
Journal of Computer and Communications, 2019, 7, 36-51 
https://www.scirp.org/journal/jcc 

ISSN Online: 2327-5227 
ISSN Print: 2327-5219 

 

DOI: 10.4236/jcc.2019.710004  Oct. 11, 2019 36 Journal of Computer and Communications 
 

 
 
 

Impact of Element Spacing on the Radiation 
Pattern of Planar Array of Monopole Antenna 

Ofem U. Omini1, Donatus E. Baasey2* , Sulaiman A. Adekola3 

1Electrical Engineering Department, Cross River University of Technology, Calabar, Nigeria 
2Faculty of Engineering, University of Calabar, Calabar, Nigeria 
3Niger Delta University, Wilberforce Island, Nigeria 

 
 
 

Abstract 
In recent years, several attempts have been made in designing planar array 
antennas with high directivity. This paper is aimed at investigating the impact 
of element spacing on the directivity of planar array of monopole antenna. 
The directivity of antenna with reduced grating lobes can be obtained by 
carefully varying the inter-element spacing of array antenna. Based on this 
conception, this paper presents the investigation carried out on the relation-
ship between inter-element spacing and the directivity of planar array of 
monopole antenna. It went further to highlight the effect on the total fields 
radiated by the antenna. The inter-element spacing is one of the most impor-
tant antenna parameters that determine the directivity of the antenna. For a 
planar array of monopole, the directivity can be improved by varying the in-
ter-element spacing. Four elements uniform planar array antenna and Ha-
damard matrix method was used to determine element positioning in the ar-
ray matrix. The simulated results obtained using Matlab, showed that good 
directivity was obtained by using element spacing between 0.1λ - 0.5λ. In-
creasing the spacing beyond 0.6λ - 1.0λ also improved the directivity, but 
generated many grating lobes. As inter-element spacing increased, the grating 
lobes increased in size, number and levels. The study, therefore, inferred that 
the best directivity (radiation pattern) can only be obtained when the element 
spacing is within 0.1 - 0.5λ. 
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1. Introduction 

Planar array antennas are many antennas arranged and connected in a matrix 
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format on a plane in order to reduce the inherent environmental pollution by 
reducing the grating lobes and levels [1] [2]. Directivity in the other hand as a 
fundamental antenna parameter is a measure of how “directional” an antenna’s 
radiation pattern is [3]. It can also be seen as a 4π times the ratio of the far field 
power density to the total radiated power [4]. 

Many array antennas were developed, ranging from linear, circular, phased, 
conformal and planar array antennas. Planar array of monopole antenna method 
is chosen for this research [3]. The total field radiated as well as the directivity by 
this antenna depends largely on the elemental parameters, such as inter-element 
spacing. 

Many researchers referenced in our research like [3] [4] [5] and [6] had re-
searched on different ways and methods of improving the radiation pattern 
synthesis and attempts to enhance the directivity of the radiated field using dif-
ferent methods and have different aims. But this research, in which no research-
er has done before, provides an in-depth study on the effect of varying in-
ter-element spacing on the directivity of the total field radiated by planar array 
of monopole antenna. 

2. Design of Planar Array Using Hadamard Matrix 

The “on” and “off” states in the array arrangement correspond to “1” and “−1” 
of the Hadamard matrix [7]. The inter-element spacing in both directions of the 
array was varied. In determining the configuration of the planar array in a ma-
trix form, a special matrix arrangement technique was adopted. This matrix 
technique or method is known as Hadamard matrix which was introduced by 
Jacques Hadamard in 1893. 

An n n×  matrix ijF f=  is an Hadamard matrix of order n if the entries of 
F are either +1 or −1 and such that TFF nI= , where TF  is the transpose of F 
and I is the order n identity matrix. 

TFF nI=                           (1) 

Hadamard matrix is one of the mathematical conjectures in nature. Although 
many associated ideas have been developed, the very existence of these matrices 
has extensive consequences in many fields of research, such as optimal design 
theory, information theory and graph theory. For instance, a Hadamard matrix 
can be interpreted directly as a weighing design. They can be used in forming 
optimal fractional factorial designs, orthogonal arrays (It consists of two con-
ventionally summed linear sub-arrays that are oriented at right angle to each 
other, such that the outputs of the sub-arrays are cross-correlated to form an 
antenna pattern.) F-square designs [4]. 

From Hadamard states that if 1F  is Hadamard matrix of order m and 2F  is 
a Hadamard matrix of n then 1 2F F⊗  is a hadamard matrix of order mn. 

