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Abstract 
In a previous study, we introduced dynamical aspects of written texts by re-
garding serial sentence number from the first to last sentence of a given text 
as discretized time. Using this definition of a textual timeline, we defined an 
autocorrelation function (ACF) for word occurrences and demonstrated its 
utility both for representing dynamic word correlations and for measuring 
word importance within the text. In this study, we seek a stochastic process 
governing occurrences of a given word having strong dynamic correlations. 
This is valuable because words exhibiting strong dynamic correlations play a 
central role in developing or organizing textual contexts. While seeking this 
stochastic process, we find that additive binary Markov chain theory is useful 
for describing strong dynamic word correlations, in the sense that it can re-
produce characteristics of autocovariance functions (an unnormalized ver-
sion of ACFs) observed in actual written texts. Using this theory, we propose 
a model for time-varying probability that describes the probability of word 
occurrence in each sentence in a text. The proposed model considers hierar-
chical document structures such as chapters, sections, subsections, para-
graphs, and sentences. Because such a hierarchical structure is common to 
most documents, our model for occurrence probability of words has a wide 
range of universality for interpreting dynamic word correlations in actual 
written texts. The main contributions of this study are, therefore, finding 
usability of the additive binary Markov chain theory to analyze dynamic 
correlations in written texts and offering a new model of word occurrence 
probability in which common hierarchical structure of documents is taken 
into account. 
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1. Introduction 

Introducing the notion of time to written texts reveals dynamical aspects of word 
occurrences, allowing us to apply standard dynamical analyses developed and 
used in the fields of signal processing and time series analysis. In a previous 
study [1], we used a set of serial sentence numbers assigned from the first to last 
sentence in a given text as a discretized time. Using this time unit, we success-
fully defined an autocorrelation function (ACF) appropriate to words in written 
texts, then calculated ACFs according to this definition for words frequently ap-
pearing in twelve famous books. We found that the resulting ACFs could be 
classified into two groups: words showing dynamic correlations and those with 
no correlation type. Words showing dynamic correlations are called Type-I words, 
and their ACFs are well-described by a modified Kohlrausch-Williams-Watts 
(KWW) function. Words showing no correlation are called Type-II words, and 
their ACFs are modeled as a simple stepdown function. We showed that this 
stepdown function can be theoretically derived from the assumption that the 
stochastic process governing occurrences of Type-II words is a homogeneous 
Poisson point process. 

Type-I words are known to occur multiple times in a text in a bursty and con-
text-specific manner, and such occurrences ensure that the word has a dynamic 
correlation. Put another way, Type-I words are important for describing an idea 
or topic, and are therefore expected to be highly correlated with a duration, typ-
ically several tens of sentences in which the idea or topic is described. In con-
trast, Type-II words are not context-specific and their appearance is governed by 
chance. Type-I words are therefore more important than Type-II words, in the 
sense that they play a central role in explaining the author’s ideas or thoughts. 
The author’s insights and thought process should thus be discernible through 
modeling of the stochastic process that generates Type-I words. However, de-
spite the importance of Type-I words, the stochastic process yielding them could 
not be clarified in the previous study. 

The purpose of the present study was to find such a stochastic process for 
Type-I words. We found that additive binary Markov chain theory is suited to 
this purpose because this theory can capture characteristic behaviors for dy-
namic correlations of Type-I words in actual written texts. To our knowledge, 
this is the first application of the theory of additive binary Markov chain to 
analyze written texts, although the theory has been utilized to model natural 
phenomena such as wind generations [2]. Using this theory, we further calcu-
lated a time-varying probability that describes the occurrence probability of a 
given word as a function of time (i.e., sentence number). The evaluated 
time-varying probability has two distinctive features: probability values in the 
text are discretized into several values, and sentence numbers at which the oc-
currence probability takes the same value among several discretized values seem 
to aggregate along a time (sentence number) axis. The ultimate goal of this study 
was construction of a recursive model for probability distributions, which is eas-
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ily converted to a time-varying probability having the two features described 
above. We constructed this recursive model by incorporating common hierar-
chical document structures (chapters, sections, subsections, paragraphs, and 
sentences), so it can be applied to a broad range of applications for analyzing 
written texts. Although long-range correlations in written texts have been mod-
eled from various point of views, the methodologies used are completely differ-
ent from ours [3] [4].  

The remainder of this paper is organized as follows: In Section 2, we define 
the autocovariance function (ACVF), an unnormalized ACF used throughout 
this study. In Section 3, we describe the additive binary Markov chain theory, 
which allows mutual conversion between memory functions and ACVFs. We also 
present the relation between the time-varying probability of word occurrence and 
the memory function, which allows us to estimate the time-varying probability of 
a given word. In Section 4, we present typical examples of time-varying proba-
bility for Type-I words and their two distinctive features. In Section 5, we de-
scribe how to establish a recursive model for a probability distribution that 
successfully reproduces the two features of the time-varying probability. Final-
ly, in Section 6, we present our conclusions and suggest directions for future re-
search. 

