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Abstract 
The purpose of this paper is to establish a connection between Maxwell’s eq-
uations, Newton’s laws, and the special theory of relativity. This is done with 
a derivation that begins with Newton’s verbal enunciation of his first two 
laws. Derived equations are required to be covariant, and a simplicity crite-
rion requires that the four-vector force on a charged particle be linearly re-
lated to the four-vector velocity. The connecting tensor has derivable symme-
try properties and contains the electric and magnetic field vectors. The Lo-
rentz force law emerges, and Maxwell’s equations for free space emerge with 
the assumption that the tensor and its dual must both satisfy first-order par-
tial differential equations. The inhomogeneous extension yields a charge den-
sity and a current density as being the source of the field, and yields the law of 
conservation of charge. Newton’s third law is reinterpreted as a reciprocity 
statement, which requires that the charge in the source term can be taken as 
the same physical entity as that of the test particle and that both can be as-
signed the same units. Requiring covariance under either spatial inversions or 
time reversals precludes magnetic charge being a source of electromagnetic 
fields that exert forces on electric charges. 
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1. Introduction 

Maxwell’s equations and the special theory of relativity are intimately related, 
and a rich literature exists that explores and elucidates this connection. One 
major theme is that one can start with the basic ideas of the theory of special re-
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lativity and, with some basic experimental laws and with a small number of in-
tuitively simple assumptions, derive Maxwell’s equations. Another theme is that 
one can start with two or more relatively simple physical laws, not explicitly re-
lying on special relativity, and once again derive Maxwell’s equations. 

The principal theme of the present paper is that there is a strong connection 
between Newton’s laws and Maxwell’s equations, and that this connection is 
provided by the special theory of relativity. The viewpoint here is wholly classical, 
although not mechanistic. The electrical and magnetic fields are not regarded as 
mechanical entities, but as classical fields which are created by moving charges 
and which exert forces on moving charges. A suitable reinterpretation of New-
ton’s laws is assumed to apply to the masses that experience forces caused by the 
fields, and the fields are assumed to be governed by an independent set of equa-
tions. Use is made of Einstein’s two postulates [1] [2] [3] that 1) the equations 
must have the same form in equivalent coordinate systems and that 2) the speed 
of light must be the same in all such coordinate systems. The concept of cova-
riance is applied to the sense of Minkowski [4], so that equivalent coordinate 
systems are taken to be those where the coordinates of one are related to those of 
another by a Lorentz transformation. 

In regard to Newton’s laws being used as a starting point, the idea of such goes 
at least as far back as 1948, when Feynman [5] showed Dyson a “proof” of Max-
well’s equations “assuming only Newton’s laws of motion and the commutation 
relation between position and velocity for a single non-relativistic particle”. That 
proof as reported by Dyson is perplexing, as it is difficult to see how a set of equ-
ations that predict propagation at a speed with a precise unique value should re-
sult from a formulation that does not explicitly involve the speed c of light. 
Feynman was using units in which c was numerically equal to unity, and the de-
tails of his thinking are encoded in the remark that the “other two Maxwell equ-
ations merely define the external charge and current densities”. The treatment in 
the present paper follows more traditional lines of thinking and is limited en-
tirely to the realm of classical physics, given the normally accepted inclusion of 
the special theory of relativity in classical physics. Nevertheless, as is discussed 
further below, Feynman’s provocative remark supplies a crucial hint as to what 
should be an appropriate reinterpretation of Newton’s third law. 

In regard to the more traditional treatments appearing in previous literature, 
one should first note that Maxwell’s equations preceded the special theory of re-
lativity in the history of physics, and one might loosely state that relativity de-
veloped because of the need to insure that Maxwell’s equations be independent 
of any relative velocity between coordinate systems. But, after the emergence of 
relativity as a fundamental cornerstone of physics, papers and books began to 
appear that “derived” Maxwell’s equations. A major category of such treatments 
takes Coulomb’s law, or equivalently, the “laws of electrostatics” as a starting 
point. The earliest such derivation was given by Page [6] in 1912, and that 
treatment was subsequently refined in the 1940 textbook by Page and Adams [7]. 
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Frisch and Wilets [8] in a 1956 paper criticize Page and Adams, stating that they 
use “an apparently overspecialized model: an emission theory of lines of force”, 
and give an alternate derivation, making a series of plausible (but not manifestly 
obvious) postulates, which can be construed as including Coulomb’s law. They 
also bring attention to a 1926 paper by Swann [9] where two derivations, in-
volving the use of invariance under Lorentz transformations, of equations re-
sembling Maxwell’s equations are given. 

More recent treatments making use of Coulomb’s law were given by Elliott 
[10] and Tessman [11] in 1966, and a brief pedagogical development was given 
by Krefetz [12] in 1970, who drew attention to Feynman’s remark [13], “it is 
sometimes said, by people who are careless, that all of electrodynamics can be 
deduced solely from the Lorentz transformation and Coulomb’s law”, which is 
followed by statements to the effect that it is always necessary to make some ad-
ditional assumptions. Krefetz pointed out that “what constitutes a reasonable 
assumption is, after all, a matter of taste”. 

