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ABSTRACT 
Since a decade ago, both protein and amino acid features have been correlated with crystal-
lization propensity of proteins in order to develop methods to predict whether a protein can 
be crystallized. In this continuing study, each of three features combining features of amino 
acid and protein, was correlated with the crystallization propensity of proteins from Myco-
bacterium tuberculosis using logistic and neural network models. The results showed that 
two combined features, amino acid distribution probability and future composition, had 
good predictions on whether a protein would be crystallized in comparison with the predic-
tions obtained from each of 531 amino acid features. The results obtained from the third 
combined feature, amino acid pair predictability, demonstrated the trend of crystallization 
propensity in proteins from Mycobacterium tuberculosis. 

 

1. INTRODUCTION 
Many features possessed by amino acid and features possessed by a protein have an influence on the 

process of protein crystallization. Doubtlessly, humans can find more and more features possessed by 
amino acids and features possessed by a protein with advance in science and technology, each feature pro-
vides us with a new insight from a viewpoint different from the rest of features, and nevertheless, every 
new feature may have a certain relationship with the crystallization propensity of proteins. 

The notable features are the amino acid physicochemical features, which have been repeatedly corre-
lated with propensity of protein crystallization [1]. Subsequently, these features were also correlated with 
propensity of protein crystallization [2], for example, protein length, protein isoelectric point, percentage 
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of charged residues, hydrophobicity. With the compilation of features of amino acids [3], efforts once 
again were made to correlate propensity of protein crystallization with amino acid features, which had not 
been used in previous studies [2, 4]. 

Apparently, all known features possessed by amino acids and a protein have been tested. However, 
several features, which were developed by us, have not yet been widely tested against crystallization pro-
pensity of proteins. Indeed, it is necessary to test each feature against crystallization propensity of different 
proteins as many as possible, and then a solid scientific conclusion can be drawn on whether a particular 
feature is suitable for predicting crystallization propensity of proteins. 

In this context, we tested three features, which combined features possessed by both amino acids and 
a protein, against the crystallization propensity of proteins from Mycobacterium tuberculosis in this study, 
and compared with the results obtained from each of 530-plus features possessed by amino acids. 

2. MATERIALS AND METHODS 
2.1. Data 

428 proteins from Mycobacterium tuberculosis were found in Target DB [5, 6] under the criterion of 
purified proteins, of which 277 were found under the criterion of crystallized protein. Those two criteria 
were used in previous studies [7-15]. Actually, there are many different criteria in this database as well as 
in other databases, but our primary interest in this study is focused on the process between purified and 
crystallized proteins. 

2.2. Features Possessed by Amino Acid and Protein 

The first feature is the amino acid distribution probability [16], which is based on the occupancy of 
subpopulations and partitions describing the distribution of elementary particles in energy states accord-
ing to three assumptions with respect to whether or not to distinguish each particle and energy state, i.e. 
Maxwell-Boltzmann, Fermi-Dirac, and Bose-Einstein assumptions in statistical mechanism [17]. For its 
application to protein, for example, Rv1875 protein has 3 tyrosines, and the simplest question is what 
probability it is if 3 tyrosines are clustered together or scattered along the protein sequence. This probability  

can be computed according to the equation [17], 
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factorial, r is the number of a type of amino acid, q is the number of partitions with the same number of 
amino acids and n is the number of partitions in the protein for a type of amino acid. For a type of amino 
acids, it has only one distribution probability in a protein. As amino acid composition is different, each 
type of amino acids has its own distribution probability. Two worked examples were listed in columns 8 
and 9 of Table 2 to show the distribution probability related to each type of amino acids in proteins. 

