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Abstract 
This study explored and reviewed the logistic regression (LR) model, a mul-
tivariable method for modeling the relationship between multiple indepen-
dent variables and a categorical dependent variable, with emphasis on medi-
cal research. Thirty seven research articles published between 2000 and 2018 
which employed logistic regression as the main statistical tool as well as six 
text books on logistic regression were reviewed. Logistic regression concepts 
such as odds, odds ratio, logit transformation, logistic curve, assumption, se-
lecting dependent and independent variables, model fitting, reporting and 
interpreting were presented. Upon perusing the literature, considerable defi-
ciencies were found in both the use and reporting of LR. For many studies, 
the ratio of the number of outcome events to predictor variables (events per 
variable) was sufficiently small to call into question the accuracy of the re-
gression model. Also, most studies did not report on validation analysis, re-
gression diagnostics or goodness-of-fit measures; measures which authenti-
cate the robustness of the LR model. Here, we demonstrate a good example of 
the application of the LR model using data obtained on a cohort of pregnant 
women and the factors that influence their decision to opt for caesarean deli-
very or vaginal birth. It is recommended that researchers should be more ri-
gorous and pay greater attention to guidelines concerning the use and re-
porting of LR models. 
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1. Introduction 

Logistic regression (LR) analysis has become an increasingly employed statistical 
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tool in medical research, especially over the last two decades [1], although its 
origin can be dated back to the nineteenth century [2]. It is widely regarded as 
the statistic of choice for situations in which the occurrence of a binary (dicho-
tomous) outcome is to be predicted from one or more independent (predicting) 
variables [3] [4] [5]. 

The logistic function was invented in the 19TH century by Pierre François 
Verhulst a French mathematician for the description of growth of human popu-
lations, and the course of autocatalytic chemical reactions [6]. Verhulst pub-
lished his suggestions which were edited by Quetelet between 1838 and 1847 [7]. 
The logistic model agreed very well with the actual course of the population of 
France, Belgium, Essex (UK), and Russia for the periods up to the early 1830’s. 
The logistic function was discovered anew in 1920 by Pearl and Reed in a study 
of the population growth of the USA [8]. 

LR is used when the research method is focused on whether or not an event 
occurred, rather than when it occurred (time course information is not used). It is 
particularly appropriate for models involving disease state (diseased or healthy) 
and decision making (yes or no), and therefore is widely used in studies in the 
health sciences. There are more complex forms which can deal with situations 
where the predicted variable takes more than two categories, it is then referred to 
as polychotomous or multinomial logistic regression [9]. 

As in all models, certain assumptions are made in order to fit the model to the 
data. LR does not assume a linear relationship between the dependent and inde-
pendent variables, but between the logit of the outcome and the predictor values 
[10]. The dependent variable must be categorical; the independent variables 
need not be interval; nor normally distributed, nor linearly related, nor of equal 
variance within each group, and lastly, the categories (groups) must be mutually 
exclusive and exhaustive. A case can only be in one group and every case must 
be a member of one of the groups. LR has the power to accommodate both ca-
tegorical and continuous independent variables. Although the power of the 
analysis is increased if the independent variables are normally distributed and do 
have a linear relationship with the dependent variable [11]. Inspection of these 
assumptions shows that this technique can be employed somewhat more flexibly 
than traditional regression techniques, making it suitable for many clinically re-
levant situations. For any given case, LR computes the probability that a case 
with a particular set of values for the independent variables is a member of the 
modeled category. Larger samples are needed than for linear regression because 
maximum likelihood coefficients are large sample estimates [12]. 

