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1. Introduction

The sine-Gordon equation (SGE) has applications to Josephson junctions, crys-
tal dislocations, ultra-short optical pulses, relativistic field theory, and elementa-
ry particles [1].

A Josephson junction is a pair of superconductors separated by a thin material
that is not superconducting. Brian Josephson predicted that a pair of supercon-
ducting electrons could tunnel through the non-superconducting material. Jo-
sephson junctions can be used in computer circuitry, increasing the speed of

computations. They can also be used in Superconducting Quantum Interfering
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Devices, or SQUIDs. SQUIDs can measure minute changes in voltages and
magnetic fields. Because of this, SQUIDs can be used to measure neural activity
in the brain, heart activity [2], and even submarine detection [3].

A crystal dislocation is an irregularity within the crystal structure. There are
two types of dislocations. An edge dislocation occurs when one plane of atoms
only extends half-way through the crystal. This causes the planes to bend around
it. A screw dislocation looks like the Riemann surface of the complex logarithm.
Dislocations can also be a combination of the two types. Studying these disloca-
tions can help material scientists improve the strength of metals. The kink soli-
tons of the SGE can be used to model the interactions of these dislocations [4].

Ultrashort pulses allow scientists to study ultrashort processes and allow for
optical data transmission. Some ultrashort processes of interest include electron
dynamics within semiconductors, light-induced phase changes of metals, plasma
dynamics, and chemical reactions [5]. Light pulses can be used to transmit data
at very high rates due to high optical frequencies [6].

In relativistic field theory, topological solitons, or kinks, can be used to model
undiscovered particles such as magnetic monopoles and cosmic strings [7].

The goal of this paper is to find exact solutions to strongly perturbed
sine-Gordon (SG) type equations. Recent works in the literature proposed ana-
lytical and numerical solutions to this problem [8] [9] [10] [11]. In this work, we
find exact solutions by means of the Ansatz method. This research is a direct
continuation of the research done in [12] [13] [14] [15] and [16]. The research
done in those papers was primarily to find solutions to the sine-Gordon equa-
tion and its variations under small, adiabatic perturbations. The solutions found
in this paper are for strong perturbations to those same equations. In Section 2
we describe the Ansatz method, and in Section 3 we propose exact soliton solu-
tions to sine-Gordon type equations and higher order dispersive versions. We
conclude this work with a summary of our methods, the applicability of our re-

sults, and possible avenues of future work.

2. The Ansatz Method

The typical nonlinear wave equation that will be studied in this dissertation is of

the form
Gu — O +L(a)+N(q)=0 1)

where xand trepresent partial derivatives with respect to space and time respec-
tively, and where L(q) represents the linear terms, including derivatives of g,
and N(q) represents the nonlinear terms, including derivatives of ¢. The An-
satz method requires a guess for the solution. Call this guess the particular solu-
tion §(x,t). Once an initial guess is made for G(x,t), that solution is put into

the original nonlinear wave Equation (1)
Gy~ G +L(G)+N(d) =0

The above equation is then simplified down to a sum of linearly independent
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functions,
n
0=> R (xt) 2)
i=0
where C; are the constant coefficients of the linearly independent functions
F, (x,t) . In order to satisfy (2), it is necessary to set all coefficients equal to zero
¢ =0 Vie{0,12,-,n}
In completing this step, one of two things will happen. If a critical parameter
must be set to zero, then the particular solution §(x,t) has been proven to be
invalid. Otherwise, this is proof that §(x,t) is a particular solution to (1). In

the latter case, setting the C, to zero will lead to some constraints on the para-

meters of (1) and the internal parameters of §(x,t).

3. Soliton Solutions
3.1. Sine-Gordon Equation and Its Type

This first subsection will study the SGE and other similar equations without
higher order dispersion terms. The same equations with the addition of
fourth-order and sixth-order dispersion will be studied in the subsections the-

reafter.