The second feature is the amino acid future composition [16], which comes from the observation that 
there are 64 RNA codons but only 20 types of amino acids, so each type of amino acids corresponds to 
different number of RNA codons. For example, methionine corresponds to one RNA codon (AUG), and 
phenylalanine corresponds to two RNA codons (UUC and UUU) whereas leucine corresponds to six RNA 
codons (CUA, CUC, CUG, CUU, UUA and UUG). These naturally lead to different translation probabili-
ties when a single RNA code mutates, and consequently the probability that an amino acid mutates to 
another amino acid is different (Table 1). For instance, when a mutation occurs in alanine, it has 12/36 
chances to mutate to alanine, 2/36 chances to mutate to both aspartic acid and glutamic acid, 4/36 chances 
to mutate to glycine, proline, serine, threonine, and valine, respectively. Two worked examples were listed 
in columns 10 and 11 of Table 2 to show the characteristic of this feature. 

The third feature is the amino acid pair predictability [16], which is based on permutation. For in-
stance, there are 15 leucines (L), 17 alanines (A), and 9 isoleucines (I) in Rv1155 protein. According to the 
permutation, the amino acid pair LA would appear twice (15/147 × 17/146 × 146 = 1.73), and there are 
indeed two LAs in realty so the pair LA is predictable. However, the amino acid pair IA would appear once  
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Table 1. Amino acids and their translated amino acids. 

Amino acid Mutated amino acids with their translation probability 
A 12/36A + 2/36D + 2/36E + 4/36G + 4/36P + 4/36S + 4/36T + 4/36V 

R 
18/54R + 2/54C + 2/54Q + 6/54G + 2/54H + 1/54I + 4/54L + 2/54K + 1/54M + 4/54P + 
6/54S + 2/54T + 2/54W + 2/54STOP 

N 2/18N + 2/18D + 2/18H + 2/18I + 4/18K + 2/18S + 2/18T + 2/18Y 
D 2/18A + 2/18N + 2/18D + 4/18E + 2/18G + 2/18H + 2/18Y + 2/18V 
C 2/18R + 2/18C + 2/18G + 2/18F + 4/18S + 2/18W + 2/18Y + 2/18STOP 
E 2/18A + 4/18D + 2/18E + 2/18Q + 2/18G + 2/18K + 2/18V + 2/18STOP 
Q 2/18R + 2/18E + 2/18Q + 4/18H + 2/18L + 2/18K + 2/18P + 2/18STOP 
G 4/36A + 6/36R + 2/36D + 2/36C + 2/36E + 12/36G + 2/36S + 1/36W + 4/36V + 1/36STOP 
H 2/18R + 2/18N + 2/18D + 4/18Q + 2/18H + 2/18L + 2/18P + 2/18Y 
I 1/27R + 2/27N + 6/27I + 4/27L + 1/27K + 3/27M + 2/27F + 2/27S + 3/27T + 3/27V 

L 
4/54R + 2/54Q + 2/54H + 4/54I + 18/54L + 2/54M + 6/54F + 4/54P + 2/54S + 1/54W + 
6/54V + 3/54STOP 

K 2/18R + 4/18N + 2/18E + 2/18Q + 1/18I + 2/18K + 1/18M + 2/18T + 2/18STOP 
M 1/9R + 3/9I + 2/9L + 1/9K + 1/9T + 1/9V 
F 2/18C + 2/18I + 6/18L + 2/18F + 2/18S + 2/18Y + 2/18V 
P 4/36A + 4/36R + 2/36Q + 2/36H + 4/36L + 12/36P + 4/36S + 4/36T 

S 
4/54A + 6/54R + 2/54N + 4/54C + 2/54G + 2/54I + 2/54L + 2/54F + 4/54P + 14/54S +  
6/54T + 1/54W + 2/54Y + 3/54STOP 

T 4/36A + 2/36R + 2/36N + 3/36I + 2/36K + 1/36M + 4/36P + 6/36S + 12/36T 
W 2/9R + 2/9C + 1/9G + 1/9L + 1/9S + 2/9STOP 
Y 2/18N + 2/18D + 2/18C + 2/18H + 2/18F + 2/18S + 2/18Y + 4/18STOP 
V 4/36A + 2/36D + 2/36E + 4/36G + 3/36I + 6/36L + 1/36M + 2/36F + 12/36V 

STOP 
2/27R + 1/27C + 2/27E + 2/27Q + 1/27G + 3/27L + 2/27K + 3/27S + 2/27W + 4/27Y + 
4/27STOP 

 
(9/147 × 17/146 × 146 = 1.04), but it appears three times in this protein, so the pair IA is unpredictable. In 
this way, all amino acid pairs are classified as 72.5% predictable and 27.5% unpredictable in Rv1155 pro-
tein. 

