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Abstract 
This paper proposes two new algorithms for classifying objects with categori-
cal attributes. These algorithms are derived from the assumption that the 
attributes of different object classes have different probability distributions. 
One algorithm classifies objects based on the distribution of the attribute fre-
quencies, and the other classifies objects based on the distribution of the pair-
wise attribute frequencies described using a matrix of pairwise frequencies. 
Both algorithms are based on the method of invariants, which offers the sim-
plest dependencies for estimating the probabilities of objects in each class by 
an average frequency of their attributes. The estimated object class corres-
ponds to the maximum probability. This method reflects the sensory process 
models of animals and is aimed at recognizing an object class by searching for 
a prototype in information accumulated in the brain. Because these matrices 
may be sparse, the solution cannot be determined for some objects. For these 
objects, an analog of the k-nearest neighbors method is provided in which for 
each attribute value, the class to which the majority of the k-nearest objects in 
the training sample belong is determined, and the most likely class value is 
calculated. The efficiencies of these two algorithms were confirmed on five 
databases. 
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1. Introduction 

The solution to the classification problem is reduced to calculating a function 
that divides a training sample (TRS) into classes and simultaneously obtains an 
acceptable classification accuracy for a test sample (TS). In most existing me-
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thods, algorithms for calculating these functions have considerable computa-
tional complexity [1] [2] [3]. In previous work [4], the method of invariants 
(MI) was proposed, where this function is a linear combination of the simplest 
functions of the values of each feature that qualitatively simplifies the computa-
tion algorithm. It was shown in [5] that the MI corresponds to sensory process 
models of animals, which aim to recognize an object’s class by searching for a 
prototype in the information accumulated in the brain. 

The MI proceeds from the fact that in classification problems, the accuracy of 
the data plays a special role since the objects, their descriptions, and their classes 
are correlated, and each type of entity has a randomness component. Therefore, 
a given data matrix is just one of possible random realization of the matrices that 
form the set of invariants with respect to the class. This approach is consistent 
with the concept proposed by L. Zadeh, which says that for most manually 
solved tasks, high accuracy is not required because the brain perceives only a 
“trickle of information” about the external world [6]. Moreover, for systems 
whose complexity exceeds a certain threshold, accuracy and practical sense are 
almost mutually exclusive characteristics. 

In the MI, the range of attribute values after randomization, accompanied by 
an introduction of an additive component that follows a uniform distribution, is 
divided along each attribute into equal numbers of intervals, within which the 
feature values are assumed to be equiprobable. All objects falling within the in-
terval receive an index of the corresponding attribute equal to the interval num-
ber. 

For each index, one can find lists of numbers of TRS objects of a certain class 
and then calculate the frequencies of the indices. With some error, these fre-
quencies will be the same for the objects in the TRS and the TS because both 
samples belong to the same general population. Therefore, it is possible to esti-
mate the probability of the individual attributes of any object in each class. Then, 
using the simplest formula of the total probability, estimate the probability of an 
object having a specific set of feature values. Finally, the class of the object is de-
termined based on the maximum likelihood principle. 

There is an obvious analogy between indices and categories, the values of 
which can always be described by a finite sequence of integers 1, 2... Therefore, 
the MI serves as the basis for this article, in which two algorithms are proposed: 
one implements the simplest version of the MI developed for quantitative 
attributes, and the other more fully takes the features of categorical attributes 
into account. 

The efficiency of the new algorithms was tested on five databases [7]. 

2. Assumptions and Preliminary Assumptions 

The article is devoted to solving classification problems for which all attributes 
are categorical. The solution is based on two MI assumptions: 
• The data matrix has a set of invariants with respect to a class of objects. 
• Object classes differ in the attribute probability distributions. 
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For categorical attributes, the number of values or levels n that individual ob-
jects can take is an important characteristic of the problem. In real tasks for 
quantitative attributes, the value of qn , as a rule, considerably exceeds that of 

cn —the corresponding value for categorical attributes. According to the theory 
proposed by C. Shannon, the information volume per value of a feature increas-
es in proportion to the value of ( ) ( )2 2log logq cn n . Therefore, in tasks involv-
ing categorical features, the “information load” of the data often increases sever-
al fold. This circumstance manifests in an increase in the number of objects of 
different classes that have the same attribute values. This reduces the difference 
between the attribute frequencies for objects of different classes, which can lead 
to an increase in the number of classification errors. 

