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Abstract 
Peanut (Arachis hypogaea L.) is one of the most important oilseed crops that 
are cultivated worldwide. Peanut production is now greatly limited by 
drought stress, which is a major environmental challenge. The urgent task for 
current peanut research is thus to study the underlying mechanisms of pea-
nut drought tolerance, to identify genes that are closely associated with 
drought tolerance, and to create new germplasms/varieties with high drought 
tolerance. In this review, we summarize recent advances in the acclimation 
mechanisms to water deficiency and the genetic improvement of peanut for 
drought tolerance, and propose the perspectives for the future peanut re-
search. 
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1. Introduction 

Cultivated peanut (Arachis hypogaea L.) is an allotetraploid crop (2n = 4x = 40, 
AABB) and belongs to Arachis section of Leguminosae family. It originates in 
South America and perhaps evolves from the hybridization of two putative pro-
genitors, Arachis duranensis and Arachis ipaënsis, followed by genome duplica-
tion and domestication events. Recently, comparative karyotyping analysis via 
FISH (florescence in situ hybridization) reveals that chromosome organization is 
highly conserved in cultivated peanut and its two putative progenitors, especially 
in the B genome chromosomes. However, variations exist between Arachis du-
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ranensis and the A genome chromosomes in cultivated peanut, especially for the 
distribution of ITRs (interstitial telomere repeats). Further analyses of additional 
Arachis duranensis varieties from different geographic regions reveal both nu-
meric and positional variations of ITRs in their chromosomes, which are similar 
to the variations in tetraploid peanut varieties. These results provide evidence for 
the origin of cultivated peanut from the two diploid ancestors, and suggest that 
multiple hybridization events of Arachis ipaënsis with different varieties of Ara-
chis duranensis may have occurred during the evolution of cultivated peanut 
(Figure 1) [1] [2]. The multiple hybridization hypothesis has also been partially 
supported by the results of genome sequencing for cultivated peanut and the two 
putative progenitors [3] [4] [5] [6]. 

Peanut is one of the most important oilseed crops and widely cultivated in the 
world. China is one of the main countries for peanut production and consump-
tion, wherein the field for peanut cultivation and the annual yield are the great-
est (4.608 million hectares and 17.092 million tons) among oilseed crops [7]. 
Peanut seeds are enriched in many kinds of nutrition such as unsaturated fatty 
acids, proteins, sugars, vitamins and mineral elements, and are usually used as 
fresh and processed foods as well as oil production, which are welcomed by  
 

 
Figure 1. Schematic illustration for cultivated 
peanut origin and evolution [1]. 
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billions of consumers. Nowadays, the supply and consumption of plant oil are 
largely unbalanced and over 60% of edible oil consumption depends on export 
to China, seriously threatening the national safety of edible oil [8]. In compari-
son to oilseed crops such as soybean and rapeseed, peanut displays many ob-
vious advantages including higher yield per unit field, higher efficiency of oil 
production per unit weight and labor-saving field management, and therefore, 
plays a critical role in agricultural production in China [9]. 

However, global climate change is dramatically aggravated and has resulted in 
frequent occurrences of drought with gradually increased seriousness, which im-
poses negative influences on peanut production such as yield loss, lowered seed 
quality, and increased damages from diseases and pests. It has been reported that 
over 30% of peanut yield loss is attributed to water deficiency in approximately 
70% of peanut cultivation area in China [10]. Drought stress is thus considered 
as the most serious environmental stress in peanut production in China [11]. To 
unveil the underlying mechanisms about peanut acclimation to drought stress 
has become an urgent need for current peanut research in China. Peanut genes re-
lated to drought tolerance are needed for the creation of new peanut germplasms 
with high drought tolerance as well. In this review, we summarize recent advances 
in peanut research about the acclimation mechanisms underlying drought to-
lerance and its genetic improvement, and propose some perspectives for future 
peanut research. 