3.1.1. Sine-Gordon Equation
The SGE studied in this paper is
d, —k’q, +asing=0 (3)
The kink Ansatz that will be used to solve this equation, given by [12], is

q(x,t)=4arctan{Aexp[B(x—vt)}} (4)

The variable E will be used henceforth, where E = Aexp[B(X —Vt)} . Insert-
ing (4) into (3) yields

E-E°
4—(1+ E2)2 [BZ (v2 —k2)+aJ =0
Solving for B gives
B=+ K2 ivz

It turns out that A=+e " represents the starting location of the soliton at
X, . Positive A represents a bright soliton whereas negative A represents a dark
soliton. The sign of A-B determines the direction of the internal twist in the
kink. These things hold true whenever the solution structure is an arctangent of
an exponential.

The bright solution to the unperturbed SGE is

q(x,t)=4arctan {exp{i\/g(x — X, —vt)}}
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The result above is already well known [1] [12] [13] [16] [17] [18]. Now that
we have the exact solution to the unperturbed SGE, we will use the same Ansatz
to find the exact solution to the strongly perturbed SGE. The variable R will be

used to hold all of the perturbation terms, where
R =50, + 70, + 60, + A0y + 00y +V 0y (5)

In Josephson junctions, [ represents the dissipative losses of electrons
tunneling across a dielectric barrier, y comes about from an inhomogeneous
part of the local inductance, & accounts for the diffusion, A results from an
inhomogeneity of the capacitance, o arises due to current losses along the
barrier, and v contains the higher order spatial dispersion [18].

The perturbed SGE is thus

q. —k’q, +asing=R

Using the same Ansatz from (4), and performing the calculations found in

Appendix A, we find the following relationships:

y=pv
o=0 (6)
v=0

The bright soliton solution to the perturbed SGE is

q(x,t)=4arctan {exp{i\/kz oy —a(l—/l)vz (x=%, —vt)ﬂ

with the constraints found in (6). These results have already been reported in

[12], and are reproduced here in order to show the method that will be used
henceforth.

3.1.2. Sine-Cosine-Gordon Equation

The sine-cosine-Gordon (SCGE) equation is
a, —k?q,, +asing+bcosq=0
The kink Ansatz for this equation is

q(x,t):4arctan{Aexp[B(x—vt)]}+C (7)

The solution to the unperturbed SCGE is

(a +b )4(

q(x,t)=4arctan<exp| + -

X—X, —Vt) | —arctan (9)
a

The perturbed SCGE is
a, —k®q,, +asing+bcosq=R
where R again contains all of the perturbation terms from (5). Using the same
Ansatz from (7), and setting the coefficients of the linearly independent func-

tions to zero as is done in Appendix A leads to the same matrix equation. The
solution to the perturbed SCGE is
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1

(aerbz)Z
q(x,t)=4arctan<exp| +
JKE =8V —(1-2)v*

(x—x, —Vvt) |} —arctan [gj

3.1.3. Double Sine-Gordon Equation
The double sine-Gordon equation (DSGE) is

. —k°q, +a,sing+a,sin2q=0 (8)

The first Ansatz we will investigate is
q(x,t):2arctan{Asinh[B(x—vt)]} (9)
Substituting (9) into (8) and setting the coefficients to the linearly indepen-

dent functions both to zero gives us the first solution to the unperturbed DSGE.

The details of this process are given in Appendix B.

q(x,t)=2arctan{ a12 sinh{i Zkiz_?(x—vt):”

a, -V

For the soliton to exist, it is necessary that 2a, >a, and a <O0.
The second Ansatz for (8), found in [13], is

q(x,t):2arctan{Atanh[B(x—vt)}} (10)

The resulting equation from combining (8) and (10) and setting the coeffi-
cients of the linearly independent functions to zero leads to the second solution
to the unperturbed DSGE. Again, the details of this process are given in Appen-
dix B.