Studies with small to moderate sample sizes employing LR overestimate the 
effect they measure [4] [13]. Thus, large sample sizes are required for LR to pro-
vide sufficient numbers in both categories of the outcome variable. Also, the 
more independent variables are included, the larger the sample size required. 
With small sample sizes, the Hosmer-Lemeshow test has low power and is un-
likely to detect subtle deviations from the logistic model. Hosmer and Lemeshow 
recommend sample sizes greater than 400 and a minimum number of cases per 
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independent variable is ten [4] [13]. 
In addition to its many uses for developing models that will predict events in 

the physical sciences [14], economics [15] [16] and political sciences [17], LR is 
increasingly being applied in medical research [18] [19] [20]. Examples of the 
use of logistic regression in medicine include a study of the factors that predict 
whether an improvement or no improvement will occur after an intervention 
[21] [22], the presence or absence of a disease in relation to a variety of factors 
[23], to explore the effects of and relationships between multiple predictors [24] 
[25], to determine which of a range of potential predictors actually are important 
[23] [26] and, to determine whether newly explored variables add to the predic-
tive validity of already established models [27]. The other applications of LR are 
to develop novel statistical methods based on ranked-data [28]. 

To examine if commonly recommended assumptions for multivariable LR are 
addressed, Ottenbacher et al. [29] surveyed 99 articles from two journals; the 
Journal of Clinical Epidemiology and the American Journal of Epidemiology, un-
der 10 criteria, six dealing with computation and four with reporting multivariable 
LR results. Their study revealed that three of the 10 criteria were addressed in 50% 
or more of the articles. Statistical significance testing or confidence intervals 
were reported in all articles. Methods for selecting independent variables were 
described in 82% and specific procedures used to generate the models were dis-
cussed in 65%. Fewer than 50% of the articles indicated if interactions were tested 
or met the recommended events per independent variable ratio of 10:1. Fewer 
than 20% of the articles described conformity to a linear gradient, examined col-
linearity, reported information on validation procedures, goodness-of-fit, dis-
crimination statistics, or provided complete information on variable coding. 
There was no significant difference (P > 0.05) in the proportion of articles meet-
ing the criteria across the two journals. They concluded that articles reviewed 
frequently did not report commonly recommended assumptions for using mul-
tivariable LR. 

Bagley et al. [30] also identified 15 peer-reviewed articles and reported on 
substantial shortcomings in the use and reporting of LR results. Their study re-
vealed that none of the articles reported any goodness-of-fit measures or regres-
sion diagnostics. The majority of the studies had events-per-variable ratios near 
or below 10, suggesting that those regression results themselves may be particu-
larly unreliable, and finally, none of the studies reported any validation analysis. 

In a review of four multivariate methods appearing in the literature from 1985 
to 1989, Concato et al. [31] reported that LR was the most frequently used pro-
cedure comprising an average of 43% of the multivariate methods in the 
five-year period reviewed. Two reports ([21] [32]) described a significant in-
crease in the use of LR in the public health, epidemiology, obstetrics and gyne-
cology research literature. Bender [33] reviewed the statistical methods reported 
in a probability sample of 348 articles published between 1970 and 1998 in the 
American Journal of Public Health and the American Journal of Epidemiology. 
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The study revealed significant increases in the use of LR, proportional hazard 
regression and methods for the analysis of data from complex sample surveys. 

Multivariable LR is a sophisticated statistical technique and concern has been 
expressed regarding its use and interpretation [29] [34] [35] [36]. The concerns 
have focused on assumptions associated with the appropriate use, correct inter-
pretation and complete reporting of multivariable LR. The quality of the LR 
analysis depends heavily on researchers understanding the assumptions inherent 
in the method and following principles developed to ensure their sound applica-
tion. Explicitness in modeling is also necessary for reporting the results to other 
researchers for verification and replication. It is against this back drop that this 
article aims to re-examine the components of and reporting requirements of the 
LR model as applied in medical research, and places emphasis on a more tho-
rough and rigorous reporting for a wider audience. 

2. Materials and Methods 
2.1. The Logistic Regression Model 

The LR gives each predictor a coefficient which measures its independent con-
tribution to variation in the dependent variable. The dependent variable Y takes 
the value 1 if the response is “Yes” and takes a value 0 if the response is “No”. 

The model form for Predicted Probabilities is expressed as a natural logarithm 
(ln) of the odds ratio: 
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 is the log (odds) of the outcomes, Y is the dichotomous  

outcome; 1 2, , , kX X X  are the predictor variables, 0 1 2, , , , kβ β β β  are the 
regression (model) coefficients and β0 is the intercept. 