The symbol ⊗  denotes direct product or convolution of matrices: if A is a 
matrix with typical entry ija , then 
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                    (2) 

A n n×  matrix ijF f=  is a Hadamard matrix of order n if the entries of F 
are either +1 or −1 and such that 

TFF nI=                            (3) 

That is let 

F
+ + 

=  + −   
And 

TF
− − 

=  − +   
For a 4 × 4 matrix arrangement, that is using Equation (3) above, that product 

of TFF  gives [8] 

T T  FF F F nI
+ + − −   

= ⊗ = ⊗ =   + − − +   
              (4) 

Therefore, 

T  FF

+ + + + 
 + − + − =
 + + − −
 
+ − − + 

                      (5) 

Equation (5) implies that F is nonsingular, and has an inverse 1 Tn F− ; conse-
quently 

TF F nI=  
But in this paper, we considered a uniform planar array antenna with all ele-

ments energised. From Hadamard, let 1 2F F A B⊗ = ⊗  

11 12 11 12

21 22 21 22

 
a B a B a B a B

A B nI
a B a B a B a B
   

⊗ ⊗ =   
   

              (6) 

Then 

13 1411 12

23 2421 22

33 3431 32

43 4441 42

a B a Ba B a B
a B a Ba B a B

A B nI
a B a Ba B a B
a B a Ba B a B

 
 
 ⊗ = =
 
 
 

              (7) 

According to Hadamard matrix, ijF f=  is a Hadamard matrix of order N × 
M if the entries of F are either +1 or −1. In this paper we considered in Equation 
(7) where all the elements will to be +1, that is, 

11 12 13 14 1a B a B a B a B= = = = +                   (8) 

21 22 23 24 1a B a B a B a B= = = = +                   (9) 
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31 32 33 34 1a B a B a B a B= = = = +                  (10) 

41 42 43 44 1a B a B a B a B= = = = +                  (11) 

From the above Equations (8)-(11) it therefore implies that, in a uniform pla-
nar array antenna with all the elements in the array matrix energised and 
represented by “1” we have; 

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

F

 
 
 =
 
 
 

                       (12) 

For clarity and easy placement of these elements in the planar array form, the 
nodal elements are numbered from 1 - 16 according the element’s position in the 
matrix array as shown in Figure 1. 

From Figure 1 below, the element of each node ( ),x yE a a  is the element’s 
position number in the uniform planar array matrix. The inter-element spacings 

xa λ  and ya λ  are spacings along x and y-axis respectively. 
10 elements with (+) sign before them, that is, elements 1, 2, 3, 4, 5, 9, 11, 13 

are “on” while 6 elements with (−) sign before them, that is, elements 7, 8, 10, 12, 
14, and 15 are “off” of the 4 × 4 array. The total elements involved in this planar 
array evaluation were 16 elements. 

3. Derivation of the Formula for Planar Array Factor AFplanar 
from Linear Array Antenna 

Linear antenna array provides a good background in array theory because of the 
insights that leads into formation of beam and it relates to the array excitation 
functions and the radiation pattern obtained [6]. 

Consider an isotropic radiator located at the origin of the linear array, the 
E-field may be written as (assuming θ-polarization) 

0
e
4

jkd

E I
dθ

−

=
π

                        (13) 

where, 

0I  is the complex excitation of the isotropic radiator, k is the free space wave 
number and d is distance of the observation point from the origin. 

Assume that the N elements of the array are uniformly spaced with a separation  
 

 
Figure 1. Placement of element in planar array form [1]. 
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distance d. The uniformly spaced linear array antenna is presented in Figure 2 
below [6]. 

This arrangement is necessary showing that the configuration of a planar ar-
ray antenna is made up of two linear antennas placed at orthogonally to each 
other. The nodes, 1 - 4 represent the four elements of the linear array and a, is 
the inter-element spacing. While d1 - d4 is the far field approximation. 

From Figure 2 below, the far field approximations of the array is 

1d d=                            (14) 

2 cosd d a θ≈ −                        (15) 

3 2 cosd d a θ≈ −                        (16) 

( )1 cosNr d N a θ≈ − −                     (17) 

The magnitudes of current of the array elements was assumed to be equal and 
the current on the array element located at the origin was used as the phase ref-
erence (zero phase) [3] see Figure 1. 

