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Abstract 
Fractional differential equations are widely used in many fields. In this paper, 
we discussed the fractional differential equation and the applications of 
Adomian decomposition method. Where the fractional operator is in Caputo 
sense. Through the numerical test, we can find that the Adomian decomposi-
tion method is a powerful tool for solving linear and nonlinear fractional dif-
ferential equations. The numerical results also show the efficiency of this me-
thod. 
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1. Introduction 

Fractional calculus can be dated back to the end of 17th century. In 1695, Leibniz 
and L’Hospital have discussed 1/2 order derivative, which is regarded as the 
birth of fractional differential equation. For a long time, fractional calculus does 
not attract enough attention. It is only considered and studied by many mathe-
maticians. However, in last few decades, fractional calculus has been studied 
more and more in applied sciences and engineering. The fractional derivative 
has been applied in many physical problems such as frequency-dependent 
damping behavior of materials, motion of a large thin plate in a Newtonian fluid, 
creep and relaxation functions for viscoelastic materials etc. There are many au-
thors who have demonstrated the application of fractional derivative like Old-
ham and Spainer [1], Miller and Ross [2], Podlubny [3], Samko et al. [4], Hilfer 
[5]. And more recently Sabiter et al. [6] have demonstrated the development and 
application of fractional calculus in physical and engineering. Other applications 
of fractional differential equations we can refer to [7]-[12]. 

How to cite this paper: Guo, P. (2019) The 
Adomian Decomposition Method for a 
Type of Fractional Differential Equations. 
Journal of Applied Mathematics and Phys-
ics, 7, 2459-2466. 
https://doi.org/10.4236/jamp.2019.710166 
 
Received: September 23, 2019 
Accepted: October 21, 2019 
Published: October 24, 2019 
 
Copyright © 2019 by author(s) and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/   

  
Open Access

https://www.scirp.org/journal/jamp
https://doi.org/10.4236/jamp.2019.710166
https://www.scirp.org/
https://doi.org/10.4236/jamp.2019.710166
http://creativecommons.org/licenses/by/4.0/


P. Guo 
 

 

DOI: 10.4236/jamp.2019.710166 2460 Journal of Applied Mathematics and Physics 
 

Fractional calculus is found to be more suitable modeling the process with 
long range interaction and physical problems described by fractional equations, 
but sometimes it’s difficult to get the solution of fractional differential equations. 
For that reason, we need a reliable and efficient technique for solving fractional 
differential equations. In [13], Tamsir and Srivastava give an analytical study for 
time fractional Klein-Gordon equation. Chen et al. use the discrete method to 
study the time fractional Klein-Gordon equation [14]. Fewer researchers con-
sider giving an approximate solution. In this paper, we give an analytical solu-
tion of the time fractional differential equation of the following form 

( )
2

0, 2C t
uD u F u

x
α ∂

= +
∂

.                      (1.1) 

where, 0,C tDα  is the fractional operator in Caputo sense, 1 2α< ≤ . Except Ca-
puto fractional derivative, there are many other different fractional derivatives, 
such as the Riemann-Liouville fractional derivative, Grünwald-Letnikov frac-
tional derivative, Rietz fractional derivative etc. From the pure mathematical 
point, Riemann-Liouville derivative is somewhat more popular than Caputo de-
rivative. Many earlier researchers use it instead of Caputo derivative, but for the 
Riemann-Liouville derivative we need to specify the values of certain fractional 
derivatives of the unknown solution at the initial conditions. However, when we 
deal with the concrete physical problem, the fractional derivative doesn’t have 
physical meaning. When we deal with the Caputo derivatives, we may only spe-
cify the integer order derivative. It has a clearly physical meaning and can be 
measured. Another reason we choose Caputo derivative is that under homoge-
neous conditions the equations with Riemann-Liouville operator are equivalent 
to the equations with Caputo operator, if we choose Caputo derivative it allows 
us to specify inhomogeneous initial conditions, too, if we needed. 

This paper is organized as follows. In Section 2, we discuss some basic proper-
ties about fractional derivative and fractional integral which will be used in the 
following part. In Section 3, we introduce the Adomian decomposition method, 
and the detailed Scheme about the time fractional differential Equation (1.1) will 
be discussed. In Section 3, a numerical test will be showed, the approximate so-
lution will be compared with the exact solution, and the error analysis will be 
given. 

2. Fractional Integral and Fractional Derivative 

First, we will give some definitions about fractional calculus including fractional 
integral and fractional derivative. For fractional derivative there are already exist 
several different definitions and in general these different definitions are not 
equivalent to each other. Here we only give the most common definition. 