2. Autocorrelation and Autocovariance Functions 
2.1. Definitions of Autocorrelation and Autocovariance Functions 

The autocovariance function gives the covariance of a given process with itself at 
pairs of time points. A standard definition of the ACVF for a weak stationary 
process { }tX  is 

( ) ( )( ) ,t tK E X X ττ µ µ+ = − −                      (1) 

where [ ]E  is an expectation operator and [ ]tE Xµ =  is the mean of { }tX  
[5] [6]. The ACF, which measures the similarity between signals tX  as a func-
tion of the time lag τ  between them, is a normalized autocovariance defined as 
[5] [6] 

( ) ( )
( )

.
0

K
K

τ
ρ τ =                            (2) 

As Equation (1) and Equation (2) show, these definitions for ACVF and ACF 
use the deviation of tX  from its mean instead of tX  itself. In our previous 
study [1], we used tX  itself to define the ACF so that the limit of the ACF at 
infinitely large τ  gives important information regarding Type-II words, that is, 
the limit of ACF using tX  itself approaches a constant rate λ  of a corres-
ponding homogeneous Poisson point process for a given Type-II word when 
τ → ∞ . However, because our main interest in this study is in Type-I words, 
there is no need to extract information from the ACFs of Type-II words. We 
therefore use the standard definition of ACVF, Equation (1), throughout this 
study. 
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Another difference between the previous and present studies is that we exten-
sively use ACVFs instead of ACFs because ACVFs more directly link to additive 
binary Markov chain theory, as will be shown later. 

2.2. Examples of ACVFs for Type-I and Type-II Words 

Because we use the set of serial sentence numbers assigned from the first to the 
last sentence in a considered text as discretized time, and because we intend to 
analyze word occurrence characteristics in terms of ACVFs, we define the signal 

tX  representing word occurrence or non-occurrence as 

( )
( )

1 when a given word occurs in the th sentence

0 when a given word does not occur in the th sentencet

t
X

t

= 


    (3) 

Figure 1 and Figure 2 show examples of tX  and ACVFs calculated from 

tX  for typical Type-I and Type-II words, respectively, extracted from a set of 
frequent words in Charles Darwin’s most famous work, On the Origin of Species. 
These words were chosen as typical Type-I and Type-II words in the previous 
study, and are also used here for comparison. Here, a “frequent” word is one 
appearing in at least 50 sentences in the text. Text preprocessing procedures 
performed before calculating ACVFs are the same as in the previous study. 

As Figure 1 shows, ACVFs—namely ( )K τ  as defined in Equation (1)—for 
Type-I words are monotonically decreasing, indicating that dynamic correla-
tions decrease as lag τ increases. They also show an apparent persistence of dy-
namic correlations with durations of several tens of sentences. In contrast, Fig-
ure 2 clearly shows that ACVFs for Type-II words show no dynamic correlations, 
suggesting that Type-II words are generated from a memoryless stochastic 
process. Figure 1 and Figure 2 show that the functional forms and characteristic 
behaviors of ACVFs are the same as those for the corresponding ACFs reported  
 

 
Figure 1. Examples of Xt (insets) and ACVFs (blue plots) for typical Type-I words. Red 
curves represent the best-fitted KWW functions (see Section 4) of which optimized pa-
rameters are shown in the plot areas. Xt and ACVFs for (a) “intermediate”, (b) “seed”, (c) 
“organ” and (d) “instinct”, from a set of frequent words in Darwin text. 
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Figure 2. Examples of Xt (insets) and ACVFs (blue plots) for typical Type-II words. Red 
lines represent the stepdown functions. Xt and ACVFs for (a) “remark”, (b) “subject”, (c) 
“explanation”, and (d) “reason”, from a set of frequently used words in the Darwin text. 
 
in the previous study. Therefore, the model functions used in the previous study 
to describe the ACFs of Type-I and Type-II words are still appropriate for de-
scribing ACVFs for each word type. Specifically, the Kohlrausch-Williams-Watts 
(KWW) function used to model the ACFs of Type-I words and the stepdown 
function used to describe the ACFs of Type-II words still provide full descriptive 
power when applied to modeling ACVFs. Figure 1 and Figure 2 show fitting 
results from these two model functions as red lines, indicating the validity of us-
ing KWW and the stepdown functions to model the two ACVF types. Details of 
the fitting results using the KWW function for the ACVFs of Type-I words will 
be described in Section 4. 

Our previous study found that, without exception, all frequent words appear-
ing in the twelve famous books are well classified into Type-I or Type-II words. 
This study also showed that the stochastic process governing occurrences of 
Type-II words is a homogeneous Poisson point process, which is completely 
memoryless. In the following section, we describe our attempts to determine a 
stochastic process for generating Type-I words in written text. We also investi-
gate a mechanism for providing dynamic correlations to Type-I words.  

3. Additive Binary Markov Chain 
3.1. Necessity of an Additive Markov Chain 

One standard approach to analyzing time series with dynamic correlations is to 
use a Markov chain model [7] [8] [9]. Because a first-order Markov chain is sim-
plest, we first apply one to model Type-I word occurrences and check whether or 
not the model can reproduce actual ACVFs exhibiting dynamic correlations. 
Consider a random variable tX  where t denotes a discretized time. If the proba-
bility of moving to the next state at the next time depends only on the present 
state, that is, if 

( ) ( )1 1 1 2 2 1| , , , |n n n n n nPr X x X x X x X x Pr X x X x+ += = = = = = =    (4) 

holds, then { }tX  is a first-order Markov chain. In the case of a binary Markov 
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chain in which signal tX  takes only values 0 or 1 as in Equation (3), the sto-
chastic properties of the first-order Markov chain can be completely determined 
by defining a transition matrix 

00 10

01 11

,
P P

P
P P

 
=  
 

                          (5) 

where ijP  denotes a transition probability from state i to state j. To determine 
all values of ijP  in the transition matrix from signals { }tX  observed in actual 
written texts, we simply used maximum likelihood estimators 

0 1

,ij
ij

i i

n
P

n n
=

+
                           (6) 

where ijn  is the number of transitions from state i to state j observed in signals 
{ }tX . Table 1 shows transition probabilities thus obtained for the typical Type-I 
words shown in Figure 1. 