Because all the three features are computed with the consideration on individual amino acids with 
their composition and/or distribution in a protein, so they possess characteristics of individual amino acid 
and a whole protein.  

2.3. Amino Acid Features 

Amino acid features are the characteristics possessed by individual amino acids, and currently a da-
tabase, AAIndex, contains 540-plus amino acid features describing various aspects of amino acids [3], in-
cluding physicochemical features, spatial features [18], electronic features [19], hydrophobic features [20],  
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Table 2. Features for two proteins (FINA770101 is an amino acid feature that describes the helix-coil 
equilibrium constant). 

Amino 
Acid 

Number FINA770101 
FINA770101 ×  

Number 
Distribution  
probability 

Future  
composition, % 

Rv1155 Rv1875 Rv1155 Rv1875 Rv1155 Rv1875 Rv1155 Rv1875 Rv1155 Rv1875 
A 17 17 1.08 1.08 18.36 18.36 0.1098 0.0229 8.42 9.10 
R 13 13 1.05 1.05 13.65 13.65 0.0617 0.0386 8.05 8.39 
N 4 5 0.85 0.85 3.40 4.25 0.5625 0.3840 3.64 2.34 
D 15 8 0.85 0.85 12.75 6.80 0.0125 0.0421 4.08 4.35 
C 0 0 0.95 0.95 0.00 0.00 0.0000 0.0000 1.86 2.17 
E 4 8 0.95 0.95 3.80 7.60 0.5625 0.1682 4.69 4.20 
Q 6 6 1.15 1.15 6.90 6.90 0.1543 0.3472 2.75 2.57 
G 8 14 0.55 0.55 4.40 7.70 0.2523 0.0262 6.70 8.29 
H 4 2 1.00 1.00 4.00 2.00 0.5625 0.5000 4.11 3.33 
I 9 2 1.05 1.05 9.45 2.10 0.1967 0.5000 4.79 4.17 
L 15 17 1.25 1.25 18.75 21.25 0.1569 0.0366 8.98 9.15 
K 4 2 1.15 1.15 4.60 2.30 0.1406 0.5000 2.71 2.95 
M 3 2 1.15 1.15 3.45 2.30 0.6667 0.5000 1.71 1.35 
F 2 3 1.10 1.10 2.20 3.30 0.5000 0.6667 2.73 2.57 
P 10 8 0.71 0.71 7.10 5.68 0.1905 0.0280 6.65 6.37 
S 8 5 0.75 0.75 6.00 3.75 0.0673 0.1920 7.34 7.31 
T 7 12 0.75 0.75 5.25 9.00 0.1071 0.1241 6.07 6.15 
W 2 4 1.10 1.10 2.20 4.40 0.5000 0.1875 0.77 0.87 
Y 5 3 1.10 1.10 5.50 3.30 0.3840 0.6667 2.47 1.71 
V 11 16 0.95 0.95 10.45 15.20 0.1616 0.0715 8.01 8.99 

 
predictors for secondary structures [21], etc. 

Amino acid features are measured through experiments and documented so that they have no need to 
compute for each protein, whereas the features described in previous section need to compute for each 
protein. Therefore an amino acid feature is a constant for an amino acid, i.e., each feature has an un-
changed value for a type of amino acid. In fact, only 531 amino acid features have 20 values for 20 types of 
amino acids. In this study, each amino acid feature served as a benchmark to compare with the results ob-
tained from the features described in previous section. 

