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Abstract 
This paper addresses the problem of finite-time H∞ filter design for a class of 
non-linear stochastic systems with Markovian switching. Based on stochastic 
differential equations theory, a mode-dependent finite-time H∞ filter is de-
signed to ensure finite-time stochastic stablility (FTSS) of filtering error sys-
tem and satisfies a prescribed H∞ performance level in some given finite-time 
intervals. Moreover, sufficient conditions are presented for the existence of a 
finite-time H∞ filter for the stochastic system under consideration by em-
ploying the linear matrix inequality technique. Finally, the explicit expression 
of the desired filter parameters is given. 
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1. Introduction 

Since filtering plays an important role in control systems, signal processing and 
communication, there has been a rapidly growing interest in filter designing due 
to its advantages over the traditional Kalman filtering. In the past few years, 
many contributions on filtering for stochastic systems can be found in the lite-
rature [1]-[14], because it is an important research topic and has found many 
practical applications. In [1], a H∞ filter was designed for nonlinear stochastic 
systems. H∞ filtering problems for discrete-time nonlinear stochastic systems 
were addressed in [2]. Delay-dependent H∞ filtering for discrete-time singular 
systems and fuzzy discrete-time systems were reported respectively in [3] [4] [5] 
[6]. In [7], a H∞ filter was designed for discrete-time systems with stochastic in-
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complete measurement and mixed delays. Optimal filter was studied for Itô-sto- 
chastic continuous-time systems in [8]. Dissipativity-based filtering and H∞ fil-
tering were presented for fuzzy switched systems respectively in [9] [10] [11]. 
Fault detection filtering and distributed filter were proposed for fault detection fil-
tering for nonlinear stochastic systems in [12] [13]. In [14], event-based varian- 
ce-constrained H∞ filter wfas reported for stochastic parameter systems. 

As is well known, the previously mentioned literature was based on Lyapunov 
asymptotic stability which focuses on the steady-state behavior of plants over an 
infinite-time interval. But in many practical systems, it is only required that the 
system states remain within the given bounds. In these cases, the introduction of 
finite-time stability or short-time stability was needed, which has caused exten-
sive attention [15]-[23]. The problem of finite-time stability and stabilization for 
a class of linear systems with time delay was addressed in [15]. In [16], the suffi-
cient conditions were achieved for the finite-time stability of linear time-varying 
systems with jumps. The problem of robust finite-time stabilization for impul-
sive dynamical linear systems was investigated in [17]. In [18], fuzzy control 
method was adopted to solve finite-time stabilization of a class of stochastic sys-
tem. A robust finite-time filter was established for singular discrete-time sto-
chastic system in [19]. Finite-time H∞ filtering was proposed respectively for T-S 
fuzzy systems, switched systems, nonlinear singular systems, Itô stochastic 
Markovian jump systems in [20] [21] [22] [23]. Motivated by the contributions 
mentioned above, we investigated the mode-dependent finite-time filtering prob-
lems for stochastic nonlinear systems, which could be used to detect generation 
of residuals for fault diagnosis problems. 

This paper will study the H∞ filtering problem for a class of Markov Jump 
stochastic systems with Lipschitz nonlinearlity. The main purpose of this study 
is to construct a H∞ filter such that the resulting filter error augmented system is 
FTSS. The sufficient condition for FTSS of the filter error system is obtained by 
constructing the Lyapunov-Krasovskii functional candidate combined with 
LMIs. We present an approach to design the desired FTSS filter. 

This paper is organized as follows. Some corresponding definitions and lem-
mas and the problem formulation are introduced in Section 2. In Section 3, we 
give a sufficient condition for FTSS of the mentioned filtering error system in 
terms of LMIs. Moreover, an approach of a finite-time H∞ filter is presented. 
Some conclusions are drawn in section 4. 