Therefore, the currents 2
1 0 2 0

Nj
N

jeI I I I I e φφ= =  . 
The far E-field of the individual elements is: 

1 0 0
e
4

jkd

E I E
dθ

−

= =
π                       (18) 

( )
( )2

2

 cos
cos

0 0
ee e

4

jk r a
jk r kacjE I E

d

θ
θφ

θ

− −
− += =

π
 

( )
( )3

3

 2 cos
2 cos

0 0
ee e

4

jk d ac
jk d kacjE I E

d

θ
θφ

θ

− −
− += =

π
            (19) 

( )( )
( )

 1 cos
1 cos

0 0
ee e

4
NN

N

jk d N a
j N kajE I E

d

θ
φ θφ

θ

− − −
+ −  = =

π  
The total array far field could be found by using superposition: 

1 2 30 N
E E E E Eθ θ θ θ= + + + +                  (20) 

( ) ( ) [ ]2 1 coscos
0 01 e e Nj N kaj kaE E AFφ θφ θ + − +   = + + + =          (21) 

 

 
Figure 2. Uniform linear array antenna [1]. 
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Note that the array factor (AF) is independent of the antenna type, assuming 
all of the elements are identical. The array factor for a uniformly-spaced 
N-element linear array is [3]: 

( ) ( )2 1 coscos1 e e Nj N kaj kaAF φ θφ θ + − +   = + + +              (22) 

We consider a uniform array defined by uniformly-spaced identical ele-
ments of equal magnitude with a linearly progressive phase from element to 
element: 

( )1 2 30, , 2 , , 1N Nφ φ ρ φ ρ φ ρ= = = = −              (23) 

Inserting this linear phase progression into the formula for the general 
N-element array gives 

( ) ( )2 1 coscos1 e e Nj N kaj kaAF φ θφ θ + − +   = + + +   

( )12 3 4 51 e e e e e e j Nj j j j jAF ρρ ρ ρ ρ ρ − = + + + + + + +          (24) 

where, 

cosN kaρ φ θ= +  
And thus, 

( )1

1
e

N
j N

n
AF ρ −

=

= ∑                        (25) 

where ρ  is a function which defined as the array phase function and is a func-
tion of [6] the element spacing, phase shift, frequency and elevation angle. If the 
array factor of Equation (25) is multiplied by e jρ  the result is 

2 3 4 5e e e e e e e ej j j j j j j jNAF ρ ρ ρ ρ ρ ρ ρ ρ = + + + + + +          (26) 

The subtraction of the array factor from Equation (26) above gives 

( ) ( )e 1 e 1j jNAF ρ ρ− = −                     (27) 

Therefore, according to [2] and [6] 

( )2 2 2 1
2

2 2 2

sin
e 1 e e e 2e
e 1 sine e e 2

jN jN jNjN j N

j j j j

N
AF

ρ ρ ρ
ρϕ

ϕ ρ ρ ρ

ρ

ρ

−
−

−

 
 − −  = = =

−  
−  

 

       (28) 

The complex exponential term 
( )1

2e
j N ρ

−
 in Equation (28) is the phase shift 

(array phase factor) of the array phase center relative to the origin. If the posi-
tion of the array is shifted so that the center of the array is located at the origin, 

this phase term goes to zero. That is if ( )1 0
2

N ρ
− = , 

then Equation (23) becomes; 

sin
2

sin
2

N

AF

ρ

ρ

 
 
 =
 
 
 

                       (29) 
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The array factor is normalized so that the maximum value for any value of N 
is unity [6]. The normalized array factor therefore is given as 

sin
1 2

sin
2

N

AF
N

ρ

ρ

 
 
 =
 
 
 

                      (30) 

The antenna is rectangular array antenna as shown in Figure 3. The interest is 
the arrangement of a linear array which is of N × N matrix with M number of 
element in x equals N number elements in y [4]. 

The designed principles for planar arrays are similar to those elements placed 
in two dimensions (Figure 3), the array factor of a planar array can be expressed 
as the multiplication of the array factors of two linear arrays of Equation (30) 
above, one along the x-axis and the other one along the y-axis. Therefore, planar 
array factor planarAF  can be simply expressed as: 

sin sin
1 12 2

sin sin2 2

x y

planar
x y

M N

AF
M N

ρ ρ

ρ ρ

               =   
               

           (31) 

where, 

sin cosx x xkaρ θ φ ω= +                     (32) 

sin cosy y ykaρ θ φ ω= +                     (33) 

where, xρ  and yρ  is the array phase function along x-and-y axis while xω  
and yω  is the progressive phase shift along x-and-y axis respectively. xa  and 

ya , is the inter-element spacing x-and-y axis respectively when xρ  and 0yρ =  
can be obtained as 

sin cosx xkaω θ φ= −                      (34) 

sin cosy ykaω θ φ= −                      (35) 