After obtaining all values of ijP  listed in Table 1, we can simulate occur-
rences of a given word by using a simple Monte Carlo procedure as follows: 

1) Arbitrarily set an initial state 0X  as 0 or 1. 
2) Determine the next state 1X , by comparing 00P  or 10P  with a generated 

random number [ ]0,1p∈  following the standard uniform distribution ( )0,1U . 
If the initial state was 0 0X = , compare random number p with 00P . Otherwise, 
if 0 1X = , compare p with 10P . For example, consider the case where 1 0X = . 
Then if 00p P<  we set the next state as 1 0X = , while if 00p P≥  we set 

1 1X = . This procedure ensures that ( )1 0 000 | 0Pr X X P= = =  and 
( )1 0 011 | 0Pr X X P= = =  because from Equation (6), 00 01 1P P+ =  always holds. 

Similarly, given 0 1X = , if 10p P<  we set 1 0X = , otherwise we set 1 1X =  so 
that ( )1 0 100 | 1Pr X X P= = =  and ( )1 0 111 | 1Pr X X P= = = . 

3) Repeat Step 2 with replacements 1 iX X→  and 0 1iX X −→  ( )2,3, ,i n=  . 
By repeating this procedure n times, we can obtain simulated signals 

1 2, , , nX X X , the set of which is a first-order Markov chain having the transi-
tion matrix P given by Equation (5).  

Insets in Figure 3 show examples of simulated signals tX  for typical Type-I 
words with transition matrices P, elements of which are listed in Table 1. That 
figure also shows ACVFs calculated from those simulated signals. Obviously, 
these ACVFs are completely different from the actual ACVFs shown in Figure 1, 
in that they do not have long durations over several tens of sentences, although 
they exhibit dynamic correlations over much shorter durations. This indicates 
that the first-order Markov chain cannot reproduce actual dynamic correlations 
of Type-I words.  

A direct and intuitive way to discover dynamic correlations with long dura-
tions in simulated signals tX  is to consider higher-order Markov chains [7] [8] 
[9]. In an mth order Markov chain, the probability of moving to the next state is 

( )
( )

1 1 1 2 2

1 1 1 2 2

| , , ,

| , , , .
n n n

n n m n m n m n m n n

Pr X x X x X x X x

Pr X x X x X x X x
+

+ − + − + − + − +

= = = =

= = = = =





     (7) 
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Table 1. Transition probabilities for typical Type-I words estimated by Equation (6). 

 Intermediate Seed Organ Instinct 

P00 0.9800766 0.9787887 0.9723871 0.9860371 

P01 0.0199234 0.0212114 0.0276129 0.0139629 

P10 0.6446281 0.6747967 0.6645963 0.5670103 

P11 0.3553719 0.3252033 0.3354037 0.4329897 

 

 
Figure 3. Simulated signals Xt (insets) for the typical Type-I words obtained as a realiza-
tion of first-order Markov chains and ACVFs (blue plots) calculated from those Xt. Red 
curves represent best-fitted KWW functions, optimized parameters for which are shown 
in the plot areas. Results are for the words (a) “intermediate”, (b) “seed”, (c) “organ”, and 
(d) “instinct”. 
 

However, one difficulty is that the number of transition probabilities, each of 
which is an element of the transition matrix, grows exponentially with the order. 
In the case of binary Markov chains, we must evaluate 12m+  transition proba-
bilities to model the mth order Markov chain because we must consider all possi-
ble transition patterns in the last m signals. If 10m = , we must determine 2048 
transition probabilities. This is impossible because we cannot obtain sufficient 
samples to evaluate these probabilities when the number of signals tX , which is 
equal to the number of sentences in the considered text, is the same order as the 
number of transition probabilities to be evaluated. For example, The Origin of 
Species has 3991 sentences, so it is impossible to determine 2048 transition proba-
bilities with sufficient statistical reliability from 3991 signals. We must therefore 
consider another model that is tractable and can generate dynamic correlations 
with long durations. In the following subsection, we introduce additive binary 
Markov chains for this purpose. 

3.2. Framework of Additive Binary Markov Chain Theory 

Melnyk et al. [10] [11] proposed a theory of additive binary Markov chains, the 
framework of which is described below. In the following subsection, we will 
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show that the theory is successfully applied to model occurrences of Type-I words.  
An additive Markov chain of order m has the property 

( ) ( )1 1 2 2 1| , , , , , .m
n n n n n n n m n m n n rrPr X x X x X x X x f x x r− − − − − − −=
= = = = = ∑  (8) 

This means influences of previous states at different times are mutually inde-
pendent on next states and thus can be expressed in additive form. In the binary 
case, where signal tX  is restricted to a value of 0 or 1, the theory tells us that 
the conditional probability of Equation (8) can be modified as 

( )
( )( )

1 1 2 2

1

1 | , , ,

,
n n n n n n m n m

m
n rr

Pr X X x X x X x

X F r x X
− − − − − −

−=

= = = =

= + −∑


          (9) 

where X  is the mean of signals { }tX , and ( )F r  is a memory function 
representing the degree of influence of a previous signal occurring r time steps 
before. Thus, if ( )F r  takes a large value, then the occurrence of a given word 
at t n r= −  positively affects the word occurrence at t n= . Another implica-
tion of Equation (9) is that by obtaining ( )F r  for a given word, we can calcu-
late the probability of signal tX  being 1 by this equation, and we can therefore 
generate signals tX  by use of a simple Monte Carlo procedure with that prob-
ability. Because the parameters needed to simulate generation of tX  are ( )F r , 
the number of parameters to be evaluated is equal to the order m of the consi-
dered additive Markov chain. Tractability is therefore greatly improved because 
the number of parameters is only linearly dependent on the order m of a consi-
dered Markov chain. 