2.4. Models 

Logistic regression was a major tool used in previous studies [22] because it works for a relationship 
between yes-no event and continuously numeric values, i.e. the relationship between propensity of protein 
crystallization, which is encoded either with amino acid features or with protein features. In this study an 
attempt was made to correlate each of three protein features with the crystallization propensity of proteins 
from Mycobacterium tuberculosis through logistic and neural network models, whose results were com-
pared with the results obtained from modeling each of 531 amino acid features with the crystallization 
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propensity of the proteins. 

2.5. Statistics 

The results were classified as true positive (TP), true negative (TN), false positive (FP) and false 
negative (FN), so the accuracy, sensitivity and specificity can be calculated as follows [9-15]: TP = (TP + 
TN)/(TP + FP + TN + FN) × 100, TN = (TP)/(TP + FN) × 100, and FP = (TN)/(TN + FP) × 100, respec-
tively. MatLab was used to perform both logistic regression and neural network [23, 24]. The McNemar’s 
test was used to compare the classified results. The sensitivity and specificity were compared using receiver 
operating characteristic (ROC) analysis [25-28]. The Mann-Whitney U-test was used to compare pre-
dicted accuracies at different cutoff values. 

3. RESULTS AND DISCUSSION 
Table 2 shows differences between amino acid features and combined features. As can be seen, the 

amino acid feature FINA770101 that describes the helix-coil equilibrium has a constant value for each type 
of amino acid (columns 4 and 5) regardless of amino acid’s location, composition (columns 2 and 3), and 
neighboring amino acids. A simple remedy is to multiply this amino acid feature by its corresponding 
composition (columns 6 and 7, Table 2). By contrast, two combined features have different values for dif-
ferent amino acids for those two proteins (last four columns, Table 2). This is an important distinction 
between combined features and amino acid features, and a rationale to correlate with the crystallization 
propensity of proteins from Mycobacterium tuberculosis. 

Figure 1 showed the comparisons of accuracy, sensitivity and specificity obtained using logistic re-
gression to correlate the propensity of protein crystallization with each of features. In this figure, each bar 
represented how many features resulted in a similar accuracy, sensitivity or specificity. For example, the 
first bar from left-hand in the upper panel indicated that three amino acid features (CHAM830108, 
FAUJ880111 and MITS020101) had similar accuracies (0.643 ± 0.003). Similarly, the second bar indicated 
that three other amino acid features (CHAM830105, GOLD730101 and MIYS990101) had similar accura-
cies (0.657 ± 0.004). Figure 1 clearly showed that two combined features had a relatively good relationship 
with the propensity of protein crystallization. In particular, the prediction using amino acid distribution 
probability was the best in terms of accuracy and sensitivity. 

Figure 2 displayed the comparisons of accuracy, sensitivity and specificity obtained using neural net-
work to correlate the propensity of protein crystallization with each of features. The presentations in this 
figure had similar explanations as those in Figure 1. Clearly, the neural network can furthermore distin-
guish the difference between features. Compared against amino acid features, Figure 1 and Figure 2 sug-
gested that two combined features not only were involved in crystallization process, but also served better 
for the predictions of protein crystallization. Also, many amino acid features gave similar results, being 
consistent with the study that demonstrated the abundance in amino acid features [29]. In particular, Fig-
ure 2 showed that the prediction using amino acid distribution probability was the best in terms of accu-
racy and specificity. 

In Figure 1 and Figure 2, the database was not divided, i.e. the model parameters obtained from the 
428 Mycobacterium tuberculosis proteins were used for predictions. This was generally considered as the 
first stage in modeling, and then the database should be divided into two groups, one for the generation of 
model parameters while the other for the validation [30]. Figure 3 displayed the accuracy, sensitivity and 
specificity obtained from delete-1 jackknife validation, which further demonstrated the predictions using 
combined features were not worse than those using amino acid features. In fact, Figure 3 showed that the 
prediction using amino acid distribution probability and future composition had the best predictions in 
terms of accuracy and specificity. 