In Equation (4), the logistic regression model directly relates the probability of 
Y to the predictor variables. The goal of LR is to estimate the k + 1 unknown pa-
rameters β in Equation (4). This is done with maximum likelihood estimation 
which entails finding the set of parameters for which the probability of the ob-
served data is greatest. The regression coefficients indicate the degree of associa-
tion between each independent variable and the outcome. Each coefficient 
represents the amount of change we would expect in the response variable if 
there was a one unit change in the predictor variable. The objective of LR is to 
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correctly predict the category of outcome for individual cases using the best 
model. To accomplish this goal a model is created that include all predictor va-
riables that are useful in predicting the response variable. LR calculates the 
probability of success over probability of failure. The results of the analysis are in 
the form of an odds ratio. 

2.1.1. The Logistic Curve 
The binary dependent variable has the values of 0 and 1 and the predicted value 
(probability) must be bounded to fall within the same range. To define a rela-
tionship bounded by 0 and 1, LR uses the logistic curve to represent the rela-
tionship between the independent and dependent variable. At very low levels of 
the independent variable, the probability approaches 0, but never reaches 0. 
Likewise, if the independent variable increases, the predicted values increase up 
the curve and approach 1 but never equal to 1.   

2.1.2. Transforming a Probability into Odds and Logit Values  
The logistic transformation ensures that estimated values do not fall outside the 
range of 0 and 1. This is achieved in two steps, firstly the probability is re-stated 
as odds which is defined as the ratio of the probability of the event occurring to 
the probability of it not occurring. For example, if a horse has a probability of 0.8 
of winning a race, the odds of it winning are 0.8/(1 − 0.8) = 4:1. To constrain the 
predicted values to within 0 and 1, the odds value can be converted back into a 
probability; thus,  

( ) ( )
( )1

odds event
event

odds event
=

+
Probability                 (5) 

It can therefore be shown that the corresponding probability is 4/(1 + 4) = 0.8. 
Also, to keep the odds values form going below 0, which is the lower limit (there 
is no upper limit), the logit value which is calculated by taking the logarithm of 
the odds, must be computed. Odds less than 1 have a negative logit value, odds 
ratio greater than 1.0 have positive logit values and the odds ratio of 1.0 (corres-
ponding to a probability of 0.5) have a logit value of 0.  

2.1.3. Interpreting the Odds Ratio (OR) 
When an independent variable Xi increases by one unit (Xi+1), with all other fac-
tors remaining constant, the odds of the dependent variable increase by a factor 
exp(βi) which is called the odds ratio (OR) and ranges from zero (0) to positive 
infinity. It indicates the relative amount by which the odds of the dependent va-
riable increase (OR > 1) or decrease (OR < 1) when the value of the correspond-
ing independent variable increases by one (1) unit.  

2.1.4. Selecting the Dependent Variables 
In many cases, that outcome event is easily categorized into classes of having 
occurred, or not having occurred. For example, the occurrence of a heart attack 
or not; or delivering through caesarean or not, are relatively easily discerned and 
coded as either having happened, or not having happened. Once this categoriza-
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tion has been achieved, the predictors of that outcome can be studied [37]. In 
other cases, the outcome may be treated as dichotomous, but, in fact, it derives 
from the censoring of continuous data; that is, a cutoff criterion has been pro-
duced and the data recoded from continuous to categorical at the cutoff point. In 
these cases, the situation in choosing the outcome variable may be more com-
plicated [16]. In some instances, continuous outcomes translate relatively easily 
into a dichotomous event. These cases are most often concerned with measures 
for which well-established cutoff points for the presence of an event have been 
developed. The presence or absence of high blood pressure is one such example, 
where a systolic pressure of greater than 140 mm/Hg is considered to be high 
[32]. It is worth noting that many multi-category or even continuous variables 
can be reduced to dichotomous ones. For example, if the health condition of pa-
tients is expressed on, say a seven-category scale, from “completely healthy” to 
“terminal condition”, this could be reduced to two categories such as “healthy” 
and “unhealthy” [9]. 