Furthermore, the theory of additive binary Markov chains [10] [11] offers 
simple simultaneous equations that directly relate ACVFs— ( )K r  given by Eq-
uation (1)—to the memory functions ( )F r  appearing in Equation (9) as 

( ) ( ) ( ) ( )
1

1, 2, ,
m

s
K r K r s F s r m

=

= − =∑              (10) 

Note that the relations 

( ) ( ) ,K r K r= −                         (11) 

( ) ( )0 1 ,K X X= −                        (12) 

always hold by the definition of ( )K r . By using Equation (11) and Equation 
(12), we can regard Equation (10) as m simultaneous equations relating ACVFs 

( ) ( ) ( )1 , 2 , ,K K K m  to memory functions ( ) ( ) ( )1 , 2 , ,F F F m . We can thus 
calculate ACVFs, ( )K r , from a theoretically assumed memory function ( )F r , or 
we can conversely calculate memory functions ( )F r  for a given word at 

1,2, ,r m=   from its actual ACVFs. 
Before applying additive binary Markov chain theory to analyze dynamic cor-

relations for Type-I words, we confirm the validity of the theory as follows. First, 
we assume the tentative memory function 

( )
( )
( )

0.1 0.05 1 20

0 20

r r
F r

r

− ≤ <= 
≤

                (13) 
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which is shown as the solid line in Figure 4(a). This function is plausible in the 
sense that memory decreases as lag r increases. We set other conditions as 

0.05X =  and 0 0X = , tentatively determined to fit actual word occurrences. 
We then generate signals tX  according to the conditional probability given by 
Equation (9) using a simple Monte Carlo procedure, the algorithm for which is 
basically the same as that for generating { }tX  using the first-order Markov 
chain. The Monte Carlo simulation to generate tX  applies two conditions (C1) 
and (C2), as follows: 

(C1) Signal 1nX =  if a generated random number [ ]0,1p∈  following 
standard uniform distribution ( )0,1U  is less than the conditional probability 
given by Equation (9). Otherwise, 0nX = . To calculate the conditional proba-
bility, we substitute ( )F r  as calculated from Equation (13) and the past m 
signal values into Equation (9). This procedure is repeated until we obtain the 
desired length of signals { }tX . 

 

 
Figure 4. (a) Memory function F(r) given by Equation (13) (solid line) and reproduced 
F(r) from ACVFs with Equation (10) (blue plots); (b) Simulated signals Xt generated by a 
simple Monte Carlo procedure; (c) ACVFs calculated from simulated signals Xt.  
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(C2) The number of past signals is insufficient for generating the first 2m −  
signals 1 2 2, , , mX X X −  because Equation (9) requires past m signals 

1 2, , ,n n n mX X X− − −  to calculate the conditional probability of nX  being 1. In 
these cases, we use all available past n signals from 0X  to 1nX −  to calculate 
Equation (9) and ignore other terms that require 1 2, ,X X− −  . 

Obtained tX  and estimated ACVFs from tX  with a condition 30m =  are 
shown in Figure 4(b) and Figure 4(c), respectively. The functional form of 
ACVFs (Figure 4(c)) is very similar to the used memory function (the solid line 
in Figure 4(a)), which is consistent with previously reported results [10] [11]. 
To confirm the validity of the additive binary Markov chain theory, we calculate 
values for the memory function ( )F r  from ACVFs in Figure 4(c) by inversely 
using the simultaneous equations, Equation (10). Figure 4(a) compares the 
memory function calculated from ACVFs (blue plots) and that of the original 
Equation (13) (solid line). As that figure shows, the original and calculated 
( )F r  from ACVFs satisfactorily agree, ensuring validity of the theory. The fol-

lowing section applies additive binary Markov chain theory as a basic framework 
for investigating characteristics of the stochastic process that generates Type-I 
words.  

4. Memory Functions and Occurrence Probabilities of Type-I  
Words 

In this section, we apply the theory of additive binary Markov chain to Type-I 
word occurrences to clarify characteristics of the stochastic process that gene-
rates dynamic correlations of Type-I words. Since ACVFs for Type-I words can 
be calculated from actual signals tX  by use of Equation (1) and these ACVFs 
can be used as observed ( )K r  values in Equation (10), it is easy to determine 
( )F r  values at each lag r from Equation (10). Figure 5 shows examples of thus  

 

 
Figure 5. Examples of F(r) (blue plots) for typical Type-I words calculated from ACVFs 
and fitted lines with the KWW function, for which optimized parameters are shown in 
the plot areas (red curves). 
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obtained ( )F r  for typical Type-I words. When calculating ( )F r , we have 
used ( )K r  represented by best-fitted KWW functions at each lag step instead 
of the original ACVFs to reduce noise effects. Red lines in that figure represent 
results fitted to ( )F r  by use of KWW functions, indicating that memory func-
tions ( )F r  for Type-I words can also be well described by KWW functions as 
in the case of fitting ACVFs.  