We use nR  to denote the n-dimensional Euclidean space. The notation X Y>  
(respectively, X Y≥ ), where X and Y are real symmetric matrices, means that 
the matrix X Y−  is positive definite (respectively, positive semi-definite). I and 
0 denote the identity and zero matrices with appropriate dimensions. ( )max Qλ  
and ( )min Qλ  denotes the maximum and the minimum of the eigenvalues of a 
real symmetric matrix Q. The superscript T denotes the transpose for vectors or 
matrices. The symbol * in a matrix denotes a term that is defined by symmetry 
of the matrix. 
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2. Preliminaries 

Consider a class of Itô stochastic nonlinear system with Markovian switching, 
which can be described as follows: 

( ) ( ) ( ) ( ) ( )( ) ( ) ( )
( ) ( ) ( ) ( )( ) ( ) ( ) ( )

1

1

d d

d

t t t

t t t

x t A x t F f x t A v t t

B x t G g x t B v t w t

η η η

η η η

 = + + 
 + + + 

       (1) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1d dt t t ty t C x t C v t t D x t D v tη η η η   = + + +        (2) 

( ) ( ) ( ) ( ) 0, 0tz t L x t x xη= =                    (3) 

where, ( ) nx t R∈ , ( ) my t R∈ , ( ) pv t R∈ , ( ) qz t R∈  are state vector, measure-
ment, external disturbance, and controlled output respectively, where ( )v t  sa-
tisfies the constraint condition with respect to the finite-time interval [ ]0,T  

( ) ( )T
0

, 0
T

v t v t d d≤ ≥∫ ,                     (4) 

and ( )w t R∈  is a standard Wiener process satisfying ( ){ }d 0w tΞ = ,  
( ){ }2d dw t tΞ = , which is assumed to be independent of the system mode  

{ }, 0t tη ≥ . The random form process { }tη  is a continuous-time discrete-state 
Markov process taking values in a finite set { }1,2, ,N s  . The set N compris-
es the operation modes of the system. The transition probabilities for the process 
{ }tη  are defined as 

( )
( )

( )
, ,

|
1 , ,

ij
ij t t t

ii

t o t i j
p prob j i

t o t i j

σ
η η

σ+∆

 ∆ + ∆ ≠= = = = 
+ ∆ + ∆ =

         (5) 

where 0t∆ > , 
( )

0lim 0t

o t
t∆ →

∆ 
= 

∆ 
 and 0ijσ ≥  for i j≠  is the transition 

probability rate from mode i at time t to mode j at time t t+ ∆  and  

1, 0s
ii ijj j iσ σ

= ≠
= − ≤∑ . 

For each possible value of ,t i i Nη = ∈  in the succeeding discussion, we de-
note the matrices with the ith mode by 

( )i tA A η , ( )i tF F η , ( )1 1i tA A η ,  

( )i tB B η , ( )i tG G η , ( )1 1i tB B η , 

( )i tC C η , ( )1 1i tC C η , ( )i tD D η , ( )1 1i tD D η , ( )i tL L η , 

where 1 1 1 1,, , , , , , , , ,i i i i i i i i i i iA F A B G B C C D D L  for any i N∈  are known constant 
matrices of appropriate dimensions. 

Assumption 1. The nonlinear functions ( )( )f x t  and ( )( )g x t  satisfy the 
following quadratic inequalities: 

( )( ) ( )
2 22

1f x t x tµ≤ , ( )( ) ( )
2 22

2g x t x tµ≤ .          (6) 

We now consider the following filter for system (1) - (3): 

( ) ( ) ( )ˆ ˆd dfi fix t A x t B y t= +                     (7) 

( ) ( ) ( ) 0ˆ ˆ, 0ˆ fiz xC t xt x= =                     (8) 
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where ( )ˆ nx t R∈  is the filter state, , ,fi fi fiA B C  are the filter parameters with 
compatible dimensions to be determined. 

Define ( ) ( ) ( )
TT T Tx̂t x t tξ  =    and ( ) ( ) ( )ˆe t z t tz= −  then we can obtain 

the following filtering error system: 

( ) ( ) ( )( ) ( ) ( ) ( )( ) ( ) ( )1d d di i i i i it A t F F x t A v t t B t G G x t D v t w tξ ξ ξ   = + + + + +     (9) 

( ) ( ) ( ) 0, 0Le t tξ ξ ξ= =                     (10) 

where 

0i
i

fi i fi

A
A

B C A
 

=  
 

, [ ]0i iF F= , 1
1

1

i
i

fi i

A
A

B C
 

=  
 

, i
i

fi i

B
B

B D
 

=  
 

, [ ]0i iG G= , 

1

1

i
i

fi i

D
D

B D
 

=  
 

, i fiL L C = −  , ( )( ) ( )( )
0

f x t
F x t

 
=  
  

, ( )( ) ( )( )
0

g x t
G x t

 
=  
  

. 

We introduce the following definitions and lemmas, which will be useful in 
the succeeding discussion. 

