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Abstract 
The binomial distribution describes the probability of the number of successes 
for a fixed number of identical independent experiments, each with binary 
out-put. In real life, practical applications like portfolio credit risk manage-
ment trials are not identical and have different realization probabilities. In 
addition to the number, the quantitative impacts of the respective outputs are 
also important. There exist no complete model-side implementations for the 
expansion of the binomial distribution, especially not in the case of specific 
quantitative parameters up to now. Here, a solution of this issue is described by 
the extended binomial distribution. The key for solving the problem lies in the 
use of bijection between the elementary events of the binomial distribution 
and the digit sequences of binary numbers. Based on the extended binomial 
distribution, an analytical portfolio credit risk model is described. The bi-
nomial distribution approach minimizes the approximation error in model-
ing. In particular, the edges of the loss distribution can be determined in a 
realistic manner. This analytical portfolio credit risk model is especially pre-
destined for management of risk concentrations and tail risks. 
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1. Introduction 

Many projects are composed of different partial projects. In general, the proba-
bilities of success of the individual projects are not uniform. Furthermore, the 
individual partial projects have different weighting, in other words different val-
ues for the overall project. The aim of this study was to describe a distribution of 
the values of the overall project. 

How to cite this paper: Fischer, S. (2019). 
An Analytical Portfolio Credit Risk Model 
Based on the Extended Binomial Distribu-
tion. Journal of Financial Risk Manage-
ment, 8, 177-191. 
https://doi.org/10.4236/jfrm.2019.83012 
 
Received: August 26, 2019 
Accepted: September 23, 2019 
Published: September 26, 2019 
 
Copyright © 2019 by author(s) and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/

  Open Access

https://www.scirp.org/journal/jfrm
https://doi.org/10.4236/jfrm.2019.83012
https://www.scirp.org/
https://doi.org/10.4236/jfrm.2019.83012
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


S. Fischer 
 

 

DOI: 10.4236/jfrm.2019.83012 178 Journal of Financial Risk Management 
 

Abstracting specific values of the partial projects, the problem can be modeled 
by the general binomial distribution (Fisz, 1981), also called Poisson binomial 
distribution or by the Bernoulli mixture distribution (McNeil et al., 2005). In the 
case of further abstraction of identical probabilities of success, the experimental 
arrangement can be described by the binomial distribution. Also the Panjer 
(1981) recursion enables to determine the probability mass function and the 
cumulative distribution function of the binomial distribution for experimental 
arrangements with a large number of partial projects. However, the calculation 
of the Poisson binomial distribution is already very complex and only possible in 
the case of small experimental arrangements. 

Since the turn of the millennium, the task has been taken up again in connec-
tion with the modeling of the loss estimates of loan portfolios. It is undisputable 
that the loss distribution of a heterogeneous loan portfolio can be described by 
the idea of binomial distribution. However, until now no way has been found to 
cope with the task directly. For solution simulation techniques were used pri-
marily (KMV, 1997; J.P. Morgan, 1997; Wilson, 1998; McKinsey and Company, 
1998). The only alternative of a direct calculation using Poisson approximations 
was shown by CSFB (1997) due to CreditRisk+. 

This study describes for the first time an opportunity to calculate directly the 
weighted extended binominal distribution. The feature of this method is the ex-
ploitation of a bijection between the elementary events of the binomial distribu-
tion and the digit sequences of binary numbers. The description of a numerical 
implementation for the analytically exact calculation of the distribution function 
is unique for real qualitative and quantitative heterogeneous Bernoulli processes 
(see Section 2). In particular, the rigorous calculation of the range of the distri-
bution is of practical value for the risk management in quantification of tail risks 
and the assessment of risk concentrations (see Sections 5 and 6). 

Nevertheless, the use of the model is subjected to numerical limitations. In 
general, the number of sub-trials is limited. For approaches with a limited range 
of weights or uniform weights, the model restrictions can be significantly relati-
vized (see Section 4). 

Notations used in this paper were applied according to the general mathemat-
ical literature (see Appendix). 