Strictly speaking, because the memory function ( )F r  is defined at 1r ≥ , as 
seen in Equation (9) and Equation (10), we use a modified form of the KWW 
function for ( )F r : 

( ) 0
1exp ,rF r F

β

τ

 −  = −  
   

                    (14) 

while when fitting ACVFs we use the standard form of the KWW function, namely, 

( ) 0 exp .rK r K
β

τ

   = −  
   

                     (15) 

Table 2 summarizes the evaluated fitting parameters of the KWW functions, 
Equation (14) and Equation (15), obtained through fittings for the typical Type-I 
words. These optimized parameters are obtained by nonlinear least-squares fit-
ting. Fitting parameters for ( )K r  are more scattered than those for ( )F r , 
particularly in values of β  and τ . This means that slight differences in func-
tional form for ( )F r  are amplified and become distinct in ( )K r . 

To confirm this observation, we conducted nonlinear least-squares fittings for 
all Type-I words from five well-known academic books, described in detail in the 
Appendix. Table 3 summarizes means and standard deviations of the fitting 
parameters for the Type-I words, and Table 4 lists coefficients of variation (CV), 
defined as σ µ  and calculated from the data in Table 3. Table 4 reconfirms 
that fitting parameter values are more scattered for ( )K r  than for ( )F r  be-
cause CVs of β  and τ  for ( )K r  are much larger than those for ( )F r . 

Consistency of the additive binary Markov chain theory for modeling occur-
rences of Type-I words can be used to confirm whether the theory can reproduce 
observed ACVFs. The procedure for confirming consistency is as follows. Note 
that we use the symbol tX  for actual signals of word occurrence or nonoccur-
rence as observed in actual written text, and nX  designates simulated signals 
obtained through simple Monte Carlo procedures. 
 
Table 2. Optimized fitting parameters of Equations (14) (F(r)) and (15) (K(r)) obtained 
by nonlinear least-squares fitting.  

 ( )K r  ( )F r  

Word 0K  β  τ  0F  β  τ  

Instinct 0.0233 0.220 3.78 0.257 0.619 1.69 

Intermediate 0.0289 0.412 1.03 0.294 0.633 0.994 

Organ 0.0374 0.303 2.01 0.292 0.622 1.31 

Seed 0.0292 0.316 1.09 0.268 0.618 1.31 
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Table 3. Mean µ  and standard deviation σ  for fitting parameters in ( )K r  (Equation (15)) and ( )F r  (Equation (14)) 

calculated for all Type-I words appearing in the corresponding book and described in the form µ σ± . 

Book 
Number of  

Type-I words 

( )K r  ( )F r  

0K  β  τ  0F  β  τ  

Darwin 109 0.0278 ± 0.0187 0.262 ± 0.115 0.485 ± 1.14 0.142 ± 0.0769 0.584 ± 0.0574 1.88 ± 0.545 

Einstein 17 0.0732 ± 0.0199 0.261 ± 0.0420 0.224 ± 0.169 0.161 ± 0.0353 0.589 ± 0.0195 1.77 ± 0.281 

Freud 14 0.0465 ± 0.0176 0.276 ± 0.144 0.658 ± 1.51 0.160 ± 0.0760 0.596 ± 0.0683 1.81 ± 0.564 

Kant 142 0.0283 ± 0.0250 0.245 ± 0.106 0.237 ± 0.391 0.140 ± 0.0534 0.580 ± 0.0506 1.97 ± 0.442 

Smith 382 0.0141 ± 0.0143 0.256 ± 0.106 0.305 ± 1.01 0.131 ± 0.0570 0.583 ± 0.0561 1.91 ± 0.491 

 
Table 4. CV for the fitting parameters in ( )K r  (Equation (15)) and ( )F r  (Equation 

(14)) calculated from σ µ  values in Table 3. 

Book 
Number of  

Type-I words 

( )K r  ( )F r  

0K  β  τ  0F  β  τ  

Darwin 109 0.673 0.439 2.351 0.542 0.098 0.290 

Einstein 17 0.272 0.161 0.754 0.219 0.033 0.159 

Freud 14 0.378 0.522 2.295 0.475 0.115 0.312 

Kant 142 0.883 0.433 1.650 0.381 0.087 0.224 

Smith 382 1.014 0.414 3.311 0.435 0.096 0.257 

 
1) ACVFs for a Type-I word are calculated using Equation (1) from actual 

signals tX  observed in the text. 
2) Curve fitting to fit Equation (15) to ACVFs obtained in the previous step is 

performed to obtain optimized values for fitting parameters. 
3) ( )K r  is calculated at each lag step r using Equation (15) with the opti-

mized fitting parameters. We set the maximum lag step as max 100r = , which, as 
will be recognized in the following steps, is equivalent to setting the order of the 
additive binary Markov chain to 100m = . This setting is sufficient to cover the 
longest durations of dynamic correlations for Type-I words [1]. 

4) ( )K r  obtained in the previous step are substituted into the simultaneous 
equations, Equation (10), to obtain ( )F r .  

5) ( )F r  is used to calculate the conditional probability, Equation (9), and 
the calculated conditional probability of nX  being 1 is used to generate simu-
lated signals nX  through simple Monte Carlo procedures. Conditions (C1) and 
(C2) described in Subsection 3.2 are still applied in this step. Before starting the 
Monte Carlo procedures, we set X  to the averaged value of actual signals for a 
given word. 