Definition 1 ([24]): The filtering error system (9) (10) with ( ) 0v t =  is said 
to be finite-time stochastic stable (FTSS) with respect to ( )1 2, , ,c c T R , where 

0R > , 1 20 c c< <  if for a given time-constant 0T > , the following relation 
holds: 

( ) ( ) ( ) ( )T T
1 20 0x Rx c x t Rx t c   Ξ < ⇒ Ξ <    , [ ]0,t T∀ ∈ . 

Definition 2: The filtering error system (9) (10) with ( )v t  is said to be fi-
nite-time stochastic stable (FTSS) with respect to ( )1 2, , , ,c c T R d  if it is stochas-
tic finite-time stable in the sense of definition 1 for all nonzero ( )v t  satisfying 
the constraint condition (4) for all 0T >  under the zero-initial condition. 

Definition 3: Given a disturbance attenuation level 0γ > , the filtering error 
system (9) (10) with ( )v t  satisfying (4) is said to be H∞ finite-time stochastic 
stable (FTSS) with respect to ( )1 2, , , ,c c T R d  with a prescribed disturbance at-
tenuation level γ , if it is stochastic finite-time stable in the sense of Definition 1 
and 

( ) ( ){ } ( ) ( )T 2 T
0 0

d d
T T

e t e t t v t v t tγΞ ≤∫ ∫ .              (11) 

Lemma 1 (Gronwall inequality [25]): Let ( )v t  be a nonnegative function 
such that 

( ) ( )
0

d ,0
t

v t a b v s s t T≤ + < <∫ ,                 (12) 

for some constants , 0a b ≥ , then we have ( ) ( )exp ,0v t a bt t T≤ < < . 
Lemma 2 (Schur complement [26] [27]) Given a symmetric matrix  

11 12

21 22

φ φ
φ

φ φ
 

=  
 

, the following three conditions are equivalent to each other: 

1) 0φ < ; 
2) 11 0φ < , and T 1

22 12 11 12 0φ φ φ φ−− < ; 

3) 22 0φ < , and 1 T
11 12 22 12 0φ φ φ φ−− < . 
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Lemma 3 (Itô formula [28]) Let x (t) be an n-dimensional Itô process on 
0t ≥  with the stochastic differential 

( ) ( ) ( ) ( )d d dx t f t t g t w t= + ,                  (13) 

where ( ) nf t R∈  and ( ) n mg t R ×∈ , ( )( ) ( ), ,nV x t t R R R+ +∈ × . Then  
( )( ),V x t t  is a real-valued Itô process with its stochastic differential 

( )( ) ( )( ) ( )( ) ( ) ( )d , , , dxV x t t V x t t V x t t g t w t= +          (14) 

where the weak infinitesimal operator 

( )( ) ( )( ) ( )( ) ( ) ( ) ( )( ) ( )T1, , , ,
2t x xxV x t t V x t t V x t t f t tr g t V x t t g t = + +   .  (15) 

3. Main Results 

Theorem 1: Suppose that the filter parameters , ,fi fi fiA B C  in (7) (8) are given. The 
filtering error system (9) (10) is FTSS with respect to ( )1 2, , , ,c c T R d , if there exist 
scalars 1 2 3, , , , 0ε ε ε α γ >  and symmetric positive definite matrices ,iP i N∈  sa-
tisfying 

1 1
1 2 2

2

0
0

i
i i

i

P
P R Q R

P
 

= = 
 

,                   (16) 

such that the following LMIs hold 
T T T T

11 1
2 T T T

1
1

1
2

1
3

0
0 0

0 0 0
0

0 0
0

i i i i i i

i i i

P A P B P B
I P

I
I

I
I

D Dγ
ε

ε
ε

−

−

−

 Π
 
∗ − 

 ∗ ∗ −
Π = < 

∗ ∗ ∗ − 
 ∗ ∗ ∗ ∗ − 
∗ ∗ ∗ ∗ ∗ −  

         (17) 

and 

( )

( )

2
max 1

2
min

1 ee sup

inf

T
T

i N i

i N i

Q c d
c

Q

α
α λ γ

α
λ

−

∈

∈

 −  +  

  

  ≤ ,           (18) 

where T
11 1 2 3 4 1

s
i i i i ij j ijP A A P P Pσ α

=
Π = + + Λ + Λ + Λ +Λ + −∑ , and “*” denotes 

the transposed elements in the symmetric positions. 
Proof: Define the following stochastic Laypunov-Krasovskii functional candidate: 

( )( ) ( ) ( )T, iV t i t P tξ ξ ξ= ,                   (19) 