However, categorical attributes also have “favorable” features. The probability 
of an object of a certain class is an unknown function of its attributes, which 
takes into account the interrelations among all the attributes. Usually, this func-
tion is nonlinearly dependent on the attribute values of the object. This rela-
tionship is indirectly taken into account in the accepted assumption of the MI, 
since the frequencies of attribute indices are calculated for a particular class of 
objects. Then, this dependence becomes linear, which greatly simplifies algo-
rithm’s calculation. One algorithm takes the same approach for categorical attributes 
whose values are, as noted above, analog indices. 

The second algorithm considers the peculiarities of categorical attributes in a 
different way and is based on a new solution to the question of attribute rela-
tionships. Usually, the relationship between random variables is estimated using 
the Pearson correlation coefficient or the rank correlation coefficient. However, 
in the framework for this method, we are interested in the frequencies of 
attribute values that take a relatively small number of values. The paper further 
shows that pairwise frequencies of features allow an approximate assessment of 
the relationship between the features of objects of the same class (note that, as a 
rule, only a weak correlation exists between the categorical features of objects in 
the same class). 

However, pairwise frequencies do not allow the determination of the class of 
TS objects if no object has the same combination of attribute values in the TRS. 
To classify objects, this algorithm uses an analog of the k-nearest neighbors me-
thod: the object is assigned to a class for which the total number of the k-nearest 
neighbors of the TRS’ objects for each attribute are maximized. 

3. Two Algorithms for Solving the Classification Problem 
3.1. Statement and Basic Algorithm 

Let the vectors ( )1,,kX k N∈  describe the values of categorical attributes ob-
jects, which form the TRS ( ) ( ){ }, | 1,s sy s M∈X , where y is the vector of the ob-
ject class labels, M is the number of objects, and missing data are excluded. With-
out loss of generality, we assume that the values of the attributes ( )1,,kX k N∈  
and classes (possibly after preliminary encoding) belong to the sets of integers 

( )1, kj n∈  and ( )1,i C∈ , respectively, where kn M  is the number of values 
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of attribute kX  and С is the number of classes. The problem is to classify the 
TS objects. 

We denote s objects by ( )T
1, ,s s sNx x=x   and the data matrix by  

sk M Nx
×

=Q . Consider the algorithm for the basic MI (algorithm 1). Using ma-

trix Q , we find lists ( ){ } | 1, ,i ss s M y iω = ∈ =  of numbers of objects of class 

{ }1,i C∈ . The sample probability of objects in class i determines the obvious 
dependence: 

( ) ( ){ }1 1, , | , 1,i s N sN ip p X x X x s k Nω= = = ∈ ∈x  .          (1) 

This dependence allows finding objects whose attribute value kx j= . Let 
0kjr ≥  denote the number of such objects. Then, the frequency of a value j for 

an attribute k of the TRS object of class i equals ( )kj ji ikf r l= , where  i il ω= . 

Object x  arises as a result of appearances of each attribute k with the cor-
responding value j. Since these events form a complete group of incompatible 
events, the total probability formula gives an estimate of the probability that an 
object belongs to class i: 

( ) ( )1

1 M
i kjk i

p f
N =

= ∑x ,                        (2) 

where j is the value of attribute k for object x . 
Formulas (1) and (2) yield a class probability estimate for the TRS objects. 

Since TRS and TS belong to a single general population, the formula also deter-
mines the frequencies of the TS objects. According to the maximum likelihood 
principle, the calculated class of the object x  is 

( ) ( ) ( )1,arg max .ii CI p∈=x x                     (3) 

3.2. Features of the Model of Probability Density Objects 

Essentially, the MI is based on the assumption that a class of objects can be rec-
ognized by the probability distribution of its attributes. According to (2), the 
probability ( )ip x  received its point estimate equal to the average frequencies 
attributes of object x  of class i. Thus, the empirical frequency distribution of 
features is transformed into the frequency distribution of objects. Therefore, the 
MI considers the average composition of the attribute distribution as a probabil-
ity distribution for objects of a particular class. 

We investigate the characteristics of this distribution in the case of two attributes 
that have typical forms of attribute frequency distributions. Our analysis showed 
that the distributions of each attribute can be considered a sample of the theo-
retical distributions described by unimodal laws, the maximum of which is lo-
cated in the middle and the “tails” of the distribution. 