2. Extended Binomial Distribution 

The simplest of discrete distributions is the Bernoulli distribution. Here, it only 
has to be checked whether a particular event X was successful X = 1 or has failed 
X = 0. The probability of X = 1 is ( )1P X p= =  and of the complementary 
event X = 0 it is ( )0 1P X p= = − . In comparison to the Bernoulli distribution 
the binomial distribution is the hierarchal higher order distribution. Due to the 
binomial distribution random variables based on the so-called Bernoulli trial 
scheme are described. To do so, n identical independent trials of a Bernoulli dis-
tributed random variable are performed. The number of realizations of the Ber-
noulli distributed random variable, in which the successful event X occurs, in 
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each case describes a trial outcome of the binomial distributed random variable. 
In this paper, an extension of the binomial distribution without the limitation 

of identical probabilities p of the trials is described. In order to be additionally 
able to weight the trials differently when required, they are enhanced by specific 
weighting parameters. 

Bernoulli distributed random variables have only two experimental outcomes 
and can be represented in binary code. This enables to map the Bernoulli trial 
scheme for n trials one-to-one into a matrix with n columns (number of trials) 
and 2n different rows (number of possible combinations of the experimental 
outcomes) of elements zero and one. This matrix is denoted scenario matrix. 
The scenario matrix plays the central role in the description of the following dis-
tribution. 

Definition 1: 
Let , 1, ,jX j n=   be independent Bernoulli distributed random variables 

with probabilities pj. Here, denote Xj = 1 the occurrence of the event and Xj = 0 
the complementary event with each individual probabilities ( )1j j jP X p= =  
and ( )0 1j j jP X p= = − . The random variables Xj have finite weights wj: |wj| < ∞ 
for all 1, ,j n=  . The possible combinations of events of the 1, ,j n=   ran-
dom variables Xj are represented by the scenario matrix 2n nS ×∈R  with com-
ponents { }0,1ijs ∈ . The 2n rows of the scenario matrix are the digit sequences of 
binary numbers from 0 to 2n − 1. 

Then determine 

( )( )1

1
1 ijij

n ss
i j j

j
f p p

−

=

= ⋅ −∏ , 1, , 2ni =                   (1) 

the individual probabilities and 

1

n

i j ij
j

d w s
=

= ⋅∑                          (2) 

their quantitative expressions. The distribution described by function  

( ) ( ) ( )( )1

1
1 ijij

i i

n ss
X i j j

d t d t j
F t P X t f p p

−

< < =

= < = = ⋅ −∑ ∑∏          (3) 

is called the extended binomial distribution. 
The definition is meaningful only if function (3) is a distribution function. To 

show this, the criteria of the following theorem should be checked. 
Theorem: (Fisz, 1981; Gnedenko, 1987) 
A real-valued function F(x) is a distribution function if and only if 
1) The two conditions F(−∞) = 0 and F(+∞) = 1 satisfy, 
2) It is monotonically non-decreasing and 
3) It is left-continuous. 
The distribution is described by a finite number of finite weights wj. Since 
{ }0,1ijs ∈ , the sum of the quantitative characteristics (2) is bounded below by 

the sum of all negative weights 
1
0j

n

j
j

w

B w
=
<

= ∑ . Thus summations over fi in  
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Equation (3) for all t < B are summations over the empty set. That means F(t) = 0 
for all t < B and in particular F(−∞) = 0. Moreover, if all weights are 
non-negative, F(t) is identical zero for all t < 0 and the condition F(−∞) = 0 is 
also satisfied. 

The proof of F(+∞) = 1 is carried by complete induction. Therefore, in Equa-
tion (3) all single probabilities have to be sum up ,  1, , 2n

if i = 
. First of all, it 

must be examined that the statement apply to for the base case n = 1 

( ) ( ) ( )11 2111 211 1
1 1 1 11 1s ss sF p p p p− −∞ = ⋅ − + ⋅ − . 

Without restricting the generality s11 = 1 and s21 = 0. This implies  

( ) ( ) ( ) ( )0 11 0
1 1 1 1 1 11 1 1 1F p p p p p p∞ = ⋅ − + ⋅ − = + − = . 