And 
 

 
Figure 3. Geometry of the N × M planar array antenna [1]. 
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2k
λ
π

=                           (36) 

The nulls of the array function are found by determining the zeros of the 
numerator term where the denominator is not simultaneously zero [2]. That 
is: 

2sin 0 cos
2 2 n

N N nn ka
N

ρ ρ φ θ π  = ⇒ = ± π ⇒ + = ± 
 

       (37) 

1 2cos
2n

n
a N

λθ α−  π  = − ±  π   
                  (38) 

1,2,3,n =   
0, , 2 ,3 ,n N N N≠   

The peaks of the array function can be found by determining the zeros of the 
numerator term where the denominator is simultaneously zero. 

( )1cos 2 , 1,2,3,
2m m m

a
λθ α−  = − ± π = π 

             (39) 

When 0m =  term, 

1cos
2m a
λθ −  =  π 

                      (40) 

4. The Wavelength (Lambda, 𝜆𝜆) 

It has been established that the speed of electromagnetic wave on air is 3 × 108 
m/s, and can be obtained from the formula, 

V f λ=                           (41) 

where, 
f = the frequency of the electromagnetic wave. 
λ  = Lambda, the wavelength. 
For the purpose of this investigation, the frequency is 2.5 GHz, therefore, the 

wavelength, λ  can be obtained as follows; 
8 1

9

3 10 3 10 0.12 m
2.52.5 10

v
f

λ
−× ×

= = = =
×  

The (AF) in this research is calculated using the normalized (AF) obtained in 
Equation (28) 

( )
sin sin

1 12 2,
sin sin2 2

x y

n
x y

M N

AF
M N

ρ ρ
θ φ

ρ ρ

               =   
               

 

where, 

sin cosx x xkaρ θ φ ω= +  
sin cosy y ykaρ θ φ ω= +  

For a beam pattern broadside 
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2x yd d λ
= = , 0x yω ω= =  and 4M N= =  

Let cosx ykdρ θ ω ρ= + =  for a uniform array and 4M N= = . 0x yω ω= = , 
45θ =  . 

5. Determination of the Directivity Dx and Dy of a Linear  
Array 

The directivity of linear array antenna D, is determined by the formula, 

( )

2
0

2
0

2

1 1

R
D

R f
L a
λ

=
+ −

+

                    (42) 

where, 0R  is the voltage ratio, L is the length of the linear array, f is the broa-
dening factor of broad array and a is the distance between elements in the linear 
array [2]. Let 0 20R =  voltage ratio, 4, 0.47,L a f= = . 

6. Determination of the Directivity D0 of Planar Array 

Since the configuration of a planar array antenna is consists of two linear anten-
nas placed orthogonally to each other, the directivity of a planar array antenna, 

0D  can be obtained as [2]: 

0 cosx yD D D θ=                        (43) 

where, xD  = The directivity of a linear array along x-axis. 

yD  = The directivity of a linear array along y-axis. 
Table 1 is the result of the computation of varying the Inter-Element spacing  

 
Table 1. Result of varying the inter-element spacing. 

S/N x ya a=  xρ  ( )n X
AF θ  ( )n dB

AF θ  ( ),n xy
AF θ φ

 ( )0 dBD  

1 0.47λ 2.8813 0.9992 −0.0072 0.9984 36.56 

2 0.50λ 2.2214 0.9991 −0.0082 0.9982 36.74 

3 0.52λ 2.3102 0.9990 −0.0088 0.9980 36.86 

4 0.55λ 2.4436 0.9989 −0.0099 0.9978 37.22 

5 0.57λ 2.5324 0.9988 −0.0106 0.9976 37.16 

6 0.60λ 2.2666 0.9986 −0.0118 0.9972 37.34 

7 0.65λ 2.8878 0.9984 −0.0138 0.9968 37.64 

8 0.67λ 2.9767 0.9983 −0.0147 0.9966 37.76 

9 0.70λ 3.1100 0.9981 −0.0161 0.9962 37.94 

10 0.75λ 3.3321 0.9979 −0.0184 0.9958 38.23 

11 0.78λ 3.4654 0.9977 −0.0199 0.9954 38.41 

12 0.80λ 3.5548 0.9976 −0.0352 0.9952 38.52 

13 0.90λ 3.9986 0.9970 −0.0265 0.9940 39.10 

14 0.95λ 4.2207 0.9966 −0.0296 0.9932 39.39 

15 1.0λ 4.4424 0.9962 0.0327 0.9924 39.67 
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of the Planar Array of Monopole Antenna in both x and y-directions keeping 
progressive phase shift, theta/phi = 45, number of elements N = M = 4 constant 
throughout the variation. The table contain the values of number elements along 
both x and y-directions, progressive phase-shift and directivity of fields. 