2 _ .2
q(x,t)=2arctan %% fanh| +1 &(x—vt)

a,-a 2 a, (k*-v?)

where a, >|a|.
The perturbed DSGE is

q, —k?q, +a,sing+a,sin2qg=R

Here, we will use the first Ansatz, (9). Solving as before leads to the first solu-

tion to the perturbed DSGE. This process is described in Appendix B.

a . 2a, —a,
q(x,t)=2arctan{ msmhl}\/kz—évi(l—/l)vz (x—vt)}}

This requires the constraints found in (6) and 2a, >a, and a <O0.

Using the second Ansatz, (10), we get the second solution to the perturbed
DSGE. This process is also described in Appendix B.

2 2
q(x,t)==+2arctan G %~ 2 (x—vt)
a,-a 2 a,[K*—ov—(1-A)v* ]

with the constraints found in (6) and a, > |a1| .
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3.2. Fourth Order Dispersion

This section adds fourth order dispersion to the SG type equations. Equations
with a fourth order dispersion term are commonly referred to as Boussinesq type

equations by their resemblance to the Boussinesq equation:
2
Op =0 t+ a(q )xx + quxxx =0

The Boussinesq equation is an approximate equation for shallow water waves,
similar to the well-known Korteveg de Vries (KdV) equation. Both equations
model solitary waves, or solitons, along the surface of shallow water. For further

discussion of the Boussinesq equation, see [14] [15].
3.2.1. Sine-Gordon Equation
The SGE with fourth-order dispersion is
O — kqux - dqxxxx +asin q= 0
The Ansatz given by [16] is
q(x,t):8arctan{Aexp[B(x—vt)]} (11)

The 8 here means that this is in fact a double soliton. This can occur when two

identical solitons interact and combine to form a single unit. A deeper discus-

sion of this process can be found in [17]. The solution to the unperturbed dis-

persive SGE is

q(x,t) =8arctan<exp| +

where
v=+,[k?- éad
3

with the following two restrictions on the parameters a2 and d
a>0
3k*

O0<d<—
4a

This result agrees with the results found in [16]. The perturbed dispersive SGE
is
O _kqux _dqxxxx +asin q= R
Using the same Ansatz from (11), the solution to the perturbed SGE with

fourth order dispersion is

q(x,t)=8arctan exp| +
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where

o=0

y=pv
_5in+4@_z{kt.ﬁfm+vﬂ

2(1-2)

V=

which require the following inequalities to hold true
A=1

a>0

2 2
O<d+v <i k2+§—
4a 4(1—/1)

3.2.2. SIne-Cosine-Gordon Equation
The SCGE with fourth order dispersion is

Oy — K0y, — A0, +asing+bcosq=0
The Ansatz for this equation is

q(x,t)=8arctan{Aexp[B(x—vt)}}+C (12)

The solution to the unperturbed dispersive SCGE is

2\/a2+b2

k? —v2

q(x,t) =8arctan{exp| +

(X=X, —vt) |} —arctan (gj

where

v=i\/kz— gd\/ 2 4+b?

which puts the following restriction on the parameter d
3k*

4/a® +b?

0<d<

The perturbed dispersive SCGE is
0y — k0, —d0,,, +asing+bcosq=R

Using the previous Ansatz (12), the solution to the perturbed dispersive SCGE

is

2 a’+h?

q(x,t)=8arctan{exp| + ~ (X=X, —Vt) —arctan(gj

k?—ov—(1-2)v a

where
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"
—51J52+4@:40(k2—J§(d+V)J§7155J
e 2(1-2)

which require the following inequalities

A#1

O<d+v<

_ 3 [, ")
Naab 47

3.2.3. Double Sine-Gordon Equation
The DSGE with fourth order dispersion is

O — kqux - dQXXXX + a18in q+a, sin 2q =0
The Ansatz for this equation, due to [15], is

q(x,t):4arctan{Aexp[B(x—vt)]} (13)