2.1.5. Selecting Potential Predictors  
Another aspect to consider in the development of a LR study concerns the selec-
tion of which variables to analyse as potential predictors of the outcome. This 
can only be achieved by a careful study of the literature in relation to the out-
come, in order to ensure that the full range of potential predictors is included 
[20]. However, there are a number of drawbacks in selecting predictor variables 
that can lead to the presented logistic model appearing to explain greater or 
lesser amounts of variance than it actually may explain in reality [38]. The re-
sults of any LR will depend on the variables selected as potential predictors, put 
simply, if a variable is not selected for analysis, then it cannot feature in the final 
model. However, the choice regarding whether or not to include factors in the 
initial data set can impact on the results [37].  

Further, if interaction terms between the variables are to be considered, then 
the omission of some variables could potentially have major impacts of the re-
sults. Unfortunately, the solution is not simply to include as many variables as 
possible, as the inclusion of variables that are unrelated to the outcome in ques-
tion, this (the addition of unrelated variables) has the tendency to inflate the ap-
parent predictive validity of the final model [33]. There is no one best way to tell 
that the set of predictors that have been chosen are appropriate, but a number of 
rules-of-thumb can show that the choice is reasonable. For example, if the speci-
ficity (the degree to which the predictors correctly identify individuals not showing 
the particular outcome, true negatives), and sensitivity (the degree to which the 
predictors correctly identify individuals showing the outcome, true positives), of 
the model are both above 80%, then it is likely that the chosen predictors have 
validity [1]. 

There may well be constraints acting on any particular study that lead to bias 
in the selection of the data used for the analysis. One potential constraint is the 
sample size, which limits the number of variables that can be studied. There is 
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some debate as to the number of participants per variable that are needed, how-
ever, Agresti [39] suggests that a minimum of 10 participants are needed for every 
variable studied; a suggestion that is based on some statistical evidence confirming 
the reliability of logistic regressions performed on different numbers of events 
per variable [40]. This obviously places some constraints on the number of va-
riables that can be employed in a study, although it should be noted that most 
studies of medical outcome using LR do follow this rule. 

Another source of selection bias in the variables that are studied is that of miss-
ing data, where the presence of missing data in the sample can drive down the 
sample size if those participants with missing data are excluded, or can lead to the 
exclusion of certain variables from the analysis if large amounts of data are miss-
ing. Unfortunately, both of these outcomes can lead to bias in the variables selected 
that may be highly important as it will leave the sample as self-selected—that is, 
comprising only those individuals who chose to supply certain data, or only that 
data which is readily supplied by the sample, as well as other reasons why the 
other data are missing [19]. 

Finally, in addition to selection bias effects from these sources, the selection of 
variables is also constrained by the properties of the data that are collected. For 
example, predictor variables that are related to one another (that show colinear-
ity or multi-colinearity) or predictor variables that have excessively influential 
observations (outliers), will impact adversely on the results of a LR. Particularly, 
in small or moderate samples, colinearity can result in overall levels of signific-
ance from the LR when individual predictors are not in themselves predictive of 
the outcome, or in the degree of relationship between a predictor and the out-
come being incorrectly established [22]. Although LR is particularly useful in 
providing a parsimonious combination of the best predictor variables, such a 
procedure has the tendency to capitalize on chance sample characteristics [17]. 
The set of predictors yielded by one sample may not hold for another sample. It 
is therefore considered desirable when employing this procedure to correct for 
capitalizing on chance by cross-replicating to a new sample.  

2.2. Evaluation of the LR Model 

The goodness-of-fit for the LR model can be assessed in several ways. First, is to 
assess the overall model (relationship between all of the independent variables and 
dependent variable). Second, the significance of each of the independent variables 
needs to be assessed. Thirdly, the predictive accuracy or discriminating ability of 
the model needs to be evaluated, and finally, the model needs to be validated. 