It also shows a decrement on the array factor, ( ),n xyAF θ φ  as the inter-element 
spacing was increased, for instance, when the element spacing of 0.47λ was ma-
thematically evaluated, the correspondent value of array factor is 0.9984 as the 
value of the list spacing considered in this evaluation. While 0.9924 is obtained 
as the array factor, ( ),n xyAF θ φ  when 1.0λ spacing is considered as the widest 
distance between the elements. On the other hand, the numerical value of direc-
tivity increases as the inter-element spacing increases. 

The below Figure 4(a) and Figure 4(b) are obtained from plotting Array  
 

 
Figure 4. Graph of array factor against (a) directivity (b). 
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Factor against Directivity and inter-element spacing of the Table 1 above. The 
two graphs obtained show that as the inter-element spacing of the matrix array 
is increased, the Array Factor decreases and the Directivity of the radiated pat-
tern of the field increases. 

7. Radiation Patterns of Varying Element Spacing 

Figure 5 below are the simulation results obtained both in 2D plots and polar 
plots of Array Factor against the elevation (azimuthal). It is the various radiation 
patterns obtained by varying the inter-element spacing along xa  and ya  axis 
of the matrix array as xa  and ya  are varied, while the number of elements, N 
and progressive phase shift, theta/phi = 45, number of elements N = M = 4 are 
kept constant. 

 

 
0.47x ya a λ= =  

 
0.50x ya a λ= =  
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0.55x ya a λ= =  

 
0.60x ya a λ= =  

 
0.65x ya a λ= =  
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0.70x ya a λ= =  

 
0.75x ya a λ= =  

 
0.80x ya a λ= =  
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0.85x ya a λ= =  

 
0.90x ya a λ= =  

 
0.95x ya a λ= =  
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1.0x ya a λ= =  

Figure 5. Radiation patterns of varying element spacing. 

8. Discussion of Results 

Figure 2 above shows the various simulated radiation patterns obtained by va-
rying the inter-element spacing of the 4 × 4 matrix array. While the values of 
progressive phase shift and the number of elements N, is kept constant throughout 
the variation. 

The results have a great effect on the array factor as it is clearly shown by rad-
iation patterns of Figure 2 above. Element spacing of 0.47λ to 0.55λ has broad 
radiation pattern and occupied large bandwidth, which decrease with increase in 
the spacing. But from element spacing of 0.60λ, the radiation patterns shows an 
emergence of grating lobe whose size and level increases with the increase in xa  
and ya  respectively. When element spacing equals 0.70λ, the size of the grating 
lobe equals that of the main lobe in opposite direction. Further increase to 0.75λ 
shows a beginning in the split of the grating lobe. Complete splitting in the grat-
ing lobe is eminence when xa  is increased to 0.85λ, 0.90λ, 0.95λ and 1.0λ. In-
creasing the element spacing towards l results in an increased directivity and 
grating lobe effect with a maximum grating lobe amplitude equal to the main 
lobe magnitude at an element spacing of 1.0λ, see Figure 2. 

9. Findings 

After a thorough research and simulation of results as can be seen in Table 1 
and in Figure 2 above, the following are my findings: 

1) As inter-element spacing increases, the grating lobes increase in size, num-
ber and levels. 

2) Increase in inter-element spacing also increases the directivity of the main 
lobe. 

3) Increasing the spacing to 1.0λ, is a bad element spacing as more grating 
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lobes are developed equal in size and level with the main lobe. 
4) Therefore, the best directivity (radiation pattern) can only be obtained 

when the element spacing is within 0.1 - 0.5λ. 

10. Conclusion 

In this paper, a low profile planar array of monopole antenna has been pre-
sented. The purpose was to design a low level grating lobe with high directivity 
using planar array of monopole antenna by varying the inter-element spacing 
within the array matrix. A 4 × 4 matrix array of monopole antennas has been 
used in order to enhance the directivity and directivity as high as 39.67 dB has 
been achieved. The results of Table 1 and Figure 1 above show that directivity 
of the radiated field decreases as the inter-elements spacing is increased. 
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