Another theme for the derivation of Maxwell’s equations can be traced back to 
Landau in 1933. Podolsky, in the preface of his text with Kunz [14], refers to 
discussions he had with L. D. Landau in 1933 on the goal of “presenting classical 
electrodynamics as theory based on definite postulates of a general nature, such 
as the principle of superposition, rather than [inductively inferring the theory 
from] experimental laws”. Thus, in the venerable Landau and Lifshitz series [15], 
one finds an elegant and extensive development, which begins with the assump-
tion of the existence of a four-potential, which presumes the validity of the prin-
ciple of least action (Hamilton’s principle) in which the time and spatially vary-
ing potentials are treated as generalized coordinates, and which makes a series of 
plausible assumptions concerning the form of the action function. The treatment 
is an intricate blend of sophisticated mathematical constructions of theoretical 
physics and plausible assumptions, although in a footnote the authors state: “The 
assertions which follow should be regarded as being, to a certain extent, the 
consequence of experimental data. The form of the action for a particle in an 
electromagnetic field cannot be fixed on the basis of general considerations 
alone”. 

It would unduly lengthen the present paper if one attempted to discuss, even 
in a cursory manner, all the papers and book passages that have been concerned 
with the derivation of Maxwell’s equations, and the present author cannot claim 
to have seen all those that are currently available, let alone digested them. Among 
those that should be mentioned are a sequence of papers by Kobe [16] [17] [18] 
[19] which examine the topic from a variety of perspectives and which also give 
extensive references. Other papers of interest are those by Crater [20], Jefimenko 
[21], Ton [22], Griffiths and Heald [23], Crawford [24], Neuenschwander and 
Turner [25], Bork [26], Goedecke [27], and Hokkyo [28]. 

The manner in which the present paper’s development differs from what has 
appeared previously in the literature is addressed more fully further below and 
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in the concluding remarks section. 

2. Relativistic Version of Newton’s Second Law 

The discussion here begins, interlacing a brief summary of some basic tenets of 
the special theory of relativity, with a concise derivation of the covariant form, 
first given by Minkowski [4], of Newton’s second law. The derivation differs 
from what has previously been published in that it specifically draws on New-
ton’s verbal enunciation [29] of his first two laws. 

One seeks a description for the evolution of the space-time coordinates of a 
test particle in a “Minkowski” space [2] [30] [31] with (world point) coordinates 

1X x= , 2X y= , 3X z= , and 4X ct= , where c is the speed of light. The 
coordinates of the particle itself are distinguished by a subscript P (for particle). 
Whatever equations are derived are required to be the same in any one of an 
equivalent set of coordinate systems, these being such that the speed of light is 
the same in each such system. 

Suppose, for example, that X α∆  is a set of coordinate increments in one 
admissible coordinate system, with the spatial separation equal to c times the 
time separation, so that 

( ) ( ) ( ) ( )2 2 2 21 2 3 4 0.X X X X X g Xα β
αβ− ∆ − ∆ − ∆ + ∆ = ∆ ∆ =

       
(1) 

(The second version here makes use of common tensor notation [31] [32], 
with gαβ  being the metric tensor, a diagonal matrix with diagonal elements −1, 
−1, −1, and +1). Then an analogous relation must hold for a second coordinate 
system, so that 

( ) ( ) ( ) ( )2 2 2 21 2 3 4 0.Y Y Y Y Y g Yα β
αβ− ∆ − ∆ − ∆ + ∆ = ∆ ∆ =

       
(2) 

Admissible transformations that connect two such coordinate systems are 
taken to be linear relations, so that one can write, for an arbitrary set of incre-
ments (T for transformed), 

,TX Y Xα α α β
β∆ = ∆ = Λ ∆                      (3) 

where the transformation matrix α
βΛ  is independent of the coordinates. Given 

this relation, a brief derivation shows that Equation (2) follows from Equation (1) 
provided the transformation matrix satisfies the relation [31] [33] 

.g gγ δ
α γδ β αβΛ Λ =                         (4) 

There is a wider [34] [35] class of transformations that leaves the speed of 
light unchanged, but the class represented by the above provides sufficient 
guidance for identification of a covariant theory. The transformations allowed 
by this relation include rigid body rotations, time reversals, spatial inversions, 
Lorentz’s and Einstein’s transformation between moving coordinate systems, 
and any arbitrary sequence of these. Following Poincare [3] [36] [37], such 
transformations are here referred to as Lorentz transformations, and they form a 
group. The determinant of any matrix satisfying Equation (4) can be either +1 or 
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−1, and one can also show [38] that if 4
4 0Λ >  for each of two consecutive 

transformations, then this is so for the combined transformation. The subgroup 
for which the determinant is +1 and for which 4

4 0Λ >  is known as the proper 
orthochronous Lorentz subgroup. The full group includes this subgroup plus the 
time-reversal transformation (diagonal with elements 1, 1, 1, and −1) and the 
spatial inversion transformation (diagonal with elements −1, −1, −1, and +1) 
and all of the products formed from the subgroup and these two operators. One 
can also conceive of subgroups which exclude the time-reversal operator and 
which exclude the spatial-inversion operator. This feature of the full Lorentz 
group leaves open the question of whether the equations of classical physics 
should be invariant under time reversals or under spatial inversions. The ma-
thematical structure allows, in regard to the inclusion of these two operators, the 
following choices: (i) neither, (ii) only one of the two, (iii) both, but only if si-
multaneous, and (iv) both, regardless of whether simultaneous or individual. 