2.2.1. Overall Model Evaluation 
1) The likelihood ratio test 
The overall fit of a model shows how strong a relationship between all of the 

independent variables, taken together, and dependent variable is. It can be as-
sessed by comparing the fit of the two models with and without the independent 
variables. A LR model with the k independent variables is said to provide a bet-
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ter fit to the data if it demonstrates an improvement over the model with no in-
dependent variables (the null model). The overall fit of the model with k coeffi-
cients can be examined through a likelihood ratio test, which tests the null hy-
pothesis: 

0 1 2: 0kH β β β= = = =                       (6) 

To do this, the deviance with just the intercept (−2 log likelihood of the null 
model) is compared with the deviance when the k independent variables have 
been added (−2 log likelihood of the given model). The difference between the 
two yields a goodness of fit index G, χ2 statistic with k degrees of freedom (DoF) 
[41]. This is a measure of how well all of the independent variables affect the 
outcome or dependent variable. 

( ) ( )2 2 log likelihood of null model 2 log likelihood of given modelG χ= = − − − (7) 

An equivalent formula sometimes presented in the literature is, 

2 2 log likelihood of  the null modelG
likelihood of  the given model

χ
 

= = −  
 

           (8) 

where, the ratio of the maximum likelihood is calculated before taking the natu-
ral logarithm (ln) and multiplying by −2. The term “likelihood ratio test” is used 
to describe this test. If the p-value for the overall model fit statistic is less than 
the significance level of the test, conventionally 0.05 (P < 0.05), then H0 is re-
jected, with the conclusion that there is evidence that at least one of the inde-
pendent variables contributes to the prediction of the outcome. 

2) Hosmer-Lemeshow test 
The Hosmer-Lemeshow test is used to examine whether the observed propor-

tions of events are similar to the predicted probabilities of occurrence in sub-
groups of the model population. The Hosmer-Lemeshow test is performed by 
dividing the predicted probabilities into deciles (10 groups based on percentile 
ranks) and then computing a Pearson’s Chi-square (χ2) that compares the pre-
dicted to the observed frequencies in a 2-by-10 table. The value of the test statis-
tics is expressed as, 

10
1

  g g
g

g

O E
H

E=

−
= ∑                      (9) 

where, gO  and gE  denote the observed and expected events for the gth risk 
decile group. The test statistic asymptotically follows a χ2 distribution with 8 
(number of groups minus 2) DoF. Small values (with large P-value closer to 1) 
indicate a good fit to the data, therefore, good overall model fit. Large values 
(with P < 0.05) indicate a poor fit to the data. Hosmer and Lemeshow [4] do not 
recommend the use of this test when n is small (i.e. n < 400). 

2.2.2. Statistical Significance of Individual Regression Coefficients 
If the overall model works well, the next question is how important each of the 
independent variables is. The LR coefficient for the ith independent variable 
shows the change in the predicted log odds of having an outcome for one unit 
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change in the ith independent variable, all other things being equal. That is, if the 
ith independent variable, with regression coefficient b, is changed by 1 unit while 
all of the other predictors are held constant, log odds of outcome is expected to 
change b units. There are a couple of different tests designed to assess the signi-
ficance of an independent variable in logistic regression including the likelihood 
ratio test and the Wald statistic [40]. 

1) Wald statistic 
Statistical tests of significance can be applied to each variable’s coefficients. 

For each coefficient, the null hypothesis that the coefficient is zero is tested 
against the alternative that the coefficient is not zero using a Wald test, jW . A 
Wald test can also be used to compare a full model containing all the predictor 
variables with a reduced model with some coefficients set to zero. The Wald sta-
tistic can be used to assess the contribution of individual predictors or the signi-
ficance of individual coefficients in a given model [41]. The Wald statistic is the 
ratio of the square of the regression coefficient to the square of the standard er-
ror of the coefficient. The Wald statistic is asymptotically distributed as a χ2 dis-
tribution: 

2

2
j

j
j

W
SEβ

β
=                        (10) 

Each Wald statistic is compared with a χ2 critical value with 1 DoF. 
2) Likelihood ratio test 
The likelihood-ratio test used to assess overall model fit can also be used to 

assess the contribution of individual predictors to a given model. The likelihood 
ratio test for a particular parameter compares the likelihood of obtaining the da-
ta when the parameter is zero, 0L  with the likelihood 1L  of obtaining the data 
evaluated at the maximum likelihood estimation of the parameter. 