Consider the following task. Let objects have two categorical attributes, the 
values of which describe random variables Y and Z with probability densities  

( ) 2 2y
by

a y
ϕ =

+
 and ( ) 2

z z c d z g zϕ = + ∗ + ∗ , respectively, where ( )0,y n∈ ,  
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( )0,z n∈ , and , , , , ,a b c d g h  and n are parameters. From formula (2), a random 
variable ( ) 2U Y Z= +  is the composition of Y and Z, which simulates the total 
distribution of the objects. We are interested in the features of this distribution. 

Note that the functions ( )y yϕ  and ( )z zϕ  allow us to obtain an analytical 
solution for the distribution composition of the above types of attributes. Since 
these functions determine the corresponding density distribution, their parame-
ters are related by the following: 

( )
0

d 1
n

Y y yϕ =∫ , ( )
0

d 1
n

Z z zϕ =∫ . 

Obviously, U Y Z= +  , where 2Y Y=  and 2Z Z=  are random variables 

[8]. Given that density ( ) ( )( ) ( )y yy y yϕ ϕ µ µ′=


   , ( ) 2y yµ =  , we obtain 

( ) 2 2

2
4y
by

a y
ϕ =

+





. Similarly, we find that ( ) ( )22 2 4z c dz z g zϕ = ∗ + ∗ ∗ + ∗ ∗


   . 

The density ( )U uϕ  is a convolution of the functions Yϕ 

 and ( )z zϕ


 : 

( ) ( ) ( )
0

 dU Z

u

Yu y u y yϕ ϕ ϕ= −∫ 

   . 

The range of u is divided into segments: 0 2u n≤ ≤  and 2n u n< ≤ . Be-
cause 0z ≥ , the lower and upper limits of the integrals are equal to 0 and u for 
the first segment and 2u n−  and u for the second segment, respectively. Then, 
we can obtain the formula for calculating the density: 

( ) ( )3
14U q qqu b A w uϕ
=

= ∗ ∑ , 

where 2
1 2 4A c d u g u= + ∗ ∗ + ∗ ∗ , ( )2 2 8A d g u= − ∗ + ∗ ∗ , 3 4A g= ∗  

( )

1

2 20

1

2 22

d 0 2
4

d 2
4

qu

q qu

u n

y y u n
a y

w u
y y n u n

a y

−

−

−


≤ ≤ + ∗= 

 < ≤ + ∗

∫

∫













 

Sub-integral functions are tabulated and not given for the abbreviated entries. 
We performed calculations were performed for a wide range of parameters. 

The results are illustrated in Figure 1, where the density uϕ  is determined for 
the case in which the density zϕ  follows a normal distribution, and the yϕ  
distribution is close to hyperbolic. The figure shows that with respect to the 
curve zϕ , the ordinates of curve uϕ  increase in the region of high values of 
density yϕ  and decrease in sections with low values. Consequently, the func-
tion uϕ  does not follow a normal distribution. However, confidence intervals 
of continuous random variables can be estimated only for normal distributions. 

From the analysis, it should be noted that the composition distributions of in-
dividual attributes result in a poorly predictable distribution for certain classes of 
objects. Thus, the effectiveness of the various MI algorithms depends on the data 
characteristics for a particular task and can be tested only empirically. 

3.3. Algorithm 2 

Algorithm 1 reduces the MI assumption that the individual classes of objects are  
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Figure 1. Density curves of random variables Y, Z and U ( ,y zϕ ϕ  and Φ  correspond 
to ,y zϕ ϕ  and uϕ ). 

 
from different distributions of features to classify objects according to the fre-
quencies of the categorical attribute values. However, another variant of the ap-
proximate realization of this assumption is also possible. 

For any type of attribute, the probability of an arbitrary object ( )T
1, , Nx x=x   

of class i is determined by the following relation: 

( ) ( ) ( ) ( ) ( )1 1 2 2 1 3 3 1 2 1 1| | , | , ,N N NP p x p x x p x x x p x x x −=x   ,       (4) 

where ( )1 1| , ,k k kp x x x −  is the conditional probability of an attribute kX  at 
values 1 1, , kx x −  of attributes 1 1, , kX X − . Here, ( )1 1p x  is found by formula 
(1). 