The defining property, Equation (4), of the Lorentz transformation allows a 
definition [30] of a proper time Pτ  for a point particle that is an invariant with 
respect to the orthochronous proper subgroup and with respect to spatial inver-
sions, but which changes sign under time reversals. The trajectory of the test 
particle is described in parametric form with the space-time coordinates PX α  all 
regarded to be functions of a parameter Pτ , defined so that time is a monotoni-
cally increasing function of Pτ , and so that increments of Pτ  can be computed 
from 

( ) ( ) ( ) ( ) ( )2 2 2 2 22 2d d d d d d d .P P P P P P Pc c t x y z X g Xα β
αβτ = − − − =      (5) 

The form of the second expression justifies the assertion that ( )2d Pτ  is fully 
invariant. Equivalently, since d dP P Pt=x v , one can express the relation between 

Pt  and Pτ  in any given coordinate system as 

( ) ( )
1 22d 1 d ; 1P P P P Pt v cτ κ κ
−

 = = −  ,
              

(6) 

where Pv  is the particle’s velocity. 
The chief feature of this proper time is that it allows one to identify a tenta-

tively suitable four-vector counterpart of the particle velocity as d dP P PU Xα α τ= . 
Given the stated transformation properties of the differential d Pτ , this 
four-vector transforms under the full Lorentz group as 

( )4
, 4sign .P T PU Uα α β

β= Λ Λ
                     

(7) 

Here the indicated “sign” operator yields 1 if the argument is positive and −1 
if it is neagative Because of the sign-factor, one would say that PUα  is not a ge-
nuine four-vector, but some sort of pseudo-four-vector (It is referred to in what 
follows as a pseudo-four-vector of the time-reversal kind). Nevertheless, as long 
as one knows its transformation rule and formulates equations consistent with 
this, it can be used in a covariant formulation. In particular, one may note that 
its derivative with respect to proper time is a genuine four-vector. 

The foregoing provides sufficient mathematical structure for the covariant in-
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terpretation of Newton’s first two laws. These, as originally enunciated (after 
translation to English) by Newton [29], are as follows: 

Law 1. Every body perseveres in its state of being at rest or of moving un-
iformly straight forward, except insofar as it is compelled to change its state by 
forces impressed. 

Law 2. A change in motion is proportional to the motive force impressed and 
takes place along the straight line in which that force is impressed. 

For the covariant interpretation of these, one makes use of what is available 
that transforms properly under Lorentz transformations. The covariant state-
ment of the first law is that PUα  must be a constant if there are no forces. The 
covariant expression for “change in motion” is d dPUα τ , and the proportional-
ity constant must be what is ordinarily termed the “rest mass” ( om ). The phrase 
“along a straight line in which the force is impressed” has to be loosely inter-
preted as saying that there is a contravariant vector termed “force” which is “pa-
rallel” to the “change in motion” four-vector. Thus one arrives at the relation 

d
,

d
P

o P
P

Um R
α

α

τ
=

                        
(8) 

where the right side, the four-vector force (Minkowski force), is a contravariant 
vector with as-yet-undefined components PRα . It should be a genuine four-vector 
and transform under the full Lorentz group as in Equation (3). 

3. The Lorentz Force Law 

The four-vector force of interest here is that which is associated with an elec-
tromagnetic field. A primary assumption is that there is an “external” part of this 
field which exists independently of the presence of the test particle. Whatever 
characterizes this field depends only on the four space-time (Minkowski) coor-
dinates and is independent of the particle’s mass and velocity. However, the 
force exerted by this field may well depend on the particle’s velocity. Also, one 
assumes that the particle has an additional scalar property, a charge Pq , which 
is defined so that all the force components exerted by the electromagnetic field 
on the particle are directly proportional to Pq . For this particle, which has no 
other intrinsic structure, the four-vector velocity (Minkowski velocity) PUα  is 
the only simple tensor that one has available for the formulation of a covariant 
expression for the four-vector force. One can argue that there is some weak limit, 
which probably has very wide applicability, where the four-vector force is li-
nearly related to the four-vector velocity. Thus one is led to the plausible post-
ulate (sort of a Hooke’s law of electromagnetism) that 

,P P PR q Uα α β
β= Φ                         (9) 

where covariance requires the entity α
βΦ  be a tensor-like quantity (one contra-

variant index and one covariant index) that transforms appropriately under all 
Lorentz transformations. (The mathematical apparatus of tensor analysis is used 
here, with superscripted indices referred to as contravariant indices and sub-
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scripted indices referred to as covariant indices, and with the metric tensor gαβ  
available for the lowering of indices). 

The actual transformation rule, for the purely contravariant form, as deduced 
from Equations (3) and (7), is 

( )4
4sign ,T

αβ α β µν
µ νΦ = Λ Λ Λ Φ

                  
(10) 

where the sign-factor is −1 for transformations that involve time-reversals, and 
+1 for those that do not. Thus, α

βΦ  is, strictly speaking, not a tensor with re-
gard to the full Lorentz group, but some sort of pseudo-tensor. To distinguish 
this type of pseudo-tensor from other types that appear further below, it is re-
ferred to as a pseudo-tensor of the time-reversal kind. 