Definition 2.1. If ( )f x  is continuous on ( )0,+∞  and 0α >  then the 
fractional integral is defined as 

( ) ( ) ( ) ( )1
0, 0

1 d
t

tD f t t fαα τ τ τ
α

−− = −
Γ ∫ .                (2.1) 
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Definition 2.2. If ( ) ( )nf x  is continuous on ( )0,+∞  and 1n nα− < ≤  
then the Caputo fractional derivative is defined as 

( ) ( ) ( ) ( ) ( )1
0, 0

1 d
t n n

C tD f t t f
n

αα τ τ τ
α

− −− = −
Γ − ∫ .           (2.2) 

Property 2.1. [3] If ( )f x  is continuous on ( )0,+∞  and 0α > , 0β >  
then 

( ) ( )0, 0, 0,t t tD D f t D f tα β α β− − − −= .                   (2.3) 

Property 2.2. [3] If ( ) ( )nf x  is continuous on ( )0,+∞  and 1n nα− < ≤  
then 

( ) ( )0, 0,C t tD D f t f tα α− = .                    (2.4) 

Property 2.3. [3] If ( ) ( )nf x  is continuous on ( )0,+∞  and 1n nα− < ≤  
then 

( ) ( )
( ) ( )1

0, 0,
0

0
!

kn
k

t C t
k

f
D D f t f t t

k
α α

−
−

=

= −∑ .              (2.5) 

Here, we only give some basic properties about Caputo fractional derivative 
and fractional integral which we will use in the following part. For some other 
properties about Caputo fractional derivative and other definitions about frac-
tional calculus we can refer to [4]. 

3. Adomian Decomposition Method 

The Adomian decomposition method [15] [16] is powerful tool for solving li-
near or nonlinear equations. For every nonlinear differential equation can be 
decomposed into the following form 

( ) ( ) ( )L u R u N u g+ + = ,                     (3.1) 

where L is the highest order differential operator, Ru  is the remainder of the 
linear part, Nu  represents the nonlinear part and g is a given function. In gen-
eral, the operator L is invertible. If we take 1L−  on both sides of Equation (3.1), 
an equivalent expression can be given, 

( ) ( )1 1 1u L R u L N u L g ϕ− − −= − − + + ,                (3.2) 

where ϕ  satisfy 0Lϕ =  and the initial conditions. If L is the second order de-
rivative, 1L−  is the two-fold definite integral. For the Adomian decomposition 
method, the solution u is expressed in terms of a series form, 

0
n

n
u u

∞

=

= ∑ .                           (3.3) 

The nonlinear term ( )N u  is represented by the Adomian polynomials nA , 
i.e. 

( )
0

n
n

N u A
∞

=

= ∑ .                       (3.4) 

nA  depends on 0 1, , , nu u u  and can be formulated by 
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0 0

1 d , 0,1,2,
! d

n
k

n kn
k

A N u n
n λ

λ
λ

∞

= =

  = =  
  
∑  .             (3.5) 

For clarity, first few several items of the Adomian polynomials will be listed 

( )
( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

0 0
1

1 1 0

1 22
2 2 0 1 0

1 2 33
3 3 0 1 2 0 1 0

1 2 3 42 2 4
4 4 0 2 1 3 0 1 2 0 1 0

,

,
1 ,
2!

1 ,
3!

1 1 1 ,
2! 2! 4!

A N u

A u N u

A u N u u N u

A u N u u u N u u N u

A u N u u u u N u u u N u u N u

 =


=

 = +



= + +

  = + + + +   
 

 

Then for the Equation (3.1), we have 

1 1 1

0 0 0
n n n

n n n
u L R u L A L g ϕ

∞ ∞ ∞
− − −

= = =

= − − + +∑ ∑ ∑ .               (3.6) 

The Adomian’s technique is equivalent to the following relation which can be 
defined as 

( )
( )

( )

1
0

1 1
1 0 0

1 1
2 1 1

1 1
1 1

,
,
,

,n n n

u L g
u L R u L A
u L R u L A

u L R u L A

ϕ−

− −

− −

− −
− −

 = +


= − −
 = − −


 = − −







 

In theory, if we calculate all the terms nu  we can find the exact solution. In 
fact, we just need to compute the first finite terms. Cherruault et al. have proved 
the convergence of Adomian decomposition method [17] [18]. From some nu-
merical tests of the following part, we can find that the sum of the first three or 
four terms has high accuracy. The more terms we calculate, the higher the accu-
racy. 

4. Numerical Examples 

In order to verify the accuracy of the method which described in the last section, 
two numerical examples will be considered. 

Example 1. 
2

0, 2C t
uD u u

x
α ∂

= +
∂

, subject to the initial conditions ( ),0 1 sinu x x= + , 

( ),0 0tu x = . 