The test statistic is calculated as follows: 

( )0
0 1

1

2 ln 2ln
L

G L L
L

= − = − −                    (11) 

This statistic is compared with a χ2 distribution with 1 DoF. To assess the 
contribution of individual predictors one can enter the predictors hierarchically, 
then compare each new model with the previous model to determine the con-
tribution of each predictor. 

2.3. Predictive Accuracy and Discrimination 
2.3.1. Classification Table 
The classification table (Table 1) is a method to evaluate the predictive accuracy 
of the logistic regression model [42]. In this table, the observed values for the 
dependent outcome and the predicted values (at a user defined cutoff value) are 
cross-classified. For example, if a cutoff value is 0.5, all predicted values above 
0.5 can be classified as predicting an event, and all below 0.5 as not predicting 
the event. Then a two-by-two table of data can be constructed with dichotomous  
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Table 1. Sample classification table. 

Observed 
Predicted 

1 0 

1 a b 

0 c d 

 
observed outcomes and dichotomous predicted outcomes. The table has the fol-
lowing form. 

Where, a, b, c and d are the number of observations in the corresponding 
cells. 

If the logistic regression model has a good fit, we expect to see many counts in 
the a and d cells, and few in the b and c cells. In an analogy with medical diag-
nostic testing, we can consider,  

( )Sensitivity a a b= +  and ( )Specificity d c d= +         (12) 

where, higher sensitivity and specificity indicate a better fit of the model. 

2.3.2. Discrimination with Receiver Operating Characteristic Curves 
Extending the above two-by-two idea (Table 1), rather than selecting a single cu-
toff, the full range of cutoff values from 0 to 1 can be examined. For each possible 
cutoff value, a two-by-two table can be formed. Plotting the pairs of sensitivity and 
one minus specificity on a scatter plot provides a Receiver Operating Characte-
ristic (ROC) curve. The area under this curve (AUC) provides an overall meas-
ure of fit of the model [43]. The AUC varies from 0.5 (no predictive ability) to 
1.0 (perfect predictive ability). Larger AUC indicates better predictability of the 
model. Points above the diagonal dividing the ROC space represent good classi-
fication results (better than random), while points below represent the poor re-
sults (worse than random). 

2.4. Validation of the LR Model 

Validation is an important test of the regression’s internal validity, a crucial step 
in the argument that the regression model is not an idiosyncratic artifact but in-
stead that it has captured essential relationships in the domain of study. An im-
portant question is whether results of the LR analysis on the sample can be ex-
tended to the population the sample has been chosen from. This question is re-
ferred as model validation. In practice, a model can be validated by deriving a 
model and estimating its coefficients in one data set, and then using this model 
to predict the outcome variable from the second data set, then check the resi-
duals, and so on. When a model is validated using the data on which the model 
was developed, it is likely to be over-estimated. Thus, the validity of model 
should be assessed by carrying out tests of goodness of fit and discrimination on 
a different data set [44].  

If the model is developed with a sub-sample of observations and validated 

https://doi.org/10.4236/jdaip.2019.74012


E. Y. Boateng, D. A. Abaye 
 

 

DOI: 10.4236/jdaip.2019.74012 200 Journal of Data Analysis and Information Processing 
 

with the remaining sample, it is called internal validation. The most widely used 
methods for obtaining a good internal validation are data-splitting, repeated da-
ta-splitting, jackknife technique and bootstrapping [45]. If the validity is tested 
with a new independent data set from the same population or from a similar 
population, it is called external validation. Obtaining a new data set allows us to 
check the model in a different context. If the first model fits the second data set, 
there is some assurance of generalizability of the model. However, if the model 
does not fit the second data, the lack of fit can be either due to the different con-
texts of the two data sets or true lack of fit of the first model [25]. 