Consider the features of this dependence for categorical attributes. Here, 
the elements of the set of Cartesian products of the attributes kX  and 1kX + , 

( )1, 1k N∈ −  are ordered pairs: ( )1,k kx x +  , where { }1,k kx n∈  and 
{ }1 11,k kx n+ +∈ . Let , 1

i
k ke +  be the number of objects of class i whose attributes 

correspond to a pair ( )1,k kx x +  . Then, the frequency of the pair , 1 , 1
i i

k k k k if e l+ +=  
gives the sample estimate probability of the pair for object x  of class i. The set 
of frequencies defines a matrix 

1
, 1

k k

i i
k k gw n n

R f
+

+ ×
= , 

constructing a matrix of pairwise frequencies (MPF) for the attributes k and 
1k +  for the TRS objects of class i. There are 1N −  MPFs for each class. Ac-

cording to the concept formed by the above matrix, we can define the properties 
of the TRS and TS objects. Then, from formula (4), we obtain the approximate 
dependence for estimating the probability that object x  belongs to class i 

( ) ( )
1 2 2 3 11 1 , , ,N N

i i i
i x x x x x xP p x f f f

−
=x  .               (5) 

In formula (5), 
1,k k

i
x xf

+
 is the element of matrix , 1

i
k kR +  that corresponds to 

the frequency of the attribute pair values k and 1k +  of an object in class i. The 
estimated class of this object is determined by an analog of formula (3): 

( ) ( ) ( )1,arg max .ii CI P∈=x x                   (6) 
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3.4. Improving the Accuracy of Algorithm 2 

From formula (5), it follows that ( ) 0iP =x  if one of the factors 
1, 0

k k

i
x xf

+
= . 

Such a case occurs when there is no object with the same attribute value among 
the TRS objects of class i. The total number of possible combinations of attribute 
values is 1 2 Nv n n n=   and, as a rule, iv l . Therefore, MPFs often contain 
zero elements and can be sparse. 

If ( ) 0iP =x  for all i, then uncertainty arises, since formula (5) “does not 
work”. Note that when applying algorithm 1, such situations are practically ex-
cluded. The MI serves as the basis for eliminating this uncertainty, since it as-
sumes that many data matrices exist that are invariant with respect to a class of 
objects. It can be assumed that in the case of invariant transformations, the rela-
tive position of the attribute values of TRS objects will be preserved near the 
singular points corresponding to the attribute values of an “undefined” object. 
Consequently, we can use the idea underlying the k-nearest neighbor method to 
solve classification problems. 

We assume that the “undefined” object has a class to which most of the k-nearest 
TRS objects belong. Since the concept of distance between objects is not defined 
in the MI, we will evaluate the “proximity” for each attribute value of an “unde-
fined” object. 

Let Z be a set of TS objects for which the class could not be determined using 
formula (5) and object ( )T

1, , Nz z Z= ∈z  . The goal is to find TRS objects of 
class i whose attributes kX  are in h neighborhoods of kz , ( )1,k N∈ . The num-
bers of these objects form the set { },tk k iD t x z h t ω= − ≤ ∈ , and their frequency  

is ( ),ik k
i

D
T z h

ω
= . Having calculated the frequencies, we can find the average  

frequency ( ),iT hz  of all the attributes of object z  in class i. Then, the calcu-
lated class of object z  is equal to 

( ) ( ) ( )1, , max , ,ii CI h T z h∈=z                      (7) 

where h is a parameter whose domain is the set of integers { }1, , n , where 
( )min kn n= . 

Let ( ),i hz1  be an indicator of class i that equals 1 when the calculated class 
is not equal to the class of object z  and 0 otherwise. Then, the number of in-
correctly classified objects in the set Z will be equal to 

( ) ( ),iZF h h
∈

= ∑ z z1 .                       (8) 

The calculated value of parameter h, denoted by h , and the corresponding 
value ( ) ,I hz  can be found via the minimum number of “undefined” objects: 

( ) ( )1,minh nh F h ∈= →


 .                      (9) 

4. The Effectiveness of New Algorithms 

The MI serves as a general conceptual framework for formulas (1)-(3) and 
(4)-(9), which respectively define algorithms 1 and 2 for solving the classification 
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problem. The effectiveness of the algorithms was studied with five databases 
from the UCI repository; the objects in these databases, the objects had only ca-
tegorical features. The characteristics of the bases given in Table 1 that cover 
rather wide ranges of values for the numbers of objects (267 - 20,000), features (3 
- 22) and classes (2 - 26).  

The dependencies in (3) and (5) are applicable not only for the TS but also for 
the TRS. Therefore, we calculated the test error rate, cf , and the training error 
rate, lf . All the calculations were performed on the basis of the cross-validation 
procedure. The database was divided into 10 datasets of approximately equal size. 
The first 9 datasets were used as the TRS, and the remaining dataset was used for 
testing. This procedure was applied 10 times. Consequently, for each base, a se-
quence of 10 pairs of TRS and TS variants was considered. For each partitioning 
variant ( )1,10m∈ , we calculated the error rates сmf  and lmf . 