The identification in Equation (9) is not unique, and there are many possibili-
ties, such as a quadratic expression of the form P P Pq U Uα β γ

βγΦ , where α
βγΦ  is 

some as yet undetermined tensor with three, rather than two, indices. But the 
expression in Equation (9) is the simplest of all such expressions. 

Equation (9) is, of course, well-known, but existing discussions in the litera-
ture usually arrive at it after the electromagnetic field tensor α

βΦ  has been pre-
viously arrived at by other means. Low [33], for example, infers the electromag-
netic field tensor first, with reference to experimental laws, and then argues that 
the four-vector force must be linear in the electromagnetic field tensor, and then 
argues that the only plausible covariant expression has to be of the form of Equ-
ation (9). In retrospect, this is very satisfying to one’s intuition, but the argument 
is not available in the present context, as one is assuming that one knows noth-
ing about the electromagnetic field tensor at this point, other than that it is a 
tensor that adheres to a definite transformation law. (In what follows, the term 
“tensor” is used loosely to refer to both pseudo-tensors and genuine tensors). 

Since the tensor α
βΦ  exists independently of the presence of the charge, it is a 

continuum field. Each component is independent of any parameters characte-
rizing the particle, but each depends on the space-time coordinates. The pres-
ence of other bodies that affect the motion of the test particle is presumed to be 
fully accounted for by the properties of the field, and such other bodies are re-
garded as sources of the field. (Note that the four-vector PU β  can never be iden-
tically zero, as there is always a fourth non-zero component. There is no contra-
diction here with the expectation that a body at rest can experience an electro-
magnetic force). 

The remaining arbitrariness in the tensor α
βΦ  is drastically reduced by a de-

rivable orthogonality condition between the four-vector velocity and the 
four-vector force, 

, 0,P P P PR U R g Uα α β
α αβ= =                     (11) 

which was first noticed by Minkowski [4]. To derive this, one multiplies Equation (9) 
by ,PU α , performs the implied sum, and recognizes that , d dP P PU Uα

α τ  is 
( ) ( ),1 2 d dP P PU Uα α τ . But the sum ,P PU Uα α  is a scalar, a constant equal to 2c , 
so its derivative is zero, and Equation (11) results. 
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The implication of the orthogonality relation in regard to Equation (9) is that 

, , 0,P PU Uαβ
α βΦ =                       (12) 

where gαβ α γβ
γΦ = Φ  is the purely contravariant form (two contravariant indic-

es) of the mixed tensor α
βΦ . Although the magnitudes of the components of 

,PU α  are constrained so that the inner product of its contravariant and cova-
riant forms is 2c , they are otherwise arbitrary, and the above equation must 
hold for all such vectors. The admissible arbitrariness leads to the deduction that 
the purely contravariant form of the electromagnetic tensor is antisymmetric, so 
that 

.αβ βαΦ = −Φ                         (13) 

[The proof just given can be discerned, although in a somewhat different con-
text, in the text by Melvin Schwartz [39] and in a 1986 paper by Kobe [19]. The 
relevant passage in Schwartz’s text is in a footnote, with the development ap-
pearing there attributed to D. Dorfan. Kobe gives an explicit derivation of Equa-
tion (13) from Equation (12). The derivation is also given in the paper by 
Neuenschwander and Turner [25]]. 

With the aid of some hindsight regarding the symbols that one uses to label 
the off-diagonal elements, the (antisymmetric) matrix representation (second 
index corresponding to columns) can be written with all generality as 

0
0

.
0

0

z y x

z x y

y x z

x y z

B B E c
B B E c
B B E c

E c E c E c

αβ

− 
 −  Φ =   −
  − − −              

(14) 

Then, since gα αγ
β γβΦ = Φ , the postulated force relation of Equation (9) be-

comes 

, ,

, ,

, ,

0
0

.
0

0

z y xP x P x

z x yP y P y
P

y x zP z P z

x y zP P

B B E cf v
B B E cf v

q
B B E cf v

E c E c E cc c

−    
    −    =     −
     ⋅     v f         

(15) 

Here Pf  is the three-vector force which appears when the first three com-
ponents of Equation (9) are written out explicitly in vector notation as 

d
,

d
P

Pt
=

p f
                         

(16) 

with the momentum defined as 

( )
*

1 22 2
.

1
o

P P P P

P

m
m

v c
= =
 − 

p v v

                

(17) 

(Here *m  is the relativistic mass). Also, in Equation (15), one has identified 
1

,P P P xR fκ=  with analogous relations for the 2nd and 3rd components. The 
fourth component, 4

PR , is derived from the orthogonality relation of Equation 
(11). 
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The first three components of Equation (15) yield, with vector notation, 

( ) ,P P Pq= + ×f E v B                      (18) 

which is the Lorentz force law [40] [41]. The fourth component equation is then 
only a redundant corollary of the first three, because ( ) 0P P⋅ × =v v B . Although 
one might not expect anything otherwise, it may be surprising to some that the 
Lorentz force equation is a direct consequence of the orthogonality of the 
four-vector velocity PUα  and the four-vector force PRα . [A derivation of the 
Lorentz force equation via the special theory of relativity was apparently first 
given by Tolman, [42] where he used the previously derived Lorentz transforma-
tion laws of the electromagnetic field components to infer the force law in a sys-
tem where the charge was moving with speed v  from the force law in a system 
where the charge was momentarily stationary. In retrospect, the derivation here 
is equivalent to that of Tolman, only the requirement of covariance enables one 
to bypass using the explicit form of any Lorentz transformation]. 