6) From the simulated signals nX , ACVFs are calculated using Equation (1) 
and compared with those obtained in step 1. If the ACVFs calculated from si-
mulated signals agree well with the actual ACVFs, we can consider the additive 
binary Markov chain theory as consistent. 
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Figure 6(a) and Figure 6(d) show comparisons between ACVFs calculated 
from actual signals (blue plots) and those reproduced from simulated signals 
(red plots) for two typical Type-I words, “intermediate” and “seed”. Both are in 
good agreement, indicating that dynamic correlations of Type-I words are well 
modeled by the theory of additive binary Markov chains. Figure 6 also shows 
simulated signals nX  obtained through the simple Monte Carlo procedures 
(Figure 6(b) and Figure 6(e)) and the conditional probabilities of nX  being 1 
(Figure 6(c) and Figure 6(f)). 

As Equation (9) shows, signals tX  are considered to be consequences of the 
time-varying conditional probabilities for word occurrence given by Equation (9) 
in the framework of additive binary Markov chain theory. In this sense, the un-
observed time-varying probabilities given by Equation (9) are more essential 
than the observed signals tX . The time-varying probabilities shown in Figure 
6(c) and Figure 6(f) seem plausible in the sense that the probabilities take high-
er values in time intervals with higher word occurrence rates. 

A closer look at Figure 6(c) and Figure 6(f) reveals two further characteristics 
of the time-varying probability: that the probability value does not continuously 
change, but instead seems to be discretized to form several levels in an approx-
imate sense, and that same-level probabilities seem to aggregate within a certain 
period of time. That is, the sentence numbers at which the occurrence probabil-
ity takes approximately the same values among several discretized values seem to 
be aggregated along the time (sentence number) axis. 

 

 
Figure 6. (a) and (d) ACVFs calculated from actual signals Xt observed in the text (blue 
plots) and those reproduced from simulated signals Xn (red plots); (b) and (e) Simulated 
signals Xn generated using the simple Monte Carlo procedures; (c) and (f) Conditional 
probabilities of Xn being 1 calculated using Equation (9). The left and right columns show 
results for the words “intermediate” and “seed” respectively. 
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We further calculated the time-varying probabilities of nX  being 1 for typi-
cal Type-I words selected from five academic books. Specifically, we chose the 
two words having the largest and second largest ΔBIC in each book because 
ΔBIC is a measure of dynamic correlation and thus indicates the importance of a 
given word [1]. Figure 7 shows the results for the words selected in this way. As 
that figure shows, the two features described above are common among all cases, 
indicating that the two features are substantial for all Type-I words having  
 

 
Figure 7. Conditional probabilities of Xn being 1 calculated using Equation (9). The pro-
cedures for obtaining these conditional probabilities are the same as those for Figure 6. 
Plots (a) and (b) show results for the words “intermediate” and “variety”, respectively, in 
the Darwin text. Plots (c) and (d) show results for the words “theory” and “gravitational”, 
respectively, in the Einstein text. Plots (e) and (f) show results for the words “dream” and 
“thought”, respectively, in the Freud text. Plots (g) and (h) show results for the words 
“judgement” and “conception”, respectively, in the Kant text. Plots (i) and (j) show results 
for the words “price” and “labour”, respectively, in the Smith text. 
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strong dynamic correlations, although the second feature (aggregation along the 
horizontal axis) is not easy to see in Figures 7(g)-(j) due to compression of the 
horizontal axes. 

The two features described above cannot be directly explained from Equation 
(9), so another viewpoint beyond the scope of additive binary Markov chain 
theory is needed to explain them. In the following section, we propose a recur-
sive probability distribution model in which hierarchical structures of docu-
ments are considered to explain these features. 

5. Hierarchical Model of Probability Distribution for Word  
Occurrences 

Almost all documents have a hierarchical structure consisting of chapters, sec-
tions, subsections, paragraphs, and sentences. This section describes the con-
struction of a probability distribution model that reflects such hierarchical 
structures. The constructed model is expected to reproduce the two features of 
the time-varying probability of word occurrence described in the previous sec-
tion. However, because our aim is to capture dynamic correlations of Type-I 
words with a simple model and we do not intend to build a complex or sophisti-
cated model, some details of the proposed model will be tentatively determined. 
We believe, however, that the hierarchical structures of documents induce dy-
namic correlations of Type-I words, and that our model essentially captures the 
origin of these correlations. 

Our model is based on a recursive probability redistribution that constructs a 
hierarchical probability distribution. After obtaining the hierarchical probability 
distribution, we convert it to the time-varying probability of word occurrence. 
The probability redistribution and conversion are performed in the following 
manner.  

1) As a starting point, we consider the standard uniform distribution ( )0,1U  
illustrated in Figure 8(a), in which the density function is fixed to 1 in the unit 
interval [0, 1] and 0 otherwise. 0 and 1 on the horizontal axis correspond to the 
positions of the first and the last sentences in the text, so the unit interval [0, 1] 
corresponds to the entire text. No structures are introduced in the distribution at 
this point, so the occurrence probability of a given word is exactly the same for 
all sentences in the text. 

2) The unit interval [0, 1] is divided into 5 subintervals of the same length, 
indexed as 1, 2, 3, 4, 5 (Figure 8(a)). These subintervals correspond to five 
chapters in the text. We then select two indices, 1a  and 2a , taken from a discrete 
uniform distribution with possible values { }1,2,3,4,5 . Here, we select two other 
indices, 1b  and 2b , differing from 1a  and 2a  by sampling without replace-
ment. 