The induction assumption F(+∞) = 1 is satisfied for n = k 

( ) ( )( )2 1

1 1
1 1

k
ijij

k ss
j j

i j
F p p

−

= =

∞ = ⋅ − =∑∏ . 

In the inductive step it is to show, that the statement apply to for n = k + 1 

( ) ( )( )
1 12 1

1 1
1

k
ijij

k ss
j j

i j
F p p

+ + −

= =

∞ = ⋅ −∑∏ . 

Therefore, the products under the summation sign are decomposed 

( ) ( )( ) ( )( )
1

11
2 11

1 1
1 1

1 1
k

ijik ijik
k ss ss

k k j j
i j

F p p p p
+

++
−−

+ +
= =

 
∞ = ⋅ − ⋅ ⋅ − 

 
∑ ∏ . 

The coefficients 1iks +  consist of 2k coefficients that equal zero and 2k coeffi-
cients that equal one, each in pairs with identical factor below the product sign. 
The sum is decomposed by the expressions of the coefficients 1iks +  

( ) ( )( ) ( )( )

( )( ) ( )( )

11

1

11

1

2 11
1 1

1 1
1

2 11
1 1

1 1
0

1 1

1 1
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ijik ijik
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k
ijik ijik
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k k j j

i j
s
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k k j j

i j
s

F p p p p
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+
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+
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=
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+ +

= =
=

 
∞ = ⋅ − ⋅ ⋅ − 

 

 
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 

∑ ∏

∑ ∏
 

The coefficients 1iks +  are replaced by their concrete values one or zero. Then 
follows 

( ) ( )( )
( ) ( )( )

( ) ( )( )

2 1
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1 1

2 1
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2 1
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−
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 
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 
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 

∑ ∏

∑ ∏

∑ ∏

 

From the induction assumption it follows, that F(∞) = 1 for n = k + 1. So it 
was verified that the condition (1) of the theorem is accomplished. 
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By increasing t the number of summands in function (3) increases. To dem-
onstrate the monotony it has to be shown, that all summands are non-negative. 
The summands are products themselves. The factors have the structure 

( )11 ijij ss
j jp p

−
⋅ − . Distinction has to be made between two cases: 

sij = 0: then the factor reduces to (1 − pj), which is non-negative since  
0 1jp≤ ≤ . 

sij = 1: then the factor only remaining pj, which is non-negative. 
So the function (3) also satisfies the condition (2) of the theorem. 
The function (3) is a jump continuous function and because of the strict in-

equality in ( ) ( )XF t P X t= <  it is a left-continuous function. So the function 
(3) also satisfies the condition (3) of the sentence and it is a distribution func-
tion. 

To illustrate the Definition 1, the probability mass function and the cumula-
tive distribution function are considered for the following example in Table 1 
and Figure 1. 
 
Table 1. Fictional example. 

Trial-No. Weight Probability 

Xj wj pj 

1 4.0 0.067 

2 3.9 0.020 

3 3.1 0.013 

4 2.5 0.100 

5 2.3 0.044 

6 2.0 0.300 

7 1.5 0.013 

8 1.3 0.009 

9 1.5 0.004 

10 1.3 0.150 

11 1.1 0.450 

12 0.9 0.045 

13 0.8 0.067 

 

 
Figure 1. Probability mass function and cumulative distribution function. 
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3. Moments and Characteristics of the Extended Binomial  
Distribution 

The extended binomial distribution of a random variable X by Definition 1 is a 
linear combination of independent Bernoulli distributed random variables 

, 1, ,jX j n=   with probabilities pj and with weights wj as linear coefficients. 
Based on these considerations, the moments of the extended binomial distribu-
tion are determined in the following. 

The expected value of a random variable is generated by the expected value 
operator. The expected value operator is also linear (Fisz, 1981; Rényi, 1971). It 
means, for the sum of a finite number of random variables , 1, ,jX j n=   and 
real numbers , 1, ,j j nα =   applies  
( ) ( ) ( )1 1 1 1 1 1n nE X X E X E Xα α α α⋅ + + ⋅ = ⋅ + + ⋅ 

.  Bernoulli distributed 
random variables Xj have expected values ( )j jE X p=  For the expected value  

of the extended binomial distributed random variable 
1

n

j j
j

X w X
=

= ⋅∑  follows 

( )
1

n

j j
j

E X w p
=

= ⋅∑ . 