The solution to the unperturbed dispersive DSGE is

q(x,t) =4arctan< exp| £{[——>5—(X— X, —Vt)

where

v=+ [k? —(a1+£a2j 3d
3 2a,

which puts the following two restrictions on the parameters a,, a,,and d

a,-d>0

0<a +%a2 <k’ %
The perturbed dispersive DSGE is
a, —k’q, —dg,, +asing+a,sin2qg=R
Using the Ansatz found in (13), the solution to the perturbed DSGE with
fourth order dispersion is

4
a1+§a2

k? —ov—(1-2)Vv?

q(x,t)=8arctan{exp| + (x =%, —Vvt)

where
o=0

y=pv

DOI: 10.4236/jamp.2019.710163 2408 Journal of Applied Mathematics and Physics


https://doi.org/10.4236/jamp.2019.710163

S. Johnson et al.

ss|" 413 (a5 ziww)}};

s 2(1-4)

which require the following inequalities to hold true

A#1
a1+%a2>0

2

2, O°

k*+
d+v 2 4(1-2)
0< <— 4
% 3 a1+§a2

A portion of these results was already reported in [15]. They are presented
here in a more complete manner than when they were first reported. It is also

important to include these results here in this paper for the sake of completion.

3.2.4. Double Sine-Cosine-Gordon Equation
The double sine-cosine-Gordon equation (DSCGE) with fourth order dispersion
is

Oy — K0y, — 00, + & Sing +b, cosq+a, sin2q+b, cos2q =0

The Ansatz for this equation is

q(x,t)=4arctan{Aexp[B(x—vt)]}+C (14)
It is first necessary to ensure
3 _a-b
b, 2ab

Then the solution to the unperturbed dispersive DSCGE is

(8¢ +52)e + 5[ (a2 b5 )+ 220, |
(k?—v?)(af +7)

q(x,t)=4arctanexp| +

(X% —vt) |l b
(x—x, —Vt) arctan(aiJ

where

3
4 az(aiz_blz)+2a1blb2 Ed
v==,|k?—| a?+b?+—-
[al 37 Jaen J a, (a2 —b?)+ 2abp,

which puts the following restrictions on the parameter a,, a,, b, b,,and d
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d|a, (a7 -b7)+2abb, |>0

0<(af 457 )+ (af -7+ 28D,

(a7 +b7)[ 3, (& ~b7 )+ 22, |
34
2

(a2 +b2 )2 +%[a2(af —b12)+231b1b2] <k?

The perturbed dispersive DSCGE is
a, —k?q,, —dg,, +asing+b cosq+a,sin2q+b,cos2q =R

Using the Ansatz found in (14) and the previously found relationships for C,
a, b, a,,and b,,the solution to the perturbed dispersive DSCGE is

(a2 +15) + 2 a, (a2 1) + 22000,
[kz —5v—(1—/1)v2](a12 +bf)

q(x,t)=4arctan<exp| +

c(x—x )| L b
(X=X, —Vvt) arctan(alj

where
=0
y=pv
1
= —5+46% +4(1-2)| k* -] & +b]
T2 G L b
1
3 2
L4 (a7 -b)+2abb, S(d+v)
3 Va7 +b? 3, (a —b7 )+2abb,

in which case the following inequalities must also hold true

Azl
(8, (al ~b7 )+ 2abyb, |(d +v) >0

0<(a ) + 5[ (of -&7) 28120

alz+blz+g_az(af—lof)+2a1blloz{kz+ 5 ]/az(af—bf)uaiblbz
3 Vay +b/ 4(1-2) \j g(d +v)
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3.3. Sixth Order Dispersion

Higher order dispersion terms mainly come about from stronger interactions of
the highly discretized SGE, see [19]. Just as the fourth order dispersion term
gave way to double solitons, the sixth order dispersion term will yield triple soli-
tons. For further discussion of the discretized SGE and these triple solitons, see
[17].