The сmf  and lmf  curves for different databases are shown in Figure 2 and 
Figure 3, respectively. The graphs are identified by an ordered pair a_b, where a 
is the first letter of the database name and b is the algorithm identifier. For these 
rates, the average values E and the standard deviations St are given in Table 1. 

Database Car evaluation and Spect have no “undefined” objects; for them, the 
functions ( )F h  were not calculated. Figure 4 depicts the curves ,h hFb Fh  and  
 
Table 1. Table of databases characteristics and calculation results. 

Dataset M N C 

Algorithm 1 Algorithm 2 

TS TSR TS TSR 

E St E St E St E St 

Breast Cancer 699 9 2 0.086 0.052 0.088 0.006 0.175 0.051 0.016 0.023 

Car Evaluation 1728 6 4 0.546 0.036 0.536 0.006 0.076 0.015 0.069 0.003 

Haberman’s Survival 306 3 2 0.314 0.089 0.025 0.015 0.238 0.087 0.07 0.058 

Letter Image Recognition 20,000 16 26 0.46 0.008 0.468 0.014 0.186 0.019 0.097 0.002 

Spect 267 22 2 0.569 0.011 0.559 0.016 0.237 0.075 0.224 0.013 

 

 
Figure 2. Frequency distributions of test errors сmf  for algorithms 1 and 2. 
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Figure 3. Frequency distributions of learning errors lmf  for algorithms 1 and 2. 

 

 

Figure 4. Graphs of the function ( )F h  for Breast Cancer, Haberman’s Survival and 

Letter Image databases. 
 

hFl  that reflect the features of these functions for the Breast Cancer, Haber-
man’s Survival and Letter Image databases, respectively. 

Below, we summarize the main results of the calculations: 
1) With some exceptions, the error rate curves do not undergo drastic changes 

under the sequential changes in the composition of the TRS and TS objects un-
der cross-validation. Both algorithms yield fairly stable results: in most cases, the 
error variances for TS and TRS are relatively small ( 1St E < ). The most stable 
results were obtained for algorithm 2, where 0.4St E <  for the TS. We note that 
the number of test errors is typically considerably higher than training errors. 

2) Algorithm 2, as a rule, is much more accurate than algorithm 1. This is well 
illustrated in Figure 2, where almost all the dotted lines corresponding to algo-
rithm 1 are concentrated in the upper part. The resulting conclusion is that con-

https://doi.org/10.4236/jilsa.2019.114004


V. N. Shats 
 

 

DOI: 10.4236/jilsa.2019.114004 74 Journal of Intelligent Learning Systems and Applications 
 

sidering the pairwise frequencies of attributes makes it possible to more accu-
rately differentiate the latent properties of objects of different classes. For algo-
rithm 2, the minimum values of the mean error E are 0.076 and 0.016 for the test 
and training samples, respectively. 

3) In many cases, the introduction of the function ( )F h  and a correspond-
ing reduction in the number of “uncertain” objects can lead to significant in-
creases in the efficiency of the MPF and in the accuracy of the solution. 

We can conclude that these experiments confirm the operability of both algo-
rithms. 

5. Conclusions 

The paper proposes two new algorithms based on the MI for classifying objects 
with categorical features. Both algorithms originate from the same assumption: 
that the objects in each class differ in attribute probability distribution, but both 
algorithms use different models to approximate the distributions. Under this as-
sumption, an object class is defined by the individual frequencies of its attribute 
values rather than by the nonlinear functions of attributes values used in most 
existing methods. This characteristic explains the comparative simplicity of the 
proposed algorithms. 

It has been established that along with the correlation between categorical 
attributes, for objects belonging to one class, a functional relationship exists be-
tween the attribute values, which is characterized by the frequencies of the pair-
wise attribute values. This set of frequencies forms an MPF, which is calculated 
for the TRS objects for each class and attribute. In one of the algorithms, the 
MPF is used in conjunction with an analog of the k-nearest neighbors method. 
This addition allows one to determine the class of a TS object when the TRS does 
not contain objects with the same combination of attribute values. 

It can be expected that the MPF can also be applied to solve problems with 
quantitative attributes because the values (with some error) can be represented 
by integers corresponding to the data description with a coarser measuring scale. 

An experimental examination has shown that algorithm 2, using the MPF, 
provides more reliable results than does algorithm 1. 
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