The variance of a sum of independent random variables Xj and real numbers 
, 1, ,j j nα =   is given by  
( ) ( ) ( )2 2 2 2 2

1 1 1 1 1 1n nD X X D X D Xα α α α⋅ + + ⋅ = ⋅ + + ⋅   (Rényi, 1971). Ber-
noulli distributed random variables Xj have the variances  

( ) ( )2 1j j jD X p p= ⋅ − . For the variance of the extended binomial distributed 

random variable 
1

n

j j
j

X w X
=

= ⋅∑  follows ( ) ( )2 2

1
1

n

j j j
j

D X w p p
=

= ⋅ ⋅ −∑ . 

The probability generating function GX(z) of a discrete random variable X is 

defined by ( ) ( )
0 0

k k
X k

k k
G z P X k z p z

∞ ∞

= =

= = ⋅ = ⋅∑ ∑ . The probability generating  

function for a α‒multiples of a random variable X is ( ) ( )X XG z G zαα ⋅ =  (Gri-
bakin, 2002). Furthermore, the probability generating function of the sum of in-
dependent random variables , 1, ,jX j n=   applies to be equal to the product 
of their probability generating functions ( ) ( ) ( )

1 1n nX X X XG z G z G z+ + =


 . From 
both follows the probability generating function of a linear combination of in-
dependent random variables 1 1 n nX Xα α⋅ + + ⋅  is 

( ) ( ) ( )1
1 1 1

n
n n nX X X XG z G z G zαα

α α⋅ + + ⋅ =



 (Gribakin, 2002). The probability ge-

nerating function of a Bernoulli distributed random variable Xj is given by 
( ) 1

jX j jG z p p z= − + ⋅  (Rényi, 1971). For the probability generating function  

of the extended binomial distributed random variable 
1

n

j j
j

X w X
=

= ⋅∑  follows 

( ) ( )
1

1 j
n

w
X j j

j
G z p p z

=

= − + ⋅∏ . 

The characteristic function φX(t) of a random variable X is defined by the 
expected value ( ) ( )eitX

X t Eϕ = . The characteristic function of the linear ex-
pression Xα β⋅ +  is ( ) ( )eit

X t tβ
α βϕ ϕ α⋅ + = ⋅ ⋅ . Furthermore, the characteristic 
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function of the sum of independent random variables , 1, ,jX j n=   applies to 
be equal to the product of their characteristic functions  

( ) ( ) ( )
1 1n nX X X Xt t tϕ ϕ ϕ+ + =


 . From both follows the characteristic function of 
a linear combination of independent random variables 1 1 n nX Xα α⋅ + + ⋅  is 

( ) ( ) ( )
1 1 1 1n n nX X X X nt t tα αϕ ϕ α ϕ α⋅ + + ⋅ = ⋅ ⋅



  (Lukacs, 1960). The characteristic 
function of Bernoulli distributed random variables Xj is given by  

( ) 1 e
j

it
X j jt p pϕ = − + ⋅ . For the characteristic function of the extended binomi-

al distributed random variable 
1

n

j j
j

X w X
=

= ⋅∑  follows  
( ) ( )

1
1 e j

n
i w t

X j j
j

t p pϕ ⋅ ⋅

=

= − + ⋅∏ . 

4. A Numerical Approach to Apply the Extended Binomial  
Distribution on Higher Number of Independent Trials 

Computational effort for calculating the extended binomial distribution will be 
doubled for an additional trial. The limits of the computational feasibility are 
quickly achieved. Under the additional condition, that the weights are in approx-
imately the same order of size, the computational effort can be reduced signifi-
cantly. Then the extended binomial distribution also is numerically approximately 
applicable for problems with a large number of trials. 