3) The rectangles representing probabilities at subintervals with indices 1a  
and 2a  are removed and stacked on rectangles having indices 1b  and 2b . In 
Figure 8(b), 1 1a = , 2 5a = , 1 2b = , and 2 4b = . Consequently, the occurrence 
probabilities for a given word within subintervals having indices 1 and 5 become  
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Figure 8. The procedure for probability redistribution considering hierarchical structures 
in the actual written text. 
 
zero, indicating that chapters 1 and 5 become irrelevant to descriptions using the 
considered word, while chapters 2, 3, and 4 are considered relevant. 

4) Division into five subintervals, choosing indices 1a , 2a , 1b , and 2b  and 
the stacking of probabilities are repeated for each portion of the top layer in the 
probability distribution as in Figure 8(c) and Figure 8(d). This procedure is 
recursively repeated to form a desired hierarchical structure for the probability 
distribution. For example, if we repeat this procedure twice, we obtain the prob-
ability distribution in Figure 8(d) with four different density function values 
(zero and three positive values 1, 2 and 3). Similarly, by repeating this three 
times, we obtain a probability distribution with five function values. 

5) After obtaining a desired hierarchical probability distribution, that is, after 
repeating the probability redistribution a predefined number of times, we dis-
cretize the horizontal axis and convert it into sentence numbers. For example, if 
we repeat the previous step three times, that is, if we set the number of repeti-
tions as 3r = , then the unit interval [0, 1] is divided into 35 125=  subintervals, 
considered to be 125 sentences with serial sentence number from 1 to 125. In 
this case, because the text length of 125 sentences is too short to calculate ACVFs 
with statistical reliability, we concatenate 10 different obtained hierarchical 
probability distributions, each having 125 sentences to form a text with 1250 
sentences. Concatenation of 10 hierarchical probability distributions is applied 
to the cases of 2,3,4r =  and concatenation of 5 hierarchical probability dis-
tributions is used for 5r = . 

6) The vertical axis of the probability distribution is also converted. Originally, 
a vertical axis value represents a density function value defined within the unit 
interval [0, 1]. However, because we intend to obtain time-varying probabilities, 
these vertical axis values must be converted into word occurrence probabilities 
at corresponding sentences. That is, we want to transform the probability densi-
ty function to the time-varying probability, as in Figure 6(c) and Figure 6(f). 
The conversion of vertical axis values is achieved by dividing each value by the 
maximum value on the axis. For example, consider the case in which step 4 was 
repeated 3 times, causing the density function to take 5 different values. After 

https://doi.org/10.4236/jdaip.2019.74014


H. Ogura et al. 
 

 

DOI: 10.4236/jdaip.2019.74014 244 Journal of Data Analysis and Information Processing 
 

division, the vertical values are still limited to one of 5 values, but their maxi-
mum is now 1. Each of the five values corresponds to the probability of word 
occurrence in sentences with 5 different relevancies. The lowest value represents 
the probability of word occurrence in sentences in irrelevant chapters, which is 
equal to 0. The second, third, and fourth lowest values represent probabilities of 
word occurrence at sentences in relevant chapters, sections, and paragraphs, re-
spectively. The highest value represents the probability of word occurrence in 
relevant sentences, and this probability equals 1, indicating that the word always 
appears in relevant sentences. As the recursive procedures described above 
clearly show, relevant sections must be in upper layers of relevant chapters, rele-
vant paragraphs must be in relevant sections, and relevant sentences must be in 
relevant paragraphs. 

Figure 9(a), Figure 9(d), Figure 9(g), and Figure 9(j) show examples of 
time-varying probabilities obtained by the procedures described above. These 
plots correspond to cases where the recursive procedure is repeated 2, 3, 4, and 5 
times, respectively. Figure 9 also presents simulated signals tX  generated from 
the time-varying probabilities using the simple Monte Carlo procedure (Figure 
9(b), Figure 9(e), Figure 9(h), and Figure 9(k)) and ACVFs calculated from 
simulated tX  (Figure 9(c), Figure 9(f), Figure 9(i), and Figure 9(l)).  

Note that the time-varying probabilities shown in Figure 9(a), Figure 9(d), 
Figure 9(g), and Figure 9(j) reveal the two features observed in the time-varying 
probabilities of actual Type-I words. That is, the discretization of probability 
values observed for actual Type-I words is well reproduced in Figure 9(a), Fig-
ure 9(d), Figure 9(g), and Figure 9(j). Similarly, these plots confirm that ag-
gregation of probabilities at the same level among several discretized levels on 
the horizontal axis is also reproduced.  

Another important finding observed in the ACVFs in these plots is that dy-
namic correlations become more prominent and durations of dynamic correla-
tions increase with the number of repetitions of the recursive procedure. This 
indicates that the origin of dynamic correlations observed for Type-I words is 
closely connected to the hierarchical structure of a considered text. Judging from 
the ACVFs in Figure 9, suitable repetition times to reproduce actual ACVFs ob-
served for Type-I words seem to be 4r =  and 5r =  because long duration 
times over several tens of sentences are achieved for these cases (Figure 9(i) and 
Figure 9(l)). 