3.3.1. Sine-Gordon Equation
The SGE with sixth order dispersion is
O — K20y = 01000 — I 000 +2SING =0
The Ansatz for this equation, found in [16], is
q(x,t):12arctan{Aexp[B(x—vt)]} (15)

The 12 here means this is a triple soliton. The solution to the unperturbed

highly dispersive SGE is

q(x.t)=

where

v =+, [k? —%Jad1

which puts the following restrictions on the parameters a, d;,and d,

a>0
_3 ¢
2 20V a

900k *

0<d, <o
529a

The solution to the unperturbed highly dispersive SGE is
The perturbed SGE with sixth order dispersion is
Oy — k%0 — 00,00 — J50,000 +@SING =R
Using the same Ansatz as in (15) yields
0=B(pv—y)(E+5E°+10E° +10E" +5E° + E*)
—B?(k* —ov—(1-4)v*)(E +3E° + 2E° - 2E" -3E° - E")
+B’ov(E -3E° -14E° —14E" -3E° + E)
—B*(d, +v)(E - 21E° - 22E° + 22E" +21E° —E")
~d,B°(E-237E° +1682E° ~1682E" + 237E° —E")

+%(3E ~55E° +198E° ~198E +55E° ~3E™)
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This is equivalent to the matrix equation

11 1 1 1 3\(¢,
5 3 -3 -21 -237 -55]|¢,
10 2 -14 -22 1682 198 c,
10 -2 -14 22 -1682 -198|c,
5 3 -3 21 237 55|c
1 -1 1 - -1 -3)lc,

|
o O O O o o

where ¢, =B(pv-y), ¢, =—Bz[k2 —5V—(1—/1)V2:|, c, = Bov,
c,=—B*(d,+v), ¢;=-d,B% and ¢, =a/3. Solving the above system gives us

c=0
y=pv
3 (d1+v)3
dy =—4/———
20 a
23
B—+ 45

—51\/52+4(l—/1)(k2—§§ a(dl+v)j

V=

2 (1— /1)
with constraints
A#1
a>0
900 s* Y
0<d, +v< k? +
529a 4(1-2)

The solution to the perturbed highly dispersive SGE is

23
—a

45
,t)=12arctan< exp| + — X, — Vit
q(x ) P k2—5v—(1—/1)v2(x % )

3.3.2. Sine-Cosine-Gordon Equation
The SCGE with sixth order dispersion is

Ou — kqux - dquxxx - dquxxxxx +asin q+ bcosq =0 (16)
The Ansatz for this equation is

q(x,t)=12arctan{Aexp[B(x—vt)}}+C (17)

First, set C =—arctan(b/a). Then (16) and (17) give us
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0=—(k?-v*)B*(E +3E° +2E° - 2E" -3E° - E")
—d,B*(E-21E° - 22E° + 2267 + 21E° - E")
—d,B®(E—237E° +1682E° ~1682E’ + 237E° —E")
+%\/a2 +b? (3E —55E° +198E° ~198E +55E° —3E™)

Solving the same system of equations from Section 3.3.1 leads to the similar

pair of relations

23 a? +b?
45

k? —v?

v:\/k2 —%(a2 ﬁtbz)%\/dil

which put the following pair of restrictions on parameters d, and d,

3
2
T
(a2+b2)Z
4
0<dl <ﬂ
529+/a* +b?

The solution to the unperturbed highly dispersive SCGE is

q(x,t)=12arctan Aexp

(x—x, —vt) | —arctan (gj

The perturbed SCGE with sixth order dispersion is
O — kqux - dquxxx - dquxxxxx +asin q+ bCOSq =R

Using the same Ansatz from (17), we have
0=B(pv-y)(E+5E°+10E° +10E” +5E° + E)
~B?(k* =ov—(1-4)v*)(E +3E° + 2E° — 267 -3E° - E")
+Bov(E-3E° ~14E° —14E" -3E° + E)
—~B*(d, +v)(E - 21E° - 22E° + 22E" + 21E° —E")
~d,B°(E—237E° +1682E° ~1682E + 237E° —E")