2. Effects of Drought Stress on Cultivated Peanut 
2.1. Effects of Drought Stress on Growth, Development and Yield  

of Peanut 

Under drought stress, peanut organs can be influenced to different extents. For 
example, peanuts grown under moderate drought stress display the increased 
root to shoot ratio and the enhanced root length and density, particularly in the 
deep soil, in comparison to those grown under normal growth condition [12] 
[13]. Peanut root activity can be stimulated by water deficiency, and thus water 
absorption and root growth can be returned to the normal level rapidly after 
re-watering [12] [13]. Peanuts under long-term drought stress can greatly de-
crease root length, root density, total area of absorption and activity [14] [15]. 
Consequently, the water usage efficiency, internode length, node and tiller num-
bers of peanut plants can be significantly lowered [14] [15]. Sankar et al. [16] also 
reported that in comparison to plants under normal growth condition, peanuts 
stressed by water deficiency displayed some seriously damaged phenotypes in-
cluding the smaller and curled leaves, the decreased thickness of leaf epidermis 
and hypodermis, the altered structure and number of mesophylls, the dwarfed 
aerial parts and the deceased accumulation of assimilates. In addition, peanut 
yield can be largely reduced by drought stress because of the delayed flower bud 
differentiation and anthesis, the reduced flower and pod numbers, and the ex-
tended growth period [15] [17]. 
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Because of the variations in water demand, peanut usually displays variable to-
lerance to drought stress at different developmental stages. Water demand is the 
least at germination stage and the occurrence of drought stress at this stage can 
inhibit the germination of peanut seeds [18]. Consequently, the germination rate 
is significantly decreased [18]. The growth of aerial parts of peanut seedlings is 
largely limited under drought stress, while great complementary effects can be 
observed in drought stressed seedlings after re-watering [19]. Therefore, water 
control at seedling stage can benefit peanut growth and yield [19]. Peanut at flo-
wering and podding stages becomes very sensitive to water deficiency, and the li-
mitation of water supply can largely decrease flower and pod numbers, thus re-
ducing peanut yield [20]. The occurrence of water limitation at seed-filling stage 
has negative effects on peanut quality and yield such as the decreasing of pod 
fullness, the lowering of kernel to pod ratio, and the declining of oil content [21]. 

2.2. Effects of Drought Stress on Physiological and Biochemical  
Processes in Peanut 

Water deficiency can alter physiological and biochemical processes in cultivated 
peanut. Zhang et al. [22] reported that peanut plants withered under drought 
stress because of water leakage and the decreased tensions of cells and tissues. 
The disorders of plant hormones and soluble metabolites together with the inhi-
bition of protein and fat biosynthesis were also observed in stressed plants [22]. 
Photosynthesis is a basic physiological process and plays a critical role in plant 
growth, development and production. Under drought stress, chlorophyll content 
in peanut leaves is changed in a variety-dependent manner. The increased con-
tent of chlorophyll is observed in the leaves of peanuts with high drought toler-
ance, while that in the leaves of drought sensitive peanuts is dramatically de-
creased [23]. However, the lowered ratio of chlorophyll a to chlorophyll b can be 
found in the leaves of both drought tolerant and sensitive varieties [23]. Qin et 
al. [24] reported that light and dark reactions such as primary light-energy con-
version, electron transfer and photophosphorylation were greatly inhibited in 
drought stressed peanuts, resulting in the disturbance of photosynthesis. Water 
deficiency leads to the dissociation of oxidative phosphorylation and photo-
phosphorylation, and further inhibits the biosynthesis of ATP (adenosine tri-
phosphate) [25]. As a result, the metabolism of assimilates and energy is inter-
rupted and respiration is also decreased in peanut plants [25]. In addition, ni-
trogen fixation and mineral element absorption are negatively influenced in 
peanuts under water deficiency condition [26]. 

3. The Underlying Mechanisms for Peanut Drought  
Tolerance 

Peanut can adopt three different strategies to cope with water deficiency: 
drought escape, drought avoidance and drought tolerance. A plethora of studies 
have provided morphological, physiological, biochemical, and molecular expla-
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nations for the mechanisms regarding peanut drought tolerance. 

3.1. Morphological Basis for Peanut Drought Tolerance  

Previous studies have demonstrated that in comparison to drought sensitive 
ones, peanuts with high tolerance have more complex root system including 
greater root fresh weight, total length and surface area, and can well adjust water 
usage efficiency when exposing to water deficiency condition by optimizing the 
spatial distribution of root such as the increasing of root length, surface area and 
volume in soil, especially in the deep soil [5]. Under heavy drought stress, the 
inhibitory effects on the growth of root and aerial parts are lighter for drought 
tolerant peanuts than sensitive ones [27]. Different leaf morphologies have also 
been observed among peanut plants with different drought tolerance and the 
higher leaf thickness, the greater ratio of palisade cells to spongy mesophyll, the 
greater specific leaf weight and leaf area per plant are detected in drought tole-
rant peanuts than in the sensitive ones under both normal growth condition and 
water deficiency condition [28]. 

