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Abstract

We investigate the existence of nonnegative solutions for a Riemann-Liouville
fractional differential equation with integral terms, subject to boundary con-
ditions which contain fractional derivatives and Riemann-Stieltjes integrals.
In the proof of the main results, we use the Banach contraction mapping
principle and the Krasnosel’skii fixed point theorem for the sum of two oper-
ators.
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1. Introduction

We consider the nonlinear fractional differential equation

() D§x(t)+ f(t,x(2), Ax(t), Bx()) =0, € (0,1),
with the nonlocal boundary conditions
(B0 x(0)=x(0)=-=x"7 (0)=0.Dftx(1) = 2| Dllx(1)dr, ()

where aeR, ae(n—l,n], nmeN, n>3, B eR for all i=0,---,m,
0<B <p<—<p,<p<a-1, pf =1, D& denotes the Riemann-Liouville
derivative of order & (for k=«,f,, 5.+, 3, ), the integrals from the boundary
condition (BC) are Riemann-Stieltjes integrals with H,:[0,1]] > R,i=1,m
non-decreasing functions, Ax(¢ .[ K (t,s)x(s)ds,and

:f;H(t,s)x(s)ds for all te[O,l].

We study the existence of nonnegative solutions for problem (£)-(BC) by us-
ing the Banach contraction mapping principle and the Krasnosel’skii fixed point
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theorem for the sum of two operators. Equation (£) supplemented with the mul-

ti-point boundary conditions
(BG) x(0) = x'(0) =+ = "2 (0) = 0, D x(1) = Yo, Df, (&),
i=1

where g, €R for all i=1---,m, (meN), 0<¢& <---<¢, <1, pgeR,
pE [1,11 - 2] , g€ [0, p] was investigated in the paper [1]. The last condition in
(BG,) can be written as Df, x(1) = I;Dg+x(t)dH0 (¢), where H, is the step func-
tion defined by

H, (t)={0,forte[O,(f,);al,forte[é‘l,fz);a, +a2,f0rt6[52,4‘3);---;ial.,f0rte[é’m,l]}

So (BC) is a generalization of (BC)), because in (BC) we have a sum of Rie-
mann-Stieltjes integrals and various orders for the fractional derivatives. In the
paper [2], the authors investigated the existence of nonnegative solutions for the

Caputo fractional differential equation
Dx(t)+ f(t,x(t), Ax(t),Bx (1)) =0,2€(0,1),
with the boundary conditions
(BG) x(0)=b,,x'(0)=b ooy X (0)= b,_y,x"™ (0)=5,.,,x(1)= uj;x(s)ds,

where n—l<a<n, 0Su<n-1, n23, b20 (i=12,---,n-3,n-1), °D*

is the Caputo fractional derivative, and the operators A and B are defined as the
operators from our problem, given above. In the paper [3], the authors studied
the existence and multiplicity of positive solutions for the Riemann-Liouville
fractional differential equation Dg+x(t)+f(t,x(t)) =0,te (0,1) , subject to the
boundary conditions (BC), where fis a sign-changing function that can be sin-
gular in the points #=0,1 and/or in the variable x. In addition, the methods
used in the proofs of the main results in [3] are different than those used in the
present paper, namely, in [3] the authors used various conditions which contain
height functions of the nonlinearity defined on special bounded sets, and two
theorems from the fixed point index theory. For some recent results on the exis-
tence, nonexistence and multiplicity of solutions for fractional differential equa-
tions and systems of fractional differential equations subject to various boundary
conditions we refer the reader to the monographs [4] [5] and the papers [6]-[14].
We also mention the books [15]-[21], and the papers [22]-[28] for applications

of the fractional differential equations in various disciplines.

2. Preliminary Results

We present in this section some auxiliary results from [3] that we will use in the

proof of the main results. We consider the fractional differential equation
Dy x(t)+y(t)=0,1€(0,1), (1)

with the boundary conditions (BC), where y e C(0,1)1L (0,1). We denote by
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m F(O{) 1 a-pi-1
i:I—F(a—ﬂi)J.OS dH, (s).