+%\/a2 +b? (3E —55E° +198E° —198E7 +55E° —3E11)

This leads to the same matrix equation from Section 3.3.1 where
¢, =B(pv-7), ¢, =-B*| Kk’ —5v—(1—/1)v2] , ¢;=B%v, ¢, =-B*(d,+v),
¢, =—d,B®,and ¢, =+va’+b? / 3. The relationships now are
o=0

y=pv
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3
3 (d+v)2
dz:%—l
(a® +b? )
B = 4|22

k?—ov—(1-2)v?

1
—51\/52 +4(1—/1){k2 —%(a2 +b? )4 Jd, +v]

2(1-2)

V=

with constraints
A#1

2
2
0<d, +v< 500 (k2+ J J
520V/a’ + b? 4(1-42)
The solution to the perturbed highly dispersive SCGE is
% Va® +b?

k? —sv—(1-2)Vv?

q(x,t)=12arctanexp| £ (X=X, —Vt) —arctan(g)

a

3.3.3. Triple Sine-Gordon Equation
The triple sine-Gordon equation (TSGE) with sixth order dispersion is

O — K20 = 010000 — 0 Oroppene + 8 SINQG + 8, SiN 20 +a,5in3q =0 (18)
The Ansatz for (18), due to [16], is
q(x,t)=4arctan{Aexp[B(x—vt)]} (19)
Plugging (19) into (18) gives us
0=[a -B*(k*-v*)|(E+3E"+2E° - 2E" -3E° —E")
—d,B*(E - 21E° - 22E° + 22E7 + 21E° - E")
~d,B°(E—237E° +1682E° ~1682E" + 237E° - E")
+2a, (E-5E° —6E° +6E’ +5E° —E")
+a,(3E ~55E° +198E° ~198E” +55E° ~3E™)

This leads to the system of equations according to the powers of E

1 1 1 1 3 0
3 21 -237 -5 -55 zl 0
2 —22 1682 -6 198| *| |0

2 2 -1682 6 -198| 2| |0

-3 21 237 5 55 z“ 0

-1 1 -1 -1 =3)"*7 (o

where cl=a—Bz(k2—v2), ¢, =-d,B*, ¢,=-d,B%, ¢,=2a,, and C;=a,.
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Solving the above system leads to the following relations

3 2
4 = 2% 2%
2 15| a, +2a,

which put the following four restrictions on the parameters @,, a,, a,, d,,
and d,
d,(a, +2a,)>0

The perturbed TSGE with sixth order dispersion is

Oy — K0 = 0y G0 — Oy 0o + & SINQ +@, SiN 20 +a,5in3q = R

Using the Ansatz found in (19) gives
0=B(pv—y)(E~+5E°+10E° +10E’ +5E° + E")

+|a—B? (K —ov—(1-2)v*) |(E+3E° + 26° ~2E7 ~3E° - EY)

+Bov(E-3E° ~14E° —14E" -3E° + E")

~B*(d, +v)(E -21E° - 22E° + 22E + 21E° - E")

~d,B°(E -237E° +1682E° ~1682E" +237E° - E")

+2a,(E—5E° —6E° +6E +5E° —E")

+a, (3E ~55E° +198E° ~198E’ +55E° —3E")

This is equivalent to the matrix equation

1 1 1 1 1 1 N ] (o
5 3 -3 21 -237 5 55/ 2| |0
10 2 -14 -22 1682 -6 198 §3 |0
10 —2 -14 22 -1682 6 -198 *| |0
5 3 -3 21 237 5 55 25 0
-1 1 -1 -1 -1 =3)|°| (o

C7
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where ¢, =B(pv-y), C, = ai—Bz[k2 —5v—(l—ﬂ)v2], ¢, = Bov,
¢, =-B*(d,+v), ¢ =-d,B%, ¢, =2a,, and C, =a,. Solving this system re-

sults in the following equalities

o=0
y=pv
3
g, - 28(3 dirv )
2 15(2 a,+2a,
a1+£a +§a3
B+ 3% 15

K =ov—(1-2)V?