By Itô formula, we have the weak infinitesimal operator of ( )( ),V t iξ  as follows: 

( )( )
( ) ( ) ( )( ) ( )

( ) ( )( ) ( ) ( )

( ) ( )( ) ( ) ( ) ( )( ) ( )

( ) ( )

T
1

T

1

T

T
1

,

i i i i

i i i i

i i i i i i i

s
ij jj

V t i

t P A t F F x t A v t

A t F F x t A v t P t

B t G G x t D v t P B t G G x t D v t

t P t

ξ

ξ ξ

ξ ξ

ξ ξ

σ ξ ξ
=

 = + + 

 + + + 

   + + + + +   

+∑


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Applying (6) and the following well-known fact: 
T T T 1 T , 0X Y Y X X X Y Yε ε ε−+ ≤ + > ,              (20) 

it follows that 

( ) ( )( ) ( ) ( )( ) ( ) ( ) ( ) ( )
TT T T T T

1 1i i i i i it PF F x t t PF F x t t P P t t tξ ξ ε ξ ξ ξ ξ + ≤ + Λ  , (21) 

( ) ( )( ) ( ) ( )( )
( ) ( ) ( ) ( )

TT T T T

T T T T
2 2 ,

i i i i i i

i i i i

t B PG G x t t B PG G x t

t B P PB t t t

ξ ξ

ε ξ ξ ξ ξ

 +  
≤ + Λ

          (22) 

( )( ) ( )( ) ( ) ( )T T T
3i i iG x t G PG G x t t tξ ξ≤ Λ ,             (23) 

( )( ) ( ) ( )( ) ( )
( ) ( ) ( ) ( )

TT T T T

T T T T
3 4 ,

i i i i i i

i i i i

G x t G PD v t G x t G PD v t

v t D P PD v t t tε ξ ξ

 +  
≤ + Λ

          (24) 

( )1 2 T
1 1 max

1

0

0 0
i iF F Iε µ λ− 

Λ =  
  

, ( )1 2 T
2 2 max

2

0

0 0
i iG G Iε µ λ− 

Λ =  
  

, 

( )2 T
2 max

3

0

0 0
i i iG PG Iµ λ 

Λ =  
  

, ( )1 2 T
3 2 max

4

0

0 0
i iG G Iε µ λ− 

Λ =  
  

. 

Let ( ) ( ) ( )
TT Tt t v tζ ξ =   , from (21) - (24), it follows 

( )( ) ( ) ( )
T

T 1
T T T

3

, i i i i i

i i i i i i i

P P
V t i t t

P P P
B D A

D D D D
ξ ζ ζ

ε
 Λ +

≤  
∗ + 

 ,       (25) 

where 
T T T T T

1 2

1 2 3 4 1

  i i i i i i i i i i i i i
s

ij jj

P P B PB P P B P PBA

P

A ε ε

σ
=

Λ = + + + +

+ Λ + Λ + Λ + Λ +∑
.          (26) 

Applying Schur complement, we have the following inequality by taking (17) 
into consideration: 

( )( ) ( )( ) ( ) ( )2 T, ,V t i V t i v t v tξ α ξ γΞ < Ξ + .           (27) 

Multiplying the above inequality by e tα−  and by Gronwall inequality (12), we 
obtain the following inequality 

( )( ) ( )( ) ( ) ( )2 T
0

e , 0 , e dt st
V t i V i v s v s sα αξ ξ γ− −   Ξ −Ξ <    ∫ .     (28) 

Then, we have 

( )( ) ( )( )

( )( )

( )( )

2

2

0

2

  , e 0 , e e d

1 ee 0 ,

1 ee 0 ,

t t s

t
t

t

T
T

V t i V i d s

V i d

V i d

α α α

α
α

α
α

ξ ξ γ

ξ γ
α

ξ γ
α

−

−

−

 Ξ < + 

−
< +

 −
< +

 
 












∫

          (29) 

( )( ) ( ) ( ) ( )T
max0 , sup 0 0i N iV i Q Rξ λ ξ ξ∈  ≤   .           (30) 

( )( ) ( ) ( ) ( )T
min, infi N iV t i Q t R tξ λ ξ ξ∈  ≥   .            (31) 
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Taking (29)-(31) into account, we obtain 

( )( )
( )

( )

2
max 1

min

1 ee sup
  ,

inf

T
T

i N i

i N i

Q c d
V t i

Q

α
α λ γ

α
ξ

λ

−

∈

∈

 −  +  
  Ξ ≤    

.      (32) 

Therefore, it follows that condition (18) implies ( ) ( )T
2x t Rx t c Ξ <  . The 

filtering error system is finite-time bounded with respect to ( )1 2, , , ,c c T R d . This 
completes the proof. 