In Definition 1 it is assumed, that the trials Xj are independent from each 
other. Under this assumption, the extended binomial distribution can be calcu-
lated for problems with a large number of trials, by: 
 Splitting larger trials into partial tests, 
 Determining the distribution functions and the probability for the partial 

tests separately and 
 Finally, aggregating the distributions of the partial tests to the distribution of 

the complete problem successively.  
For aggregation the following calculus is used: 
Definition 2 (Smirnow & Dunin-Barkowski, 1969): 
Let D ⊆ Z be a discrete subset of the integers and P1 and P2 be two functions 

with Pi: D → R for i = 1, 2. Then ( )( ) ( ) ( )1 2 1 2
k D

P P X n P X k P X n k
∈

∗ = = = ⋅ = −∑
is the discrete convolution of P1 and P2. 

In the computational implementation of the convolution of the probability 
functions of extended binomial distributed random variables is a practical prob-
lem. This results from the potentially large number of different quantitative ma-
nifestations (3). Moreover, in definition 1 it was not required that the weights wj 
are integers. To apply the calculus of convolution computational efficiently, the 
probability functions are approximated for aggregation. For this purpose the 
quantitative manifestations of the extended binomial distributions have to be 
projected onto reference points (Figure 2). The projection is done by rounding 
the quantitative manifestations of integer multiples of a given unit discretization 
U: 

( ) [ ]
1

1;
n

i i i j ij
j

d round d U d U U w s U
U =

 
= = ⋅ = ⋅ ⋅ ⋅ 

 
∑  
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Figure 2. Real and projected extended binomial distribution. 

 
Because of the projection, the discretized probability functions take positive 

values only at identical points with the same distance U. 
Now, each of the two probability functions of two partial tests should be ag-

gregated by convolution. The resulting probability functions again take positive 
values only on multiples of U. With the resulting probability functions the ag-
gregation can be continued successively until the probability function for the 
complete problem was calculated. 

The approximation error caused by the projection is low if the weights wj are 
approximately in the same order of size. In this way the model of the extended 
binomial distribution is applicable for problems with a large number of trials. 
Up to this point, the meaning of “approximately the same order of size” was not 
specified. The key role is played by the discretization unit U. 

On the one hand the discretization unit U should not be larger than the smal-
lest weight, since otherwise in the approximation the impact of the trials with 
smaller weights is neutralized. On the other hand the discretization unit U 
should not be smaller than a fraction of the greatest weights, since this would 
have negative effects on the performance of the convolution. Experience shows, 
that there are no significant performance impairments, if one percent of the 
largest weight is chosen as discretization unit. From both restrictions it can be 
derived that in the context above the weights are in approximately the same or-
der of size, when the greatest weight is not significantly higher than one hundred 
times of the smallest. 

5. Application of the Extended Binomial Distribution 

A project in this sense is the investment in a loan portfolio. A loan portfolio 
consists of a certain number of loans. Each loan has a specific exposure and its 
own probability of default. An estimation of the expected portfolio loss and the 
loss distribution is required for the management of the portfolio. 

To illustrate the problem, a portfolio of four loans is considered. Usually a tree 
structure is used to represent the elementary events. The characteristic of the ex-
tended binomial distribution, the bijection between the tree structure and the 
scenario matrix is shown in Figure 3.  

Hereinafter concrete values are used in the example (Table 2). 
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Figure 3. Bijection between the tree structure and the scenario matrix. 
 
Table 2. Example for a small portfolio. 

Loan-No. j 1 2 3 4   

Exposure wj 1234 9750 4698 2135 Probability Loss 

Probability of Default pj 0.10 0.03 0.02 0.05 fi di 

Scenario Matrix 

0 0 0 0 0.8128 0 

0 0 0 1 0.0428 2135 

0 0 1 0 0.0166 4698 

0 0 1 1 0.0009 6833 

0 1 0 0 0.0251 9750 

0 1 0 1 0.0013 11,885 

0 1 1 0 0.0005 14,448 

0 1 1 1 0.0000 16,583 

1 0 0 0 0.0903 1234 

1 0 0 1 0.0048 3369 

1 0 1 0 0.0018 5932 

1 0 1 1 0.0001 8067 

1 1 0 0 0.0028 10,984 

1 1 0 1 0.0001 13,119 

1 1 1 0 0.0001 15,682 

1 1 1 1 0.0000 17,817 
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The loss distribution is determined according to Equation (3) with  
( ) ( )

i
X i

d t
F t P X t f

<

= < = ∑ . 
For portfolios with a larger number of loans, the portfolio is divided into par-

tial portfolios as described in section 4. The loss distributions are computed for 
the sub-portfolios. While doing so, the losses are rounded to integer multiples of 
a discretization unit U. Next, the loss distributions of the partial portfolios are 
successively aggregated by convolution until the loss distribution of the complete 
portfolio is determined, see Figure 4. 
 