3 15 2 a,+2a,
V=
2(1-2)
with constraints
A=l
d,(a, +2a,)>0

2
0<a1+£a2+§a3< 2.8, +23 KsO
32715 ° \3 d+v 4(1- 1)

The solution to the perturbed highly dispersive TSGE is

4 23
,t)=4arctan<exp| £ — X, —Vt
a(xt) XP k2—5v—(1—/1)v2(x %-vt)

3.3.4. Triple Sine-Cosine-Gordon Equation
The triple sine-cosine-Gordon (TSCGE) equation with sixth order dispersion is

Oy _kqux _dquxxx _dquxxxxx +aisinq+b1cosq (20)
+a, sin2q+b, cos2q +a, sin3q+b, cos3q =0
The Ansatz for (20) is

q(x,t):4arctan{Aexp[B(x—vt)}}+C (21)

It is necessary to set C =—arctan (b, /a,) and to ensure both

3, _a b
b, 2ab

and

3 _ & a-3y

bs b1 b13_3313

to eliminate the even exponents of £ from the cosine terms. These make the fol-
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lowing three simplifications

alsinq+blcosq=msinq

3, (a7 ~bf)+2a,bb,
a/ +bf

a; (a ~307 ) -bib, (b -3a7)
(e 410

a,sin2q+b, cos2q =

sin 2q

a,sin3q+b, cos3q = sin 3q

Combining (20) into (21) yields
—[ o +b7 - B2 (K" ~v?) |(E+ 387 + 26° - 267 ~3E° - E")
—~d,B*(E-21E° - 22E° + 22E7 + 21E° - E")
~d,B°(E-237E° +1682E° ~1682E + 237E° —E" )
8, (a7 —bf )+ 2abb,
a +hf
a, (a7 307 ) -byb, (b7 327 )
(s 402"
~198E" +55E° ~3E")

+2

(E—5E3 —BE® +BE’ +5E° —E“)

(3E —55E3 +198E°

This gives rise to the same matrix equation from 3.3.3, where this time

C, =+a& +b>-B 2( 2—vz), ¢, =—d,B*, ¢, =-d,B°,

~2[a, (a7 ~bf )+ 2ab, | /(af +b7), and

(af
[ a,a, (812 3bf)—b1b3 (bf -3a/ )}/(af +bf )E . The solution to that system

gives us

B:

=+

(a2 +02) + 2a, (a7 ~0) + 2ab, | o <17
\/W(af +b12)4{ 3

2% o -3¢ ) -t (o 3

2 2abb
{ (ai s ;1 (a2 —b?)+2ahyb,

JaZ +b?
B a,a, (af —3b7 ) —byby (b -3a7)
15 a +b?
34,
2

a, (a7 302 )~ yb, (b —3a2)
Ja? +b?

a, (a7 ~b?)+2ab, +2°°
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d, =2 a2, (a7 -3 )-bb, (b7 -3a7)

N | w

2
2,2, (af 307 ) ~byb; (b7 - 37 )

a +by
and this gives way to the following constraints on the parameters a,, a,, a,,
b, b,, by, d,and d,

a,(af —b’)+2abb, +2

d, az(af—bf)+2a1b1b2+2ala3(a1 ~3¢) by (bf -3 >0
a; +b;

o<at oo 4220 12800 253 (al-3) b (b -34))
3 Jatenr 15 a by
az(aiz_blz)”aiblbﬁzaiag(ai ~307)~byb, (b7 327 )
<k? \/a12+b12

3
fdl
2

—

The solution to the unperturbed highly dispersive TSCGE is

q(x,t)=4arctan {exp{i{(af +bf)2 +%[a2 (af _b12)+2a1blb2J a? +h?