Theorem 2: The filtering error system (9) (10) is FTSS with respect to 
( )1 2, , , ,c c T R d  and satisfies the condition (11), if there exist positive constant 

1 2 3, , , ,ε ε ε α γ  and symmetric positive definite matrices ,iP i N∈  such that (16) 
(18) hold and 

T T T T
11 1

2 T T T

1
1

1
2

1
3

0
0 0

0 0 0
0

0 0
0

i i i i i i

i i i

P A P B P B
I P

I
I

I
I

D Dγ
ε

ε
ε

−

−

−

 Ω
 
∗ − 

 ∗ ∗ −
Ω = < 

∗ ∗ ∗ − 
 ∗ ∗ ∗ ∗ − 
∗ ∗ ∗ ∗ ∗ −  

         (33) 

where T T
11 1 2 3 4 1

s
i i i i ij j ijP P P L L PA A σ α

=
Ω = + + Λ + Λ + Λ +Λ + + −∑ . 

Proof: For the filtering error system (9) (10), consider the same stochastic 
Laypunov functional as in (19). Obviously, condition (33) implies that 

T T
1

T T T
3

0i i i i i i

i i i i i i i

L L P B PD P A
D PD D P PD

α
ε

 Λ + − +
< 

∗ + 
            (34) 

where Λ  is given in (26). 
By theorem 1, conditions (17) and (18) guarantee that system (9) (10) is FTSS 

with respect to ( )1 2, , , ,c c T R d . 
Therefore, we only need to prove that (11) holds. 
Noting that (27) and (34), we obtain 

( )( ) ( )( ) ( ) ( ) ( ) ( )2 T T, ,V t i V t i v t v t v t v tξ α ξ γ  Ξ < Ξ + −Ξ   . 

Then using the similar proof as Theorem 1, condition (11) can be easily obtained. 
Theorem 3: The filtering error system (9) (10) is FTSS with respect to 

( )1 2, , , ,c c T R d  and satisfies the condition (11), if there exist positive constant 

1 2 3, , , ,ε ε ε α γ  and symmetric positive definite matrices ,iP i N∈  and matrices 

1 2 3, ,Θ Θ Θ  such that (16) (18) hold and 
1 1 1 T 1 T 1 1 T 1

11 1
2 1 T 1 T 1

1
1

1
2

1
3

0
0 0 0

0 0 0 0
00 0 0

0 0
0

i i i i i i i i i i

i i i i i

A P P P B P B P P L P
I P P P

I
I

I
I

I

D Dγ
ε

ε
ε

− − − − − − −

− − −

−

−

−

 Θ
 
∗ − 

 ∗ ∗ −
 

Θ = <∗ ∗ ∗ − 
 ∗ ∗ ∗ ∗ − 
∗ ∗ ∗ ∗ ∗ − 

 ∗ ∗ ∗ ∗ ∗ ∗ − 

  (35) 
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where ( )1 1 T 1 1 1
11 1 2 3 4 1

s
i i i i i ij j i ijP P P P P PA A σ α− − − − −

=
Θ = + + Λ + Λ + Λ + Λ + −∑ . 

In addition, the suitable parameters of the filter (7) (8) are given as follows: 
1

1 2fi iA P−= Θ , 1
2 2fi iB P−= Θ , 3fiC = Θ .              (36) 

Proof: By theorem 2, let 1 2i fiP AΘ = , 2 2i fiP BΘ = , 3 fiCΘ = , 
Apply Surch complement for (33), then pre- and post-multiply  

{ }1, , , , , ,idiag P I I I I I I−  and { }1, , , , , ,idiag P I I I I I I−  respectively, we can get 
inequality (35) from (33). 

4. Conclusion 

In this paper, we deal with the finite-time H∞ filter designing problem for a class 
of stochastic nonlinear systems with Markovian switching. The sufficient condi-
tions for FTSS of the filtering error system have been presented and proved by 
the Lyapunov-Krasovski approach. The designed filter is provided to ensure the 
filtering error system FTSS and satisfies a prescribed H∞ performance level in a 
given finite-time interval, which can be reduced to feasibility problems involving 
restricted linear matrix equalities. 
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