3.2. Physiological Basis for Peanut Drought Tolerance 

Osmotic regulation is one of the most significant mechanisms underlying the 
acclimation of plants to drought stress. There are two main categories of osmot-
ically active substances: one is the absorbed inorganic ions by root such as Na+ 
and K+, and the other is small organic molecules that are synthesized endoge-
nously in plants such as soluble sugars, soluble proteins, and proline [29]. The 
dramatically increased content of soluble proteins and free amino acids can be 
observed in peanut leaves very shortly after the exposure of plants to drought 
stress, while the content of these osmotically active substances is gradually de-
creased with the extension of water deficiency period [30]. The increased con-
tent of osmotic substances can be detected in drought stressed peanuts overall 
developmental stages, especially during flowering period [30]. The capacity of 
osmotic regulation is different among these osmotic substances, and the best is 
soluble proteins followed by soluble sugars, free amino acids and finally proline.  

Oxidation-reduction enzyme system plays crucial roles in the acclimation of 
peanut to water deficiency as well. In a study regarding the effects of drought 
stress on redox system in peanut root nodes, Furlan et al. [31] reported that the 
activities of POD (peroxidase), APX (ascorbateperoxidase) and GR (glutathione 
reductase) were increased significantly, while no significant changes were ob-
served in the activity of SOD (superoxide dismutase). Xiong et al. [20] investi-
gated the responses of redox system to water deficiency in peanuts with different 
tolerance and found that the activity of CAT (catalase) was significantly en-
hanced in the leaves of high tolerant varieties, while in drought sensitive varie-
ties the activity of CAT was increased slightly or decreased and the content of 
MDA (malondialdehyde) was increased greatly, leading to growth inhibition and 
yield loss. In comparison to other developmental stages, physiological processes, 
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agricultural traits and yield of peanut were influenced mostly during podding 
period, indicating a development-dependent response of redox system to drought 
stress in peanut [20]. 

In addition, the involvement of plant hormones such as ABA (abscisic acid) 
has been revealed in the acclimation of peanut to water deficiency [32]. For ex-
ample, the content of ABA is significantly increased in plant root when water 
supply is limited, and the accumulated ABA is further transported to aerial parts 
of stressed plants via xylems for the adjustment of osmotic potential and the 
regulation of stomatal movement, thus protecting plants from excessive water 
loss under drought stress [33] [34]. Moreover, the drought-induced variations of 
ABA content display a variety-dependent manner and greater ABA accumula-
tion is observed in plants with high drought tolerance [32]. 

3.3. Molecular Basis for Peanut Drought Tolerance 

Recently the rapid development of molecular biology and related technologies 
has deepened our understanding on the mechanisms of drought tolerance in 
peanut, and genes that encode drought tolerance-related proteins and peptides 
have been successfully cloned in peanut. For example, Dramé et al. [35] investi-
gated the expression profiles of PLDα (phospholipase Dα), cysteine protease, 
tryptophan protease and LEA (late embryogenesis abundant) proteins in the 
leaves of peanut seedlings that were grown under water-limited condition and 
re-watering condition, respectively, and found that the expression of PLDα and 
LEA was dramatically enhanced, while the expression of cysteine protease and 
tryptophan protease was decreased significantly in high tolerant peanuts than 
that in drought sensitive ones. After re-watering, the expression of the above 
mentioned four genes was returned to the normal level faster in the drought to-
lerant peanuts than in the sensitive ones [35]. The authors thus proposed that 
the distinct expression profiles of these four genes might be important reasons 
for the variable drought tolerance of peanuts underwater-limited condition [35]. 
Proteomic analysis has been performed on peanuts with different drought to-
lerance by Kottapalli et al. [36], and the results reveal that genes such asACC 
(acetyl CoA carboxylase), LOX (lipoxygenase) and IPS (inositol phosphate syn-
thase) might be involved in the acclimation of germinated peanut seeds to water 
deficiency [36]. Furthermore, a number of drought-responsive transcriptional 
factors such as bZIP (basic leucine zipper), MYB (v-myb avian myeloblastosis 
viral oncogene homolog) and AP2-EREB (APETALA2/ethylene responsive ele-
ment binding) have been uncoveredvia high throughput sequencing in peanut 
[37] [38]. By analyzing ESTs (expressed sequence tags), Pruthvi et al. [39] ob-
served that the expression of CTL (cyclin T-like), ARL (aldehyde reductase-like), 
CKL (cholin kinase-like) and PAPL (proline amino peptidase-like) was greatly 
stimulated in drought stressed peanut plants. Functional analysis of peanut 
ATL1 (ABA transporter-like 1) has been performed by Ge et al. [40], who showed 
that overexpression of peanut ATL1 in Arabidopsis decreased the sensitivity to 
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the exogenous application of ABA and drought tolerance in comparison to 
Mock plants, revealing the negative involvement of ATL1 gene in peanut 
drought tolerance. In addition, miRNAs and epigenetically modified histone 
proteins have been reported to be involved in the adaption of peanut to water 
deficiency [41] [42] [43] [44] [45]. More efforts have been paid on the identifica-
tion of drought-responsive genes in previous research regarding peanut drought 
tolerance, while functional analysis of these genes should be strengthened in the 
future. 