With reference to the transformation rules in Equations (7) and (10), one de-
duces that, under pure time-reversals, 

( ); ; ; time-reversals ,P P P P→ − → → − →v v E E B B f f       (19) 

while under pure spatial-inversions 

( ); ; ; spatial-inversions ,P P P P→ − → − → → −v v E E B B f f     (20) 

so, given these rules, the Lorentz force relation is fully covariant under time-reversals 
and spatial-inversions. 

[The symbols assigned to the matrix elements in Equation (14) are appropri-
ate for SI (rationalized MKS) units, where the components of the vector E  
have the units of volts per meter, or newtons per coulomb, and where the com-
ponents of B  have the units of teslas, or webers per square meter, or new-
ton-seconds per coulomb-meter. In the commonly used Gaussian system of 
units, distances have units of centimeters, forces have units of dynes, and charge 
has the units of statcoulombs. The electric field is denoted by E  and has units 
of dynes per statcoulomb, and the magnetic field B  has the units of gauss. The 
unit of charge, the statcoulomb, is defined so that the gauss and the dynes per 
statcoulomb have the same units, and this requires cB  to replace the SI mag-
netic field B  in the Lorentz force equation, so that for Gaussian units Equation 
(18) is replaced by 

.P
P Pq

c
 = + × 
 

vf E B
                     

(21) 

To render Equation (14) appropriate for Gaussian units, one need only re-
place the quantities xB , yB , and zB , wherever they appear, by xB c , yB c , 
and zB c ]. 

4. Dual Nature of Electric and Magnetic Fields 

At this point, it is appropriate to interject a remark from an autobiographical 
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essay [43] written by Einstein relatively late in his life. 
[Maxwell’s equations] can be grasped formally in satisfactory fashion only by 

way of the special theory of relatively. [They] are the simplest Lorentz-invariant 
field equations which can be postulated for an anti-symmetric tensor derived 
from a vector field. 

While Einstein in this essay does not specify to just which antisymmetric ten-
sor he is referring, one can infer from the development [2] [32] in his 1916 
Grundlagen paper [Section 20, Equations (59)-(61)] that the tensor is essentially 
the same as the tensor αβΦ  that appears here in the four-vector force equation, 
Equation (9). [The actual relation, when Gaussian units are used, is that Eins-
tein’s Fαβ  is c αβ− Φ , where the indicated tensors are the purely covariant 
forms]. The vector field to which Einstein refers is the four-vector potential. In 
what follows, this same tensor is brought into play, and the development man-
ages to sidestep any assumption that it has to be derived from a four-vector field. 

The premise here is that the tensor αβΦ  identified in the previous section is 
a natural building block for a covariant formulation of a set of partial differential 
equations (Einstein’s simplest Lorentz-invariant field equations) that govern the 
time and spatial evolution of the individual elements of the tensor. This tensor 
has six nonzero elements that are possibly different from each other, so the de-
scription of its evolution requires at least six equations. One might anticipate at 
first that this tensor can yield at most only four equations, which would be insuf-
ficient for a complete formulation. However, the antisymmetry of αβΦ  and the 
specific property in Equation (4) of the Lorentz transformation allows one to 
identify [15] a “dual tensor” as 

1 ,
2

dαβ αβµν
µνΨ = Φ

                      
(22) 

which can be used for the derivation of additional equations. Here the symbol 
dαβµν  is defined to be zero if any two of its indices are numerically equal, and to 
be unity (+1) if the ordered set of numbers α , β , µ , ν  is an even permu-
tation of the integers 1, 2, 3, 4. If the permutation is odd, then the value is −1. 
[This symbol is occasionally, with various notations, referred to as the Le-
vi-Civita symbol [44] [45] and also as a permutation symbol [46]]. 

This definition in Equation (22), in conjunction with Equation (14), leads to 
an entity which has the matrix representation (columns labeled by second index) 

0
0

.
0

0

z y x

z x y

y x z

x y z

E c E c B
E c E c B
E c E c B
B B B

αβ

− − 
 − −  Ψ =   − −
  
              

(23) 

The relationship of Equation (22) is accordingly equivalent to the substitu-
tions 

; .c c→ → −B E E B                     (24) 

Alternately, one can produce αβ Φ   from αβ Ψ   with the reverse of these 
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substitutions. 
To determine the tensorial nature of the entity αβΨ , one first notes that a 

standard method [47] for calculation of a determinant yields (with “det” denot-
ing the operation of taking the determinant of a matrix) 

[ ] 1 2 3 4det ,dαβµν
α β µ νΛ = Λ Λ Λ Λ                   (25) 

where β
αΛ  is a given matrix’s element in the β-th row and α-th column. More-

over, since the sign of a determinant changes when any two rows are inter-
changed or when any two columns are interchanged, and since it is zero when 
any two are the same, one has 