Lemma 1 If A #0, then the unique solution x € C[O,l] of problem (1)-(BC)
is given by

ta—l

1 ' a1
x(t)==—— [ (1=5) y(S)d”m

Jo (=) y(e)de att, (s). < [0.1],

I;(l —s)aiﬂofl y(s)ds
(2)

A S F(al—ﬂi)'[‘;(

Lemma 2 /f A#0, then the solution x of problem (1)-(BC) given by (2) can

be written as

x(1)=[[G(t.5) (s)ds.1 €[0.1], (3)
where
G(t,s)=g (t,5)+ “A‘ Zl:(j 2, (z,5)dH, (¢ )) (4)
and

(t.5) 1 t””l(l—s)a fot —(t—s)" ,0<s<1<],
g (t,s)=—— .
1 F(a) ta—l(l_s) Bo-1 .0
(05) 1P (1) T (e-s) T 0S5 <0<

& (ts)=———

2O =) |0 (1-s)
forall (1,5)e[0,1]x[0,1], i=1--,m.

By using some properties of the functions g,,g,,,i=1,---,m given by (5)
from [29], we obtain the following lemma.

Lemma 3 We suppose that A >0. Then the function G given by (4) is a con-

tinuous function on [0, l] X [0, 1] and satisfies the inequalities:
a) G(t s)<J( ) forall t se[O 1] where

J(s)="h(s Z, Jgu (z.5)dH, (z), s€[0.1], and
I () = (a)(l— A (1= (1-5)%), sefo]s

b) G(t s)>t‘HJ( ) forall t se[O 1]
) G(t s)S 17t forall t, se[O 1] where
1 1 1 Lo -1

T A

Lemma 4 We suppose that A>0, yeC(0,1)NL(0,1) and y(t)>0 for
all te(0,1). Then the solution x of problem (1)-(BC) given by (3) satisties the
inequality x(1)>t"" ||x|| for all t€[0,1], where ||x||=supte[0’1]|x(t) , and so
x(l) >0 forall te [O,l] .

In the proof of our main theorems, we use the Banach contraction mapping

principle and the Krasnosel’skii fixed point theorem for the sum of two opera-
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tors presented below.

Theorem 1 (see [30]) If (Y,d ) Is a nonempty complete metric space with
the metric d, and T:Y — Y Is a contraction mapping, then T has a unique
fixed point x" €Y (Tx =x).

Theorem 2 ([31]) Let M be a closed, convex, bounded and nonempty subset
of a Banach space X. Let A, and A, be two operators such that

a) Ax+A,yeM forall x,yeM ;

b) 4, isa completely continuous operator (continuous, and compact, that is,
it maps bounded sets into relatively compact sets);

c) A, isa contraction mapping.

Then there exists ze M suchthat z=Az+ A,z .

3. Main Results

In this section we study the existence of nonnegative solutions for our problem
(E)-(BC). We present now the assumptions that we will use in the sequel.

() aeR, ae(n-1n], n,meN, n=3, B eR for all i=0,--,m,
0<p <p,<<pB,<p<a-1, B, z1, H, :[0,1]—)R, i=L--,m are
nondecreasing functions, an

G " —F(a) J.lsafﬂ"fldH,.(s)>0.

A= F(a—ﬁo)_ “T(a-p)

(2) f:[0,1]xR} - R, is measurable with respect to zon [0,1],
(R, =[0,00)).
(B) There exist the functions a,b,c € r ((0,1),R+) such that

|f(t,x,y,z)—f(t,)_c,)7,7)| < a(t)|x—)?|+b(t)|y—f|+c(t)|z—7

>

ae fte (0,1) and forall x,y,z,x,y,z€R,.
(14) There exists the function g€ L ((0,1),R+) such that

|f(t,x,y,z)| <g(t),ae.re(0,1),Vx,y,zeR,.

(5) KeC(ER,), E={(t.s)e[0,1]x[0,1].£>s},and
HeC([0,1]x[0,1],R,).
We denote by £, =sup,, ; I;K(t,s)ds and Ay, =sup, I;H(t,s)ds .

Theorem 3 We suppose that assumptions (I1)-(/5) hold. If ow, <1, where
o = ||a +k,b+ hoc" 1 » then problem (E)-(BC) has at least one nonnegative solu-
tion on [0,1] .

Proof. By (14) we obtain that the function
s—)(t—s)’Hf(s,x(s),Ax(s),Bx(s)) is Lebesgue integrable on [0,7] for all
t€[0,1] and xeC([0,1],R, ), the function
s (l—s)a—ﬁ‘)_1 f(s,x(s),Ax(s),Bx(s)) is Lebesgue integrable on [0,1] for
all xe C([O,l] R, ) , and the function
T —>(s—1')0l7'8"71 f(r,x(r),Ax(r),Bx(z')) is Lebesgue integrable on [O,S] for
all sef0,1], xeC([0,1l,R,) and i=1-,m.