Table 3 listed predictive performance with respect to each feature in terms of accuracy, sensitivity and 
specificity. As can be seen, the best results were obtained using amino acid distribution probability, physi-
cochemical features and second structure features.  

https://doi.org/10.4236/jbise.2019.129034


 

 

https://doi.org/10.4236/jbise.2019.129034 432 J. Biomedical Science and Engineering 
 

 
Figure 1. Accuracy, sensitivity and specificity obtained from logistic regression between the crystal-
lization propensity of proteins from Mycobacterium tuberculosis and each of 535 features. The 535 
features are grouped according to their similarity in accuracy, sensitivity and specificity. 
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Figure 2. Accuracy, sensitivity and specificity obtained from fitting the relationship between the 
propensity of protein crystallization from Mycobacterium tuberculosis and each of 535 features us-
ing 20-1 feedforward backpropagation neural network. The 535 features are grouped according to 
their similarity in accuracy, sensitivity and specificity. 
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Figure 3. Accuracy, sensitivity and specificity of delete-1 jackknife validation obtained from model-
ing the relationship between crystallization propensity of proteins from Mycobacterium tuberculosis 
and each of 535 features using 20-1 feedforward backpropagation neural network. The 535 features 
are grouped according to their similarity in accuracy, sensitivity and specificity. 
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Table 3. Predictive performance with respect to concrete features. 

Classification 
The highest 

value 
Accession  
number 

Description Characteristic 

Fitting with logistic regression 
Accuracy 0.6963  Distribution probability Combined feature 

 0.6963 TANS770107 
Normalized frequency of  
left-handed helix 

Second structure 
feature 

 0.6963 FAUJ880109 Number of hydrogen bond donors 
Second structure 
feature 

Sensitivity 0.9819 FAUJ880111 Positive charge 
Physicochemical 
feature 

Specificity 0.2848  40 features 
Amino acid  
omposition 

 0.2848  176 features 
Physicochemical 
feature 

 0.2848  225 features 
Second structure 
feature 

Fitting with neural network 
Accuracy 0.8631  Distribution probability Combined feature 

Sensitivity 1  24 features 
Amino acid  
composition 

 1  68 features 
Physicochemical 
feature 

 1  23 features 
Second structure 
feature 

Specificity 0.7269  Distribution probability Combined feature 
Delete-1 validation with neural network 

Accuracy 0.6481 NADH010101 
Hydropathy scale based on 
self-information values in the 
two-state model (5% accessibility) 

Physicochemical 
feature 

Sensitivity 1 RADA880106 Accessible surface area 
Physicochemical 
feature 

 1 FASG760102 Melting point 
Physicochemical 
feature 

 1 LEVM760104 
Side chain torsion angle phi  
(AAAR) 

Second structure 
feature 

Specificity 0.4334 HUTJ700102 Absolute entropy 
Physicochemical 
feature 
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Figure 4 displayed the results of ROC analysis with respect to logistic regression, fitting and delete-1 
jackknife validation using 20-1 feedforward backpropagation neural network. Two points could be drawn: 
1) all the features gave their classifications distributing above diagonal, i.e. the predictions were better than 
random chance because the McNemar’s test showed that the classified results were significantly different 
from those of random guess (P < 0.01), and 2) two combined features worked quite well in comparison 
with others.  
 

 
Figure 4. Comparison of sensitivity versus specificity obtained from logistic regression and from 
fitting and delete-1 jackknife validation in neural network in ROC analysis. Each gray circle is a re-
sult obtained using an individual amino acid feature while each black circle is a result obtained using 
one of two combined features. The diagonal line is the line of indiscrimination indicating a com-
pletely random guess. The text labels are the combined features. 
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Furthermore, the third combined feature that is the percentage of predictable/unpredictable amino 
acid pairs was used to compare the accuracy for predicting the protein crystallization. Figure 5 and Figure 
6 showed such analysis in both neural network fitting and delete-1 jackknife validation. First, a cutoff val-
ue of accuracy was set at 0.75, 0.80, 0.85 and 0.90 levels; Second, 428 Mycobacterium tuberculosis proteins 
were divided into two groups according to the above-mentioned cutoff values; Third, the predictable por-
tions of proteins were compared between two groups. Figure 5 and Figure 6 showed that the proteins, 
which had a large predictable portion, provided a high accuracy of predicting their crystallization propen-
sity. 
 