[ ]det .d dαβµν α β µ ν α β µ ν
α β µ ν
′ ′ ′ ′ ′ ′ ′ ′Λ Λ Λ Λ = Λ                (26) 

Because this applies to all matrices, it applies to any matrix that corresponds 
to a Lorentz transformation. Also, because one wishes the definition of the dual 
in Equation (22) to be applicable in all equivalent coordinate systems, the entity 
dαβµν , if regarded as something analogous to a tensor, is required to be the same 
in all coordinate systems, so that, with a properly devised transformation rule, 

Td dαβµν αβµν= . While this might in itself be taken as the transformation rule, it is 
helpful in the derivation of transformation rules for cases such as that of Equa-
tion (22) to express this in a manner analogous to that for a tensor with four 
contravariant indices. Such a transformation rule, as deduced from Equation 
(26), is 

[ ]( ) 1
det .Td dα β µ ν α β µ ν αβµν

α β µ ν
−′ ′ ′ ′ ′ ′ ′ ′= Λ Λ Λ Λ Λ

              
(27) 

For the special case when the determinant is +1, this is the same as the trans-
formation rule for a genuine tensor with four contravariant indices. However, 
the defining property, Equation (4), of the Lorentz transformation only requires 
the square of the determinant to be +1, so the determinant can be +1 or −1. If 
the determinant is −1, then the transformation rule in Equation (27) differs from 
that of a genuine tensor by a change in sign. The literature of tensor analysis re-
fers to any entity that obeys such a rule as a pseudo-tensor, or a tensor density 
[31]. Here, to distinguish such from other types of pseudo-tensors, it is referred 
to as a pseudo-tensor of the standard kind. 

Since dαβµν  is a pseudo-tensor of one kind, while µνΦ  is a pseudo-tensor 
of another kind, it follows from the basic rules of tensor calculus that their ten-
sorial summed product in Equation (22) must be a psuedo-tensor of yet another 
kind where the pseudo-tensor coefficient is the product of ( )4

4sign Λ  (plus 1 if 
positive and −1 if negative) and the sign of the determinant. Thus αβΨ  obeys 
the transformation rule 

( ) [ ]( )4
4sign det .T

α β α β αβ
α β

′ ′ ′ ′Ψ = Λ Λ Λ Λ Ψ
              

(28) 

Under time-reversals and under all Lorentz transformations of the orthoch-
ronous proper subgroup, αβΨ  transforms as a genuine tensor, since the quan-
tity ( ) [ ]( )4

4sign detΛ Λ  in such instances is +1. That factor is −1, however, for 
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pure spatial-inversions. Consequently, a tensor that satisfies the rule in Equation 
(28) is here referred to as a pseudo-tensor of the spatial-inversion kind. 

Thus, the development leads to two pseudo-tensors, one which doesn’t trans-
form properly under time-reversals, and the other which doesn’t transform 
properly under spatial-inversions. In principle, there is no reason why pseu-
do-tensors cannot be used equally as well as genuine tensors in developing a co-
variant formulation. One must, of course, adhere to the rules of tensor calculus 
for categorizing tensorial products of pseudo-tensors (or genuine tensors) of 
different kinds. A sum of a pseudo-tensor and a genuine tensor is disallowed, 
and so also a sum of two pseudo-tensors of different kinds. Equating any kind of 
pseudo-tensor to the corresponding null tensor would be covariant, since a null 
tensor can be regarded as being whatever kind of pseudo-tensor one wishes it to 
be. 

5. Maxwell’s Equations in Free Space 

One now asks what determines, within the context of a given admissible coordi-
nate system, the time evolution of the electromagnetic fields. At a given point in 
space, the simplest assumption is that the momentary change in time of such 
fields depends only on the present values of those fields in the immediate region 
of the point if there are no sources nearby. Change is expected to result from 
imbalances, so spatial gradients are relevant. One assumes, in the absence of any 
other knowledge, that space has no intrinsic property, other than the speed of 
light c, so one seeks a covariant formulation introducing no further constants. 
All this suggests that one seek first order partial differential equations, which, 
whatever they may be, are expressible in covariant form. The ordered set of de-
rivative operators X α∂ ∂  transforms in the same manner as does a covariant 
vector, so the natural candidates for a covariant formulation of a set of 
first-order partial equations are the equations: 

0; 0.
X X

αβ αβ
α α

∂ ∂
Φ = Ψ =

∂ ∂                  
(29) 

In both cases, one can show explicitly from the transformation rules that, if 
the left side is identically zero in the reference coordinate system, then it is also 
zero in any equivalent coordinate system (related to the first by any Lorentz 
transformation of the full Lorentz group). That the quantities αβΦ  and αβΨ  
are pseudo-tensors rather than genuine tensors is of no import, because the right 
sides can be regarded as null tensors of the same kind. 