 
Figure 4. Strategy disassembling—calculation—aggregation. 

 
By disassembling the problem and aggregating the partial results as described 

above it is possible to determinate the loss distribution for portfolios consisting 
of a few hundred of loans. In this way, the numerical restrictions are relativized, 
but not completely eliminated. What does it mean in practical realization? 

A partial portfolio of the largest loans is taken from the complete portfolio. 
For this sub-portfolio the loss distribution is determined by the extended bi-
nomial distribution. What should be done with the remaining portfolio? 

In the remaining portfolio the largest loan account for only a few per thou-
sand of the complete portfolio. If the remaining portfolio consists of a few loans, 
its influence on loss distribution of the complete portfolio is marginal. This is 
not the case if the remaining portfolio consists of many loans. Then because of 
the large number of small loans, the remaining portfolio is well diversified and 
heterogeneous in general. The loss distribution in such a portfolio can be well 
approximated by a Gaussian normal distribution. The parameters μ and σ for 
the normal distribution approximation are (Fischer, 2012) 

1 1

n n

j j j j
j j

w w pµ µ
= =

= ⋅ = ⋅∑ ∑  
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this correspond to expected loss and 

( )2 2 2 2

1 1
1

n n

j j j j j
j j

w w p pσ σ
= =

= ⋅ = ⋅ ⋅ −∑ ∑ . 

The wj are the exposures, pj are the probabilities of default and r is the number 
of loans of the remaining portfolio. 

Finally, the loss distribution determined by the generalized binomial distribu-
tion and the loss distribution of the remaining portfolio approximated by the 
Gaussian normal distribution are aggregated by convolution to the loss distribu-
tion of the complete portfolio. 

6. Peripheral Modeling of Dependencies 

In Definition 1 it is assumed, that the trials Xj are independent from each other. 
But the default behaviors of the loans of a portfolio are not independent in reali-
ty. There are common dependencies on external risk factors for example, the 
economic situation. Because the dependencies cannot be mapped directly in the 
extended binomial distribution, the modeling of the dependencies of risk factors 
is transferred to the processing of input data. 

The common dependencies of external risk factors are modeled on the basis of 
construction from Gordy (2002). First, the probabilities of default pj are decom-
posed as follows: 

( )1j j j jp s s p = − + ⋅  , 0 1js≤ ≤                 (4) 

The parameters sj are specific sensitivity factors. Subsequently, a risk factor M, 
for example for mapping the macroeconomic economic situation, is integrated 
in the formula (4). The decomposition of the probabilities of default is indicated 
by the index (M): 

( ) ( )1M
j j j jp s M s p = − + ⋅ ⋅  , 

( )1 1
0 j j

j j

p s
M

p s

+ ⋅ −
≤ ≤

⋅
       (5) 

Under normal conditions the parameter M has the value 1 (or 100%). That 
means under normal conditions apply ( )M

j jp p=  for all j. The effects of syste-
matic changes are implemented in the model by modifying the parameter M, 
especially by M > 1 for events of economic downturn and by M < 1 for economic 
upturn phases. 

Systematic changes affect the individual debtors individually (Basel Commit-
tee on Bank Supervision, 2004), Article 415, Sentence 3. The parameter sj takes 
over the control of the individual sensitivity. If the creditworthiness of a debtor 
is above-average dependent on systematic influences, then sj is greater 1 (or 
100%). In the opposite case, if the creditworthiness of a debtor is lower-average 
dependent on systematic influences, then sj is less than 1 (or 100%). In principle, 
the sensitivities can be individually assigned to the debtors. For practical reasons 
of data availability and from a calibration point of view a sectoral assignment 
will be the more practical, for example by industry sectors. 
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Adjusted decomposed probabilities of default for debtors reacting differently 
sensitive to changes in the systematic factor are shown schematically in the fol-
lowing Table 3 for different scenarios of the systematic factor M. In this case, an 
a priori probability of default of 0.03 is assumed. 
 