We consider now the integral equation
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x(1)= —#a)f;(t—s)a_l f(s,x(s),Ax(s),Bx(s))ds

il )I;(l—s)a7ﬂ°71f(s,x(s),Ax(s),Bx(s))ds (6)

Car(a-p)
bl (o). axte) (e ae) o o),

i

or equivalently
= I;G(t,s)f(s,x(s),Ax(s),Bx(s))ds. (7)

By Lemma 2 we easily deduce that if x is a solution of Equation (6) (or equi-
valently (7)), then xis a solution of problem (£)-(BC).

Let r= G”g” . We define the operator 7 on
B, ={xeC([0,1],R,),|d|<r} by

’B(t):—ﬁj.;(t—s)alf(s,x(s),Ax(s),Bx(s))ds

! o
+m1 (1=s) " £ (s.x(s). Ax(s), Bx(s))ds
B MG (e (). () aea o),

or equivalently
1
= J.OG(t,s)f(s,x(s),Ax(s),Bx(s))ds.
If x is a fixed point of operator 7 , then x is a solution of Equation (6) (or
(7)), and hence x is a solution of problem (£)-(BC). Therefore we will study the
existence (and uniqueness) of the fixed points of operator 7 by using the Ba-

nach contraction mapping principle.
We firstly show that if x e B,, then 7x € B, . Indeed, we have

|7x( t+g)—73c(t)|
J.[G (t+¢,9) }f(s,x s),Bx(s ))ds‘
)

<I |G t+£ s) ( )|g(s ds
|G 1+¢,5)- G(t,s)|-||g||Ll —0,for & > 0.

< max (0]

Hence 7x is a continuous function. By (/1), (22) and Lemma 4, we obtain
Tx(t)=0 forall r€[0,1],and then TxeC([0,1].R,).
In addition, for any xe B, andall 7€[0,1], we deduce

(Tx)(t) = [|G(1.5) £ (s.x(s). Ax(s). Bx(s))ds
< J.;at"”lf(s,x(s),Ax(s),Bx(s))ds
< O't“'l'folg(s)ds < 0'||g||Ll =7,

and then ||’23c|| <r forall xeB, ,so 7:B, —B,.
We show now that 7 is a contraction mapping on B, . For x,,x, € B,, and
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any <[0,1], by using (I3), we find
(75)(6) =(Z5) (1)
<G (t05)| £ (53 (). A%, (5). B, () = £ (5.3, (5), 4%, (5). Bx, (5))|ds
sJ;G(r,s>[a(s>|x. ()= % () +b(s) Ax (5) ~ A, (s)
(s)|Bx, (s) = Bx, (s)) ]ds
<||x1—x2||0't“ [ [a(s)+ kb (s)+hoe(s)]ds

< G"xl —X, ||||a + kb + hoc"

0= ow, ”)C1 —

because
Ax, (s)—Ax, (s)= I;K(s,r)(xl (r)-x,(z))dr
< rseﬁ)l,)l]|xl (7)-x, (T)| I;K(s,r)dr
[0,1],
Bx, (s)—Bx, (s IH 5,7 (xl(z') ,(7))dz
< sup |x1 (7) HOIH(S r)dr

r<0]
<h, ||x1 x2||, Vs e[0,1],

<k, ||x1 -

and a,b,cel (0,1).
Therefore we obtain the inequality

|75, ~ Ty | < o, |, — x|

Because ow, <1, we deduce that 7 is a contraction mapping. By Theorem
1, we conclude that 7 has a unique fixed point, which is a nonnegative solu-
tion of problem (£)-(BC).
In what follows, we denote by
1

) = mj.;(l —s)"" (a(s)+kyb(s)+hyc(s))ds,

o -lastnely [ st S (), 0)

Theorem 4 We suppose that assumptions (I1),

()" f: [0,1]><]Ri — R, is a continuous function and (/3), (4), (/5) hold. If
max{a)z,a)3} <1, then problem (£)-(BC) has at least one nonnegative solution
on [0,1].