These, when written out explicitly, yield 

2

1 0; 0;
tc

∂
∇× − = ∇ ⋅ =

∂
EB E

                 
(30) 

0; 0,
t

∂
∇× + = ∇ ⋅ =

∂
BE B

                   
(31) 

and these are recognized as Maxwell’s equations (in rationalized MKS or SI units) 
in free space with the absence of sources. 
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6. Maxwell’s Equations with Source Terms 

The generalization of Equation (29) to allow for the presence of localized sources 
is achieved by putting terms that are possibly nonzero on the right sides, so that 
these become: 

; .G H
X X

αβ β αβ β
α α

∂ ∂
Φ = Ψ =

∂ ∂                 
(32) 

Here to achieve covariance, the right sides must transform as the appropriate 
kinds of pseudo-vectors: 

( )4
4sign ,TG Gβ β γ

γ= Λ Λ
                    

(33) 

( ) [ ]( )4
4sign det .TH Hβ β γ

γ= Λ Λ Λ
                

(34) 

where the sign operator is +1 if the argument is positive and −1 if it is negative. 
With some hindsight, the symbols depicting the components of the source 

four-vector Gα  are here selected to be 
1 2 3 4, , ,o x o y o z oG j G j G j G cµ µ µ µ ρ= = = = .           (35) 

Tentatively, ρ  corresponds to charge per unit volume and the ij  correspond 
to the Cartesian components of a charge flux vector. Note that, in regard to the 
transformation rule of Equation (33), the components of this pseudo-vector 
transform under time-reversals or spatial inversions as 

( ), , time-reversals or spatial-inversions .ρ ρ→ − →j j        (36) 

In contrast, were the components of the pseudo-four-vector Hα  to be writ-
ten down in a comparable form, with perhaps some constant different than oµ , 
and with a “magnetic charge” flux vector mj  and a “magnetic charge” density 

mρ , the corresponding transformation rules, in accord with Equation (34), are 

( ), , time-reversals or spatial-inversions .m m m mρ ρ→ → −j j      (37) 

The latter, however, presents philosophical problems. If magnetic charge is to 
be an ingredient of Maxwell’s equations then it should be an invariant, and mρ  
should transform into itself under time-reversals and spatial-inversions. If the 
equations are not required to be covariant under time-reversals and spa-
tial-inversions, then magnetic charge can be considered an invariant. But if they 
are to be covariant under either, not necessarily both, then magnetic charge has 
to left out of Maxwell’s equations. [There is, however, a possibility that the equa-
tions can be invariant under these transformations, but only when they are ap-
plied simultaneously, yielding a total inversion. Such corresponds to the proper 
subgroup of Lorentz transformations, where [ ]det 1Λ = ]. 

The formulation in the present paper began with the assumption of a test par-
ticle that has only one scalar property, other than mass, this being electric charge 
and which is presumed to be invariant under all Lorentz transformations. The 
consideration of sources other than those that are charge related would therefore 
appear to be outside the scope of the present paper. Insofar as experience indi-
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cates that magnetic charge is either nonexistent or extremely rare, or else doesn’t 
often interact with electric charge, and that invariance under time reversals and 
spatial-inversions has intrinsic intuitive appeal, the remainder of the paper 
proceeds with the assumption that Hα  is identically zero. 

In the symbol assignments of Equation (35), the quantity oµ  is a nonzero 
constant that one is free to select. For rationalized MKS (SI) units,  

7 24 10 N Aoµ
−= π× , where the stated units are newtons per ampere squared or, 

equivalently, henrys per meter. [The reasons for this choice are primarily histor-
ical [48] [49] [50]. The resulting Maxwell’s equations, in either cgs or MKS units, 
in conjunction with the continuum extension of the Lorentz force law, yield the 
magnetostatic result 

( )
12 1 2 3

d
d d .

4
o I I

µ  ′ ′× −
 = ×
 π ′− 

∫
l r r

F l
r r                 

(38) 

Here 12dF  is the incremental force exerted by the electrical current 1I  in a 
thin wire on a length element dl  of a second wire that is carrying a current 2I . 
The line integral passes along the closed circuit of the first wire in the direction 
of current flow. The element dl  is at the point r , and ′r  denotes points on 
the first wire. In the original system of electromagnetic units, the unit of current, 
subsequently termed the abampere, was defined so that the coefficient 4oµ π  
in the above formula was unity. Since force was in dynes, this rendered oµ  
equal to 4π  dynes per abampere squared. An international agreement in 1881 
fixed the magnitude of the ampere to be 0.1 abampere. Since the dyne is 10−5 
newtons, one has 1 dyne per abampere squared equal to 10−7 newtons per am-
pere squared, and hence the numerical value 74 10−π×  results. This assignment 
and Equation (38) yield the standard definition of the ampere, coulombs per 
second, in terms of the hypothetical experiment: two parallel straight wires each 
carrying a current I are placed one meter apart. If I is one ampere, then the force 
per unit length exerted on one wire by the other is 72 10−×  newtons per meter.] 