2.4.1. Pseudo R2 Measures 
If, however, the model does not fit the data set exactly, some indication of how 
well it does fit should be given. A summary of goodness-of-fit measures describe 
how well the entire model matches the observed values; in addition, regression 
diagnostics (including residual, leverage, and influence measures) are important 
in revealing the effect of individual subjects on the estimated model. A perfect fit 
has −2 LL value of 0 and 2

LOGITR  of 1. The Cox and Snell R2 measure and Na-
gelkerke R2 measure are common in most statistical software packages [38].  

2.4.2. Determining the Number of Significant Variables to Retain 
Since the estimates of the included variable may be sensitive to changes in the 
variable(s) omitted, some researchers have chosen to retain all the variables 
representing the same factor if at least one of them is statistically significant. They 
refer to such a model as the full model [46] [47] while others chose to eliminate 
all insignificant variables from the model to increase efficiency of estimation and 
refer to such a model as the reduced model [48]. To increase the efficiency in 
medical research, the reduced model with only the statistically significant va-
riables retained is mostly used. In the reduced model, variables with P-value less 
than or equal to α-value are treated as statistically significant [49]. 

3. Reporting and Interpreting LR Results 

The following four types of information should be included when presenting the 
LR results; 1) An overall evaluation of the logistic model; 2) statistical tests of in-
dividual predictors; 3) goodness-of-fit statistics; and 4) an assessment of the pre-
dicted probabilities. We demonstrate this from recent work on variables in-
forming expectant mothers to opt for caesarean delivery or vaginal birth [49]. 
Tables 2-5 are examples to illustrate the presentation of these four types of in-
formation. Table 2 presents the logistic regression model with statistical signi-
ficance of individual regression coefficients (β) tested using the Wald χ2 statistic.  

From Table 2 baby’s birth weight has a significant effect on the event (P < 
0.05). Compared with babies with birth weight above 3.5 kg, babies with birth 
weight less than 3.5 kg were found to have a decreased probability on the event. 
The negative sign of the estimated coefficients and the sign of the odds ratio be-
ing less than 1 (β = −1.5381, P < 0.001 and OR = 0.2148) for babies with birth  
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Table 2. Example of LR output: statistical tests of individual predictors. 

Explanatory Variable 
Co-Efficient 

β 
Standard 

Error 
P-Value 

Wald Test 
Wj 

Odds Ratio 
OR 

Baby’s Birth Weight 
(3.5 kg and above as Reference) 

     

2.5 - 3.5 kg −1.5381 0.3988 0.00012 −3.857 0.2148 

Less than 2.5 kg −1.6042 0.5148 0.00183 −3.116 0.2010 

Parity (None as Reference)      

One 1.1588 0.5700 0.04205 2.033 3.1861 

Two 1.0248 0.5063 0.04296 2.024 2.7865 

Three 1.1322 0.5273 0.03178 2.147 3.1025 

Above Three 1.6898 0.6047 0.0052 2.794 5.4184 

Figures in italics are significant (P < 0.05). See Reference [50] for full description. 

 
Table 3. Example of output from LR: overall model evaluation and goodness-of-fit statis-
tics. 

Test Categories χ2 DoF P-value 

Overall Model Evaluation Likelihood Ratio Test 12.02 2 0.002 

 Wald Test 11.06 2 0.004 

Goodness of Fit Test Hosmer and Lemeshow Test 5.975 8 0.65 

 
Table 4. Example output from LR: model summary. 

 
Likelihood Cox & Snell R2 Square Nagelkerke R2 

1 273.175 0.576 0.723 

 
Table 5. Example output from LR: a classification table. 

    
Predicted 

   
Caesarean Delivery Percentage % 

Correct 
 

Observed 
 

Yes No 

Step 1 Caesarean Delivery Yes 158 31 83.6 

  
No 32 148 82.2 

 
Overall Percentage % 

  
82.9 

aThe cut off value is 0.500. 

 
weight from 2.5 kg to 3.5 kg and (β = −1.6042, P < 0.001 and OR = 0.2010) for 
babies with birth weight below 2.5 kg show that the probability of caesarean de-
livery is higher for babies with birth weight above 3.5 kg than babies with birth 
weights below 3.5 kg. That is, the relative probability of caesarean delivery de-
creases by 78.52% for babies with birth weight from 2.5 kg to 3.5 kg and 79.9% 
for babies with birth weight below 2.5 kg.  