Proof. We define R > R, where

1

L
*Z,;( @)( (1)—Hl-(0))ﬂa

7, :max{f(t,0,0,0),te[O,l]} and @, is given by (8). We consider the set
ER :{xe C([O,l],RJ,"x"SR}. Then B, is a closed, convex and nonempty

DOI: 10.4236/0japps.2019.910061 754 Open Journal of Applied Sciences


https://doi.org/10.4236/ojapps.2019.910061

R. Luca, A. Tudorache

set of C([O,l],RJ.We define the operators O, and Q, on B, by
(le)(t):— ! J.(:(t—s){Hf(s,x(s),Ax(s),Bx(s))ds,te[O,l],

I(a)
.[;(l—s)wﬁ‘r1 f(s,x(s),Ax(s),Bx(s))ds

(@903

S bl et as(e) () ae)ar o). 01)

By (/1), (12)' and Lemma 4, we have (le)(t)+(Q2x)(t) >0 forall te [0,1] .
Forany x e B,, by using (13), we find

£ (6.x(2), Ax(2), Bx(1))|
<|£ (:x(¢), 4x(2), Bx(£)) - £ (1,0,0,0)| + £ (1,0,0,0)|
<a(t)|x(e)|+ b ()| Ax(2)|+ c(¢)|Bx(t)| +7,. Ve €[0,1].

Then for any xe B, andall ¢€[0,1], we obtain by using the above inequa-

lity

|Q1x(t)| = —ﬁf;(r—s)“_]f(s,x(s),Ax(s),Bx(s))ds

J.;(t—s)m1 (a(s)|x(s)| +b(s)|Ax(s)|+c(s)|Bx(s)| +TO)dS

< I'(l_s)a*(a(s)+k0b(s)+h0c(s))ds+FE‘;)I;(t—S)Hds

To

T(a+1)

To

<w,R
“ +F(a+1)

<w,R+

because (Ax)(r) <sup, o ¥(¢) LK (£.5)ds < kx| and
(Bx)(t) < sup, o g x(¢) [, H (t.5)ds < hy | forall 1&[0,1].
Therefore for any ze B, andall <[0,1], we deduce by using (/) that
0:(1)

ta—l

D
AT (a- )
et 1
: A ;F(a—ﬂi)
ta ! 1 a—py-1
SAF(a—ﬂo)'[O(l_S) sla)

t{l*l m 1

J.;(l —s)a_ﬂo_1 f(s, z(s), AZ(S),BZ(S))dS

J-Ol (J:(S —T)aiﬁ"fl f(z',z(r), AZ(T),BZ(T))dT)dHi (s)

1 1
_"g"u (AF(a—ﬁO) +Zi

IMs
3

|
=
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Hence for x,ye B, and te [0,1] , we find
|Q1x(t)+sz(t)|

< |le(t)| +|Q2y(t)| <w,R+ 1"(;0+1)

1 1 1

+ell [Ar(a—ﬂ0)+Z;r(a-@)(Hf (1)-H, (0))] <R

Therefore for y,,y, € B, and ¢€[0,1], by using (/3) we obtain

|QQJ’1 (t)_szz (t)|

= AT (a-f,) [j(=s)"
—f(S,yz(S),Ayz(s),Byz(s))|ds

A & mf;(_f:(s—r)aﬂ,l |f(r,y] (z).4y,(z),By (7))
/(7. 22(7), 4y, (7). By, (7)) dr ) dH, (s)

sm (=) (a(s)]3 (5) =2 ()] + b(s)| v, (5)— Avs (s)

+ c(s)|By1 (s)-By, (s)|)ds

S (=) (a0 ()22 (0)

"AET(a-p)
+b(r)|Ayl (T)— Ay, (z’)| +c(z’)|Byl (T)— By, (r)|)dr)dH[. (s)

AESHORORAEG)

<M'_Sa7ﬁo—1as+ Vi hels
_AF(a—ﬁO)-[O(l ) (a(s) +kob(s) + hye(s))ds

||y1 _J’2" N
* A IZ:;F

So, we deduce

|QzY1 (t) -0, (t)|

<L”")I;<a<s>+kob(s>+hoc<s>>ds

1
(a-5)

J;(J;(s —r)a_ﬂi_l (a(z')+ kyb(7)+ hoc(z'))dz')dHi (s).

Al (a-p,
L . ||;ir(al—/z)( (@(2)+ kb (2)+ hye () de ) (, (1)~ 7, (0))
=[yi = yall-la+ kb + hye] {m+%§ r(al_ﬂ,)(Hl (-4, (0))J

= "J/] — )

B

where @, is given by (8). Because @, <1, we conclude that O, is a contrac-
tion mapping.