(X=X, —Vt)
3
(a:LZ +b12>4 {k2 _VZ
The perturbed TSCGE with sixth order dispersion is

Oy _kqux _dquxxx _quxxxxxx + alsm q +b1C03q
+4a,sin2g+b, cos2q+a, sin3q+b, cos3q =0

28 a3 ) 07 -3 )

Using the previous Ansatz from (21) gives the governing equation
0=B(pBv—y)(E+5E®+10E° +10E" +5E° + E")
+[m—82(k2 —5v-(1—/1)v2)J(E+3E3+2ES—2E7
~3E° -E")+B%ov(E -3E° -14E° ~14E" —3E° + E")
—B*(d, +v)(E—21E° —22E° + 22E" + 21E° —E")
~d,B®(E—237E° +1682E° ~1682E + 237E° —E")
|, % (@ -b)+2abb,
a +by
L (a —3bf)—b1b§(bf —3af)(
(af +b7)?
~198E" +55E° —3E")

(E—5E3 —BE° +6E’ +5E° — E“)

3E -55E° +198E°
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This is again equivalent to the matrix equation from 3.3.3, where this time

¢, =B(Bv-7), czzw/af+bf—Bz[k2—5v—(1—i)v21, ¢, = B%ov,
¢, =B (d;+v), ¢ =-0,8°, c,=2[a,(a ~b)+2apb, |/(af +b),and

3

¢, = [aiae (alz -3b? ) —byb, (b12 -3a} )} / (af +b? )E . Solving that system results in

the following equalities
c=0

y=pv
d, == a8, (a7 - 36 )b, (b¢ - 327

2(d+v)
az(af_bf)ﬂalblbﬁzaiaa(ai ~ 30, )Z—blt:s(bl ~3a;)
a +by;
B= - 3{(aiz+b1 2+%[a2 al b1)+2a1blb:|

JK2=6v—(1-2)v? (a2 +b7)*

R0 22 (o 300 by o -3 |

N

l 2 2 2 2
v=2(1_/1) —6+16° +4(1-1)| k —(al +h
4a2(a1 b1)+2a1b1b+23a1a3( )~ (b7 - 3a7)
"3 \/a1+b1 15 a1+b1
§(d v)
g -3 , (b2 —3a?
\l o (a1 ) 22y, 42 2% (%7 0) 00 (35
a +bf
with constraints
A#1
dllaz(af—bf)+2a1blb2+2ala3(a1 ~3f) b (0 -3a7) >0
JJaZ +b?
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4 32(312 —bf)+231b1b2 23 a1a3(af —3bf)—b1b3(bl2 _3312)

0<312-|'b12.|.§ \/af+b12 15 812+b12
az(af_bf)”aiblbﬁzalag(al ~ %) b (b -37)
<[k2+ & ] a12+b12
4(1-2)

3
E(dl + V)
The solution to the perturbed highly dispersive TSCGE is

q(x,t) = 4arctan {exp{i{(af +blz)2 +§[a2 (af _b12)+2a1blb2J a2 +b?

N

%[alaa (af —307 )—bib (b} —3a )]}

(X=X, —Vt)
(a7 +b7 ) \/kz —ov—(1-2)V?

X

4. Conclusions

This paper has studied the exact solutions to SG type equations, including single,
double, and triple sine- and sine-cosine-Gordon equations. These equations in-
cluded the standard variation, fourth-order dispersion, and sixth-order disper-
sion. The solutions found are of the topological soliton type, called kinks. After
finding the solutions to each unperturbed equation, exact solutions were found
for the strongly perturbed variations of each equation. These results will aid in
the studies of Josephson junctions, crystal dislocations, ultra-short optical pulses,
relativistic field theory, and elementary particles.

Future work should include the use of numerical methods to further study
these solutions and possibly find approximate solutions to these equations and
other equations of this type. Multiple scale analysis should also be applied to
study the effects of weak perturbations on these equations.
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