Table 3. Adjusted probabilities of default. 

Scenario 
Systematic 
parameter 

Sensitivity 
factor 

Adjusted probabolity 
of default 

 M sj ( )M
jp  

  0.80 0.023 

Economic upturn 0.70 1.00 0.021 

  1.25 0.019 

  0.80 0.030 

Normal case 1.00 1.00 0.030 

  1.25 0.030 

  0.80 0.042 

Economic downturn 1.50 1.00 0.045 

  1.25 0.049 

 
Similar to the one-factor model, the approach of decomposed probability of 

default can be further differentiated extended to several risk factors , 1, ,iR i k=   
(Gordy, 2002). Through the synchronization of probabilities of default implied 
correlations respectively dependencies arise, which are observable in the real 
world. 

Not yet considered is the parameter M. The M parameter is used for mapping 
clusters for relative changes in the economic situation. The economy itself is not 
measurable. Representative for changes in economy, changes in insolvency fre-
quencies are used as a measurable quantity, see Figure 5. For risk considera-
tions, this substitution should be opportune. 
 

 
Figure 5. Distribution of the one year relative changes in insolvency frequencies from 
1950 to 2016 in Germany (Statistisches Bundesamt, 2017). 
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For the individual clusters c (from ( )1 1 0.50 0.50M = − =  to  
( )1 0.20 1.20aM = + = ), the distributions of loss Pc are determined using the ex-

tended binomial distribution. Finally, the loss distributions are summarized 
weighted by the frequencies hc of the clusters c 

( ) ( )
1

a

c c
c

P X x h P X x
=

= = ⋅ =∑ . 

From the aggregated distribution function and from the aggregated probabili-
ty mass function of the loss of the complete loan portfolio, the known risk ratios 
value at risk or expected shortfall are determined (Albrecht, 2004). 

7. Conclusion 

A technique was developed to determine the probability mass function and the 
cumulative distribution function for the extended binomial distribution or for 
trials consisting of independent heterogeneous Bernoulli distributed single trials. 
Additionally, a numerical approach was described for approximating solutions 
of tasks with a larger number of trials. 

The extended binomial distribution provides the foundation for a new analyt-
ical portfolio credit risk model. The new model expanded the set of analytical 
portfolio credit risk models, which were previously essentially represented only 
by the family of CreditRisk+ models. The analytical approach enables identical 
reproducibility of results. This in turn allows separate analysis with regard to in-
dividual risk factors or risk positions. 

The approach of the extended binomial distribution allows the reduction of 
the approximation error. This has practical benefits in particular in determining 
the edges of the loss distribution. Hence the model is predestined for the identi-
fication of tail phenomena and for the management of risk concentrations. 
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Appendix 

Notations 
X   random variable 
P(X)  probability mass function 
FX(t)  cumulative distribution function 
E(X)  expected value of the random variable X 
D2(X)  variance of the random variable X 
GX(z)  probability generating function of the random variable X 
φX(t)  characteristic function of the random variable X 
(P*R)  convolution on functions P and R 
R   set of all real numbers 
Z   set of all integers 
Rn  n-dimensional euclidean space 
Rn×m  set of all real m-by-n matrices 
∑   sum sign for the summation operator 
∏   product sign for the product operator 
∞   sign for infinity  

 
 
 

 

https://doi.org/10.4236/jfrm.2019.83012

	An Analytical Portfolio Credit Risk Model Based on the Extended Binomial Distribution
	Abstract
	Keywords
	1. Introduction
	2. Extended Binomial Distribution
	3. Moments and Characteristics of the Extended Binomial Distribution
	4. A Numerical Approach to Apply the Extended Binomial Distribution on Higher Number of Independent Trials
	5. Application of the Extended Binomial Distribution
	6. Peripheral Modeling of Dependencies
	7. Conclusion
	Conflicts of Interest
	References
	Appendix