It could also be seen from Table 2 that parity was estimated to be a significant 
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predictor for the event. Compared with pregnant women with no parity, expec-
tant mothers with one parity (OR = 3.1861, P = 0.05), two parities (OR = 2.7865, 
P = 0.05) and three parities (OR = 3.1025, P = 0.05) are characterized by signifi-
cantly higher probability of not undergoing caesarean deliveries. However, ex-
pectant mothers with more than three parities, that is, four or more parities (OR 
= 5.4184, P < 0.005) are associated with a very higher probability of not under-
going caesarean delivery. That is, compared with a pregnant woman with no parity 
and, all other variables held constant, expectant mothers with four or more parities 
are five times more as likely not to undergo caesarean delivery. The relative prob-
ability of not undergoing caesarean delivery increases by 441.84% for expectant 
mothers with more than four parities and approximately 210.25% for expectant 
mothers with one to three parities. 

From Table 3 two inferential statistical tests for overall model evaluation: the 
likelihood ratio and Wald tests, are shown. All two tests yield similar conclu-
sions for the given data set. It could be noticed from the results of the likelihood 
ratio test and the Wald test presented in Table 3 that the logistic model with in-
dependent variables was more effective than the null model. Table 3 also 
presents the Hosmer-Lemeshow goodness-of-fit test. This statistical test meas-
ures the correspondence of the actual and predicted (expected) values of the de-
pendent variable (caesarean delivery). A better model fit is characterized by in-
significant differences between the actual and expected values. It tests the hypo-
thesis H0, there is no difference between the predicted and actual values against 
H1, there is difference between the predicted and actual values. At p-value of 
0.650 the null hypothesis is accepted and we conclude that insignificant differ-
ences remain between the actual and expected values, suggesting that the model 
fitted the data well.  

A model summary of the logistic model is presented in Table 4. It could be 
observed that the model has a relatively larger pseudo R2 of 0.723 for the Nagel-
kerke R2 and 0.576 for the Cox and Snell R2 That is, the fitted model can explain 
or account for 72.3% of the variation in the dependent variable. This is an indi-
cation of a good model. 

Table 5 presents the degree to which predicted probabilities agree with actual 
outcomes in a classification table. The overall correct prediction, 82.9% shows an 
improvement over the chance level which is 50%. With the classification table, 
sensitivity, specificity, false positive and false negative can be measured. Sensitiv-
ity measures the proportion of correctly classified events, whereas specificity meas-
ures the proportion of correctly classified nonevents. The false positive measures the 
proportion of observations misclassified as events over all of those classified as 
events. The false negative therefore measures the proportion of observations mis-
classified as nonevents over all of those classified as nonevents. 

4. Conclusion  

This study explored the components LR model, a type of multivariable method 
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used frequently for modeling the relationship between multiple independent va-
riables and a categorical dependent variable, with emphasis on medical research. 
Six text books on logistic regression and 37 research articles published between 
2000 and 2018 which employed logistic regression as the main statistical tool 
were reviewed. Logistic regression concepts such as odds, odds ratio, logit trans-
formation, logistic curve, assumption, selecting dependent and independent va-
riables, fitting, reporting and interpreting were presented. Upon perusing litera-
ture, considerable deficiencies were found in both the use and reporting of LR. 
For many studies, the ratio of the number of outcome events to predictor va-
riables (events per variable) was sufficiently small to call into question the accu-
racy of the regression model. Also, most studies did not report validation analy-
sis, regression diagnostics or goodness-of-fit measures. Proper use of this po-
werful and sophisticated modeling technique requires considerable care both in 
the specification of the form of the model, in the calculation and interpretation 
of the model’s coefficients. We presented an example of how the LR should be 
applied. It is recommended that researchers be more thorough and pay greater 
attention to these guidelines concerning the use and reporting of LR models. In 
future, researchers could compare LR with other emerging classification algo-
rithms to enable better or more rigorous evaluations of such data.  
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