 
Figure 5. Accuracy from fitting in crystallization prediction of Mycobacterium tuber-
culosis proteins (upper panel) and statistical comparison of their predictable portion of 
amino acid pairs at different cutoff values to separate proteins with accuracy (lower 
panel, the Mann-Whitney U-test). The data were presented as median with in-
ter-quartiles. 
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Figure 6. Accuracy from delete-1 jackknife validation in crystallization prediction of 
Mycobacterium tuberculosis proteins (upper panel) and statistical comparison of their 
predictable portion of amino acid pairs at different cutoff values to separate proteins 
with predicted accuracy (lower panel, the Mann-Whitney U-test). The data were pre-
sented as median with inter-quartiles. 

 
Table 4 showed the third combined feature, unpredictable portion of amino acid pairs, and predictive 

accuracy in all, crystallized and non-crystallization proteins from Mycobacterium tuberculosis. As can be 
seen in Table 4, this feature had difference between crystallized and non-crystallized proteins from Myco-
bacterium tuberculosis, and predictive accuracy was different between crystallized and non-crystallized 
proteins, too. In particular, the unpredictable portion was statistically higher in crystallized proteins than 
in non-crystallized ones (65.25% vs. 61.50%), while the accuracy of predictions was higher in crystallized 
proteins than in non-crystallized ones. However, we could not find a direct correlation between unpre-
dictable portion and prediction accuracy. 
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Table 4. Unpredictable portion of amino acid pairs and accuracy of crystallization prediction in 
proteins from Mycobacterium tuberculosis. The data were presented as median with 25% - 75% in-
terquartile range, and the Mann-Whitney U-test was used to determine the difference between 
crystallized and non-crystallized groups. 

Characteristic Group Number Median (25% - 75%) P value 

Unpredictable portion (%) 

All proteins 428 63.63 (54.88 - 75.25) 

0.013 Crystallized 277 65.25 (55.50 - 78.25) 

Non-crystallized 151 61.50 (53.31 - 71.50) 

Accuracy in fitting 

All proteins 428 0.959 (0.323 - 0.998) 

<0.001 Crystallized 277 0.994 (0.964 - 0.999) 

Non-crystallized 151 0.122 (0.042 - 0.361) 

Accuracy in delete-1 

All proteins 428 0.668 (0.377 - 0.926) 

<0.001 Crystallized 277 0.855 (0.659 - 0.978) 

Non-crystallized 151 0.268 (0.103 - 0.467) 
 

The issue of whether an amino acid or protein feature can be correlated with propensity of protein 
crystallization has been tested through modeling [1, 4, 6, 7, 22, 31-39]. This is because it is impossible to 
conduct a control experiment without either amino acid or protein feature. In this study, three new fea-
tures, which combined the features of individual amino acid and protein, were correlated with the crystal-
lization propensity of proteins from Mycobacterium tuberculosis. The results demonstrate that these three 
combined features can be considered as the factors that affect the propensity of protein crystallization. 
Among three combined features, the amino acid pair predictability uses a single value, unpredictable por-
tion, to represent a protein while the other two features, amino acid distribution probability and future 
composition, have each value for each type of amino acid. In this view, the amino acid distribution proba-
bility and future composition are somewhat similar to the 540-plus amino acid features, however, the two 
combined features do not have constant values as those amino acid features, therefore they more efficient-
ly reflect certain features of amino acid in a whole protein. Clearly, more studies are needed to expend 
these three protein features to analyze the crystallization process in proteins from other organisms. 
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