4. Genetic Improvement of Peanut for Drought Tolerance 
4.1. Genetic Breeding 

Genetic hybridization has been the most widely used breeding strategy for the 
improvement of peanut drought tolerance. Peanut drought tolerance varies 
greatly among different germplasms. More tolerant varieties are found in the 
dragon type peanut such as “A596” and “Rugaoxiyangsheng” (Table 1), followed 
by Virginia type, Spanish type, intermediate type and Valencia type peanuts. 
Dragon type, Virginia type and Spanish type peanuts are widely used as parental 
lines for breeding drought tolerant varieties.  

In comparison to cultivated ones, wild peanut varieties have higher genetic 
polymorphisms and contain more beneficial genetic resources that are responsi-
ble for drought tolerance, disease resistance and high productivity. Therefore, 
these wild peanut varieties are considered as invaluable germplasm resources for 
the improvement of cultivated ones. For example, by using wide crossing be-
tween wild and cultivated peanuts, scientists have successfully generated high 
oleic acid varieties, low palmitic acid varieties, early maturation varieties and  
 
Table 1. Recently identified peanut germplasms with high drought tolerance. 

Peanut germplasms with high drought tolerance References 

“Tangke 8”, “Jihua 2”, “Jihua 4”, “Huayu 25”, “Huayu 17”, “Huayu 22”,  
“Datangyou” and “Huayu 21” 

[14] 

“Huayu 17”, “Huayu 25”, “Tangke 8”, “Fenghua 1”, “Luhua 14”, “Jihua 4” 
and “Huayu 27” 

[46] 

“Shanhua 11”, “Rugaoxiyangsheng” and “A596” [47] 

“A596”, “Shanhua 11” and “Rugaoxiyangsheng” [28] 

“L19”, “L121” and “L146” [48] 

“Yuanza 9307” [49] 

“#11”, “#34” and “#49” [50] 

“Zhonghua 8” and “Xianghua 55” [51] 

“Taihua 4”, “Xuhua 13”, “Tai 0125” and “Tai 0005” [52] 

“Yueyou 7” [45] 

“Yuanza 9102”, “Ji 0212-4”, “Xianghua 2008” and “NC6” [53] 
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disease resistance varieties [54] [55] [56] [57] [58]. However, there are still bot-
tlenecks limiting the application of wide crossing in current peanut breeding 
such as hybridization incompatibility, low survival rate of hybrids, sterility of 
hybrids and the segregation of elite traits [59]. 

4.2. Mutation Breeding 

Mutation breeding is an important method for crop improvement. Mutations 
are commonly produced by radiation and chemical reagents. Compared to con-
ventional genetic hybridization, mutation breeding can rapidly create large 
numbers of novel genetic alleles that do not exist in nature. For example, by us-
ing radiation breeding, new peanut germplasms with drought tolerance, sa-
line-alkaline tolerance, disease resistance and so on, have been created [59]. In 
addition, peanut mutants with high yield, big or small seeds have been generated 
via chemical mutagenesis [60] [61] [62] [63]. 

4.3. Cyto-Engineering Breeding 

Cyto-engineering breeding is a strategy for creation of new plant germplasms or 
new varieties with improved agronomic traits through modifying plant cells ac-
cording to the expected targets of breeding. This technology is developed on ba-
sis of totipotency of plant cells and can be classified as anther culture, embryo 
culture, protoplast culture, somatic hybridization, chromosome transferring and 
so on. The greatest advantage of cyto-engineering is the overcoming of hybridi-
zation barriers as comparing with other breeding strategies, and thus lots of ge-
netically improved crops including wheat, tomato, potato and orange have been 
created [59]. However, the application of cyto-engineering breeding in current 
peanut improvement still lags behind other crops largely due to the lack of basic 
knowledge about peanut cyto-engineering and physiological mechanisms, the 
low efficiency of hybrid regeneration, and so on [64] [65].  