Figure 10 shows the results of fittings using the KWW function (Equation 
(15)) to ACVFs displayed in Figure 9(i) and Figure 9(l). The fittings are good. 
In particular, obtained optimized parameters for 4r = , namely, 2.05τ ≅  and 

0.265β ≅  (Figure 10(a)), are considered to be typical values for actual Type-I 
words. Regarding 0K , the obtained value of 0 0.159K ≅  is too large compared 
with typical values for actual Type-I words because typical 0K  values for actual 
Type-I words are in the range of 0.02 - 0.04 (see Figure 1). However, 0K  is eas-
ily adjusted by multiplying all values for time-varying probabilities by some con-
stant 1c < , because this multiplication uniformly lowers the probability of word  
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Figure 9. Time-varying probabilities of word occurrence ((a), (d), (g) and (j)), simulated 
signals Xt generated using a simple Monte Carlo procedure with the time-varying proba-
bilities ((b), (e), (h) and (k)), and ACVFs calculated from simulated signals Xt ((c), (f), (i) 
and (l)). Plots (a)-(c) show the case of two repetitions of the recursive procedure, (d)-(f) 
show the case of three repetitions, (g)-(i) show the case of four repetitions, and (j)-(l) 
show the case of five repetitions. 
 

 
Figure 10. Fitting results by use of KWW function (red curves) to ACVFs (blue plots) 
obtained from simulated Xt. The recursive procedure for constructing the time-varying 
probability was repeated (a) 4 times and (b) 5 times. 
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occurrence and hence lowers the values X  and ( )0 1K X X= − . The disa-
greement in 0K  mentioned above is thus not serious, and we can therefore 
conclude that the proposed model for recursive probability distribution appro-
priately reproduces dynamic correlations of Type-I words.  

6. Conclusions 

Type-I words are those used to describe notions or ideas in written texts over 
some duration of sentences in context-specific manners. Therefore, if we con-
sider occurrences of a given word as time-series data by regarding serial sentence 
numbers as time, the words exhibit dynamic correlations that are well captured 
in autocovariance functions (ACVFs). In this study, we investigated a stochastic 
process that governs word occurrences with the hope that the origin of dynamic 
correlations of Type-I words is well interpreted by that process.  

To identify this process, we applied additive binary Markov chain theory to 
observe word occurrence signals for considered Type-I words to estimate mem-
ory functions and time-varying probabilities of word occurrence. The obtained 
time-varying probabilities represent the probability of word occurrence as a 
function of time (i.e., serial sentence number). These probabilities show two dis-
tinctive features: values of time-varying probabilities seem to be discretized, and 
similar probability values aggregate in some time-axis range. 

To explain these features, we attempted to construct a recursive model of 
probability distribution that considers hierarchical structures of documents such 
as chapters, sections, subsections, paragraphs, and sentences. This construction 
was based on a recursive probability redistribution in a probability density func-
tion defined on the unit interval [0, 1]. After obtaining the hierarchical probabil-
ity distribution in the density function, we converted the density function to 
time-varying probabilities of word occurrence by discretizing the horizontal axis 
and rescaling the vertical axis. We found that the obtained time-varying proba-
bilities well reproduce the two distinctive features mentioned above. By using 
those time-varying probabilities, we generated signals tX  representing word 
occurrence or non-occurrence over the entire text and calculated ACFVFs from 
the signals. The resultant ACVF with four repetitions, which is the number of 
recursive procedure repetitions needed to construct the hierarchical probability 
distribution, was quite similar to actual ACVFs for Type-I words.  

At this stage, we have not yet considered optimization of the construction 
procedure for the recursive model of probability distribution. For example, the 
use of five subintervals in the procedure was tentatively determined without sta-
tistical verifications. To construct more realistic models, we should extract the 
number of subintervals from some adequate probability distribution each time 
this number is needed. Therefore, increased sophistication of the construction 
procedures described in Section 5 is one area for future research. Another is to 
interpret the time-varying probabilities of word occurrences as a fractal time se-
ries. As the recursive procedure for constructing the hierarchical probability dis-
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tribution shows, the obtained probability distribution can be regarded as a statis-
tical fractal [12] [13], so the time-varying probabilities thus obtained can be con-
sidered as a fractal time series [14] [15]. Any relations between fractal dimension 
of time-varying probabilities and characteristics of dynamic correlations may 
provide new insights into written texts. A more detailed study along this line, 
through which we will try to identify any such relations, is reserved for future 
work. 
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Appendix 

In this study, we selected the English edition of five famous academic books as 
samples of written texts and analyzed all Type-I words appearing therein to cla-
rify the features of Type-I words. Unlike in our previous study, we omitted no-
vels from our text samples because the features of Type-I words are more prom-
inent in academic books [1]. The five books were downloaded as text files from 
Project Gutenberg (https://www.gutenberg.org). Table A1 lists the details of the 
five books used.  
 

Table A1. Summary of selected English texts. 

Short name Title Author Download URL 

Darwin On the Origin of Species Charles Darwin https://www.gutenberg.org/ebooks/1228  

Einstein Relativity: The Special and General Theory Albert Einstein https://www.gutenberg.org/ebooks/5001  

Freud Dream Psychology Sigmund Freud https://www.gutenberg.org/ebooks/15489  

Smith 
An Inquiry into the Nature and Causes of the 

Wealth of Nations 
Adam Smith https://www.gutenberg.org/ebooks/3300  

Kant The Critique of Pure Reason Immanuel Kant https://www.gutenberg.org/ebooks/4280  

 
Figure A1 presents some basic statistics of the five books, evaluated after the 

pre-processing procedures. 
 

 
Figure A1. Basic statistics for the five texts, evaluated after pre-processing procedures. 
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