over-estimates the true PIN value. 

In any case one sees that new formula estimated is closer than the VPIN one. 
By the way, we have checked that new PIN formula obviously equals true PIN 
formula for any parameter  , µ  and α  of the model. 

5. Conclusions 

In this last section, we present first a general summary of our findings. Then we 
propose suggestion for further research on this topic.  

 

 

9This case is more tricky and actually asumptotic limit is closer to the empirical value than first order 
approximate proposed by authors, but the tren is not obvious and needs more study. We present 
here the good case that works fine. Further study must maybe be done. 
10This double average equals traditional the VPIN formula as values are consecutive. 
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Figure 8. Old (VPIN) and new approximation (NPIN) of the PIN. 

 

 
Figure 9. Old (VPIN) and new approximation (NPIN) of the PIN. 

 

 
Figure 10. Old (VPIN) and new approximation (NPIN) of the PIN. 
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In this study we have analyzed the theoretical foundation of the PIN model 
and we have shown that its time-clock framework makes it hard to apply the 
VPIN original heuristic to estimate the probability of informed trading. Indeed, 
first order asymptotic is not that simple to estimate theoretically and in practice. 
That’s why we propose another way to estimate the PIN, which is theoretically 
exact and hence more precise than the asymptotic formula, which is confirmed 
by our first tests. Moreover, the study recalls and highlights the difference of the 
volume-clock and time-clock paradigms which leads to a different formula of 
the PIN, and which respective hypotheses cannot therefore be used simulta-
neously to approximate the PIN.  

Here are some ideas to further study this precise subject:  
• test and compare the performance of the new formula within the time-clock 

framework with real trading data: find local optima parameters (n, η , trade 
classification algorithm, …) to maximize prediction quality,  

• analyze and assess stability of the new formula and compare it to other ones.  
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