4.4. Molecular Breeding 

Cultivated peanut is one of the only two tetraploidy species in the Arachis family 
and is reproductively isolated from wild peanut varieties, of which most are dip-
loid. Therefore, wild germplasm resources that can be used for genetic im-
provement of cultivated peanut varieties have been greatly limited. In the past 
several years the technologies for peanut somatic embryogenesis and agrobacte-
rium-mediated transformation have been well developed, thus promoting the 
improvement of cultivated peanut via genetic engineering. There are two sys-
tems for peanut transformation: bombardment-mediated transformation of calli 
and agrobacterium-mediated transformation of explants such as embryo leaflets, 
cotyledons and hypocotyls, and both can generate transgenic plantlets through 
somatic embryogenesis [66] [67]. 

Drought tolerance can be improved via genetic engineering. Bhatnagar-Mathur 
et al. [68] transformed “JL24”, a drought sensitive peanut variety, with Arabi-
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dopsis DREB1A (dehydration-responsive element-binding protein 1A) gene that 
was driven by a stress-inducible promoter, and the improved transpiration effi-
ciency was observed in transformed peanut plants. Vadez et al. [69] and Devi et 
al. [70] reported significantly increased drought tolerance of peanut “JL24” when 
it was transformed with a peanut-derived DREB1Agene, of which the overexpres-
sion improved water usage efficiency of transgenic “JL24” via the stimulation of 
root system and the decreasing of transpiration rate. Tan et al. [71] overexpressed 
a NCED1 (9-cis-epoxycarotenoid dioxygenase1) gene under the 35S promoter in 
cultivated peanuts and observed that ABA content was significantly increased in 
the aerial parts of transgenic plants. After exposing to 10-h PEG6000-medaited 
drought stress, the expression of NCED1 gene was dramatically stimulated and 
the content of endogenous ABA was enhanced, while the level of reactive oxygen 
species was lowered in the leaves of NCED1-overexpressed peanuts [71]. Addi-
tionally cultivated peanuts that overexpress Arabidopsis-derived IPT (adenylate 
isopentenyltransferase), or NHX1 (sodium/hydrogen exchanger1), or AVP1 
(pyrophosphate-energized vacuolar membrane proton pump 1), or Aeluropus 
sinensis-derived DREB1A display significantly increased drought tolerance in 
comparison to wild type plants under water deficiency condition, and the im-
provement of growth performance, photosynthesis and transpiration is observed 
in the transgenic peanut plants, thus obtaining higher yield [53] [72] [73] [74]. 

5. Perspectives 

Peanut is one of drought tolerant crops, and has great potentials in the utiliza-
tion of arid/semi-arid field and the development of dryland agriculture in China. 
However, high drought tolerant peanut varieties such as dragon type (Table 1) 
often display bad agronomic performance while those with good agronomic 
performance are often sensitive to water deficiency. There is an urgent need to 
study the molecular mechanisms underlying peanut drought tolerance and to 
identify genes responsible for drought tolerance, which will benefit the breeding 
of new peanut varieties with both good agronomic performance and high drought 
tolerance in the future. 

In the past several years, targeted genome engineering technologies such as 
CRISPR/Cas9 (clustered regularly interspaced short palindromic re-
peats/CRIPSR-associated protein 9) have been successfully used for mutation of 
target genes in crops [75] [76], demonstrating the great potentials in crop im-
provement. The CRISPR/Cas9 system is commonly composed of a Cas9 endo-
nuclease and a sgRNA. The sgRNA that harbors a 20- or 19-bp sequence 
base-pairing with target site in plant genome can form a complex with Cas9 and 
then guides this complex to bind the target site. Thereafter the Cas9-mediated 
breakage occurs at the target site. The mutations/modifications will be intro-
duced into the plant genome when the breakage site is repaired. With the aid of 
CRIPSR/Cas9 technology, we could obtain new peanut germplasms with high 
drought tolerance. For example, the identified negative regulators such as peanut 
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ATL1 (ABA transporter-like 1) [40] could become candidate targets for genetical 
modifications via CRISPR/Cas9 system, enabling peanut plants to be resistant to 
drought stress. Although complete knockouts of these negative regulators might 
compromise the normal growth and production of peanut under non-stress 
condition, the engineered peanuts could be used in the arid/semi-arid area, 
where water deficiency is constantly threatening the peanut production. Most 
importantly, these engineered materials will be transgene-free because the con-
struct of CRISPR/Cas9 can be segregated in the siblings by genetic hybridization, 
thus being able to be accepted by the public. 
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