First, we take 0,tD α−  on both sides of the example 1, the following relation is 
given 

( ) ( ) ( ) ( ) ( ) ( )( )1

0

1,0 ,0 , , d .
t

t xxu u x tu x t u x u xατ τ τ τ
α

−= + + − +
Γ ∫     (3.7) 

With the scheme we discussed in the last part, we have 
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( )

( )

0

1

2

2

1 sin ,

,
1

,
2 1

u x
tu

tu

α

α

α

α

= +

=
Γ +

=











Γ +



 

Then the approximate solution is 

( ) ( ) ( )
2

ˆ 1 sin
1 2 1 1

nt t tu x
n

α α α

α α α
= + + + + +

Γ + Γ + Γ +
 . In order to test the accuracy  

of the approximate solution, we consider when 2α = , the exact solution is 
( ), sin coshu x t x t= + . Figure 1 shows the exact solution and the approximate 

solution with the first four terms. 
Table 1 shows the error of the exact solution and the approximate solution. In 

this example, we only use the forst four terms to approximate the exact solution. 
From the error column we can find that the absolute error is very small, the 
Adomian decomposition method has a high convergence order. The more terms 
we use, the higher accuracy we get. 

Example 2. 
2

0, 2 sinC t
uD u u

x
α ∂

= −
∂

, 1 2α< ≤  subject to the initial conditions 

( ),0 sinu x x= π , ( ),0 0tu x = . 

Similarly, with the procedure we used in the first example, we have the fol-
lowing result about iu  

( ) ( )( )( )
( )

( ) ( ) ( )( ) ( )

( ) ( )( ) ( )( ) ( )( )

0

2

1

2
4 2 2

2

2

sin ,

sin sin sin
,

1

( sin sin sin cos
2 1

      2 sin cos sin cos sin sin sin ,

u x

t x x
u

tu x x x

x x x x

α

α

α

α

= π

−π π − π
=

Γ +

= π π + π π π
Γ +

+ π







π π + π π






 

 

In this example we use the sum of the first three terms as the approximate so-
lution of the problem we discussed. When we consider 2α = , the exact  

solution is ( ) ( )( ) ( )( )( )1, sin sin
2

u x t x t x t= π + + π − . Figure 2 shows the exact  

solution and the approximate solution. 
Table 2 shows the exact solution and approximate solution of the nonlinear 

fractional differential equation. In the last column we can find that the absolute 
error is small, here, we only use the first three terms to approximate the solution. 
If we use more terms, the approximation works better. 

5. Conclusion 
In this work, the Adomian decomposition method is applied to solving a time 
fractional differential equation. Both the linear and nonlinear type of fractional  
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Figure 1. Approximate solution and exact solution of example 1. 

 

 
Figure 2. Approximate solution and exact solution of example 2. 

 
Table 1. Error of exact solution and approximate solution, where 1x = . 

t Exact solution ADM Error 

0.10 1.846475152863700 1.846475152863700 0.0E−16 

0.15 1.852742094384567 1.852742094384565 2.0E−15 

0.20 1.861537740426972 1.861537740426944 2.8E−14 

0.25 1.872884084687470 1.872884084687207 2.6E−13 

0.30 1.886809498936757 1.886809498935129 1.6E−12 

0.35 1.903348803963882 1.903348803956273 7.6E−12 

0.40 1.922543356646351 1.922543356617420 2.8E−11 

0.45 1.944441153363867 1.944441153269889 9.3E−11 

0.50 1.969096950014277 1.969096949744652 2.7E−10 
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Table 2. Error of exact solution and approximate solution, where 1x = . 

t Exact solution ADM Error 

0.010 0.999506560365732 0.999464491451072 4.2E−5 

0.015 0.998889874961970 0.998795232947192 9.5E−5 

0.020 0.998026728428272 0.997858508448686 1.6E−4 

0.025 0.996917333733128 0.996654555362476 2.6E−4 

0.030 0.995561964603080 0.995183678926039 3.7E−4 

0.035 0.993960955455180 0.993446252207397 5.1E−4 

0.040 0.992114701314478 0.991442716105125 6.7E−-4 

0.045 0.990023657716558 0.989173579348348 8.5E−4 

0.050 0.987688340595138 0.986639418496738 1.1E−3 

 
differential equations are considered. From the numerical result, we can find 
that the Adomian decomposition method is an efficient algorithm. We use only 
first several terms to approximate the exact solution, the numerical result has 
high precision. In general, some differential equations are hard to deal with be-
cause of the nonlinear terms. The Adomian decomposition method is a powerful 
tool to cope with this problem. Moreover, no linearization or perturbation is 
required in this method. 
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