By using assumptions (22)' and (/5), we deduce that (, is a continuous map-
ping. In addition, Q, is uniformly bounded on B, , because for any x e B,,

we find
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0x(1)] = ﬁ [ (1=5)"" £ (5,(s), Ax(s), Bx(s))ds
1 ! a1 1 1
Smjo(t—s) g(s)dsﬁr(a).[og(s)ds

1
‘m"g"g Vi e[0.1],

and then |Q,x| < || g|, forall xeB,.

The operator Q1 is also equicontinuous on B, . Indeed, let xeB,,

4,1, €[0,1], with # <t,. We have
[0 (12) - 0x(1)

(la)-[o (6, =) f(s.x(s), Ax(s), Bx(s))ds

1

( )J.tl(t s)a-lf(s,X(s),Ax(S),Bx(s))ds‘
e (o) (), () Be(s)) s

I'(a)

— ¢0 (t;—t]a)ﬁ%(tz_t]),
T(a+1) I'(a)
where ¢, —sup{f(t x,y,z),t€[0,1],|x] <
that |0x(t,)-0x(1,)| >0 as £,-1, —>0.
By using the Arzela-Ascoli theorem, we deduce that O, (ER) is relatively

< hOR} . Then we obtain

compact. By Theorem 2, we conclude that operator O, +(Q, has at least one
fixed point, and so problem (£)-(BC) has at least one nonnegative solution.
4. An Example

Let a=10/3 (n=4),5,=11/5, m=2, B =1/2, B,=5/4, H ()=t for
all 1€[0,1], H,(t)= {O,fort €[0,1/2);1,fort e [1/2,1]} .
We consider the fractional differential equation

(E) D(I)S/Sx(t)-i-f(t,x(t),Ax(t),Bx

with the boundary conditions

(1))=0,1(0,1),

(BG)  x(0)=x'(0)=x"(0)=0, D, x(1 2j tDy}x(t)dt + D x [;)

jH ts ()ds for all

where Ax

IK(ts

te[O,l],w1th K(t,s):e s> for all t,se[O,l] with s<¢,and

)ds and Bx

DOI: 10.4236/0japps.2019.910061

757 Open Journal of Applied Sciences


https://doi.org/10.4236/ojapps.2019.910061

R. Luca, A. Tudorache

H(t,s)=¢™(s'+1) forall #se[0,1]. Then we obtain A~ 0.85599748>0
and o ~1.24445843 . So assumptions (/1) and (/5) are satisfied.
We define the function
t+1 e'x ey ez
— + + ,
2 (I+k)(1+x) (148 )(1+y) (1467 )(1+2)

f(tx,p,z)=

for all 1€[0,1] and x,y,zeR, with k>1. We deduce that k0:3i and
e

5
hy = 7 Besides we obtain the inequalities

e e _
el IR

forall e [0,1] , X,¥,2,X,y,z €R, ,and
t+1 e’ e -

c
<t
xS T e e

YVt e [O,l],x,y,zeR+.

e—t e—2t e—3t
Wedeﬁne a(t):m, b(t):m, c(t)zm,and
—t -2t -3t
(t):%-i_li-kJrli—kz +1j-k3 , for all te[O,l]. We have a,b,cel (0,1)

and ge L (0,1) . So assumptions (2), (13), (/4) are also satisfied.

In addition, we find

_ 2_ 5(e’ -1 21 2.1 S(ef-1
o=—""1 7l (1) el el ( i )z0.540529 :
e(l+k) 6e’(1+4°) 12¢'(1+K°)  2¢ 128" 24e
and so @, <1/o ~0.8035624 . Therefore, by Theorem 3, we conclude that prob-
lem (E,)-(BC,) has at least one nonnegative and nontrivial solution.

5. Conclusion

In this paper, we investigated the existence of nonnegative solutions for the
Riemann-Liouville fractional differential equation with integral terms (E) sup-
plemented with the boundary conditions (BC) which contain Riemann-Liouville
fractional derivatives of different orders and Riemann-Stieltjes integrals, by us-
ing the Banach contraction mapping principle and the Krasnosel’skii fixed point
theorem for the sum of two operators. For some future research directions, we
have in mind the study of the existence, nonexistence and multiplicity of solu-
tions or positive solutions for fractional differential equations subject to other

boundary conditions.
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