With the additional introduction of a symbol o , defined as 

2

1 ,o
ocµ

=
                         

(39) 

the Equation (32), when written out explicitly and expressed in vector notation, 
yield: 

( ) ( )
;o

o t
µ

∂
∇× − =

∂

E
B j



                   
(40) 

( ) ;o ρ∇ ⋅ =E                         (41) 

0;
t

∂
∇× + =

∂
BE

                       
(42) 

0.∇⋅ =B                           (43) 

These equations, within which the speed of light c does not explicitly appear, 
have the form of Maxwell’s equations in rationalized MKS (SI) units that one 
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commonly sees [51] in the literature, only with the substitutions in the first two 
of these of 

; .o oµ = =B H E D                      (44) 

The partial differential equation for the conservation of charge, 

0,
t
ρ∂

∇ ⋅ + =
∂

j
                        

(45) 

follows from Equations (40) and (41), because the divergence of the curl of B  
is zero. An alternate derivation recognizes that, because αβΦ  is antisymmetric, 
one has 

0,
X X

αβ
β α

∂ ∂
Φ =

∂ ∂                       
(46) 

which, in conjunction with Equation (32), yields 

0,G
X

β

β

∂
=

∂                           
(47) 

and this, with the symbol assignments in Equation (35), yields Equation (45). 

7. Equivalence of Types of Charge 

The association of the quantities ρ  and j  in the source terms with charge 
per unit volume and with flux of moving charge can, at one level, be regarded as 
a postulate and as merely defining the units of charge. Such, however, may have 
little intuitive appeal, and it is consequently desirable to appeal to some principle 
that seems intrinsically more plausible. To this purpose, reference is made to 
Newton’s original enunciation [29] of his third law. 

Law 3. To every action there is always an opposite and equal reaction; in other 
words, the actions of two bodies upon each other are always equal and always 
opposite in direction. 

To apply this law to the present circumstances, it is necessary to interpret the 
word always as meaning “in all instances” rather than “at every moment of time”. 
Insofar as forces are transmitted instantaneously from one body to another or 
else are constant in time, the usual interpretation applies with action interpreted 
as the vector force. If the finite time of propagation of changes in force is to be 
taken into account, then the suggested replacement is that time integrals of 
forces be equal and opposite. This is consistent with the general idea of what is 
often stated as the principle of reciprocity; effect per unit source strength of a 
source on a small “effect receiver” is the same when the roles, “source” and “ef-
fect receiver” are interchanged [52] [53]. Here the terminology is intentionally 
vague; a precise statement, based on the hint provided by Feynman [5], is: 

The equations that govern the electromagnetic interaction between electrical 
charges must be such that, if a given moving charge is the source of an electro-
magnetic field that exerts a force on a second moving charge, then the same eq-
uations (Maxwell’s equations with source terms plus the Lorentz force law) ap-
ply for the determination of the force exerted on the first charge by the electro-
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magnetic field caused by the second charge. 
Implicit in this is that one can define units for charge so that all charges, 

whether sources or recipients of force, should have the same units. 
To demonstrate that this reciprocity statement leads to the requirement of 

equal and oppositely directed time-integrals of forces, one begins with the hy-
pothesis of ρ  and j  being appropriately interpreted in the manner stated 
above. Because one is here concerned with point particles, one expresses ρ  
and j  as sums over point particles, 

( ) ( );Q Q Q Q Q
Q Q

q qρ δ δ= − = −∑ ∑x x j v x x .
           

(48) 

Here Qq  is the magnitude (possibly negative) of the Q-th charge, Qx  is its 
position vector, and Qv  is its velocity vector. The quantity ( )Qδ −x x  is the 
three-dimensional δ-function, defined so that it is singularly concentrated at the 
instantaneous location of the particle and so that its volume integral is unity. 
The conservation of charge equation, Equation (45), holds trivially with these 
identifications, since 

( ) 0.Q Qt
∂ ⋅∇ + − = ∂ 

v x x
                   

(49) 

Also, the four-vector Gα , with the substitution of Equation (48) into Equa-
tion (35), continues to transform as a pseudo-four-vector of the time-reversal 
type. To verify this, one first notes that the substitution renders 

( ) ( ) d
.

d
Q

o Q Q Q Q
Q

G q U
t

α α τ
µ τ δ= −∑ x x

              
(50) 

where QUα  is the Q-th charge’s four-vector velocity vector, and Qτ  is its prop-
er time. One then notes that the quantity ( )d dQ P tδ τ−x x  transforms as a 
scalar, because d dP tτ  is invariant under time-reversals, because the Jacobian 
for changing from one Minskowki space to another in a four-dimentional inte-
gration is unity (recall that the determinant of the Lorentz transformation is al-
ways 1 or −1), and because the time integration over a transformed time integral 
of d dQ tτ  is Qτ∆ , which is an invariant. The quantity QUα  is a pseu-
do-four-vector of the time-reversal kind, and a scalar times such a four-vector is 
also a pseudo-four-vector of the same kind. 

Then, to derive a relation with a resemblance to Newton’s third law, one conceives 
of fields, QE  and QB , caused by charge Qq , these satisfying the equations 

( ) ( ) ( );o Q
Q o Q Q Qq v

t
µ δ

∂
∇× − = −

∂

E
B x x



             
(51) 

( ) ( );o Q Q Qq δ∇ ⋅ = −E x x
                   

(52) 

0;Q
Q t

∂
∇× + =

∂

B
E

                      
(53) 

0.Q∇⋅ =B                         (54) 

The force exerted on charge Pq  because of the influence of charge Qq  is 

https://doi.org/10.4236/jamp.2019.79141


A. D. Pierce 
 

 

DOI: 10.4236/jamp.2019.79141 2068 Journal of Applied Mathematics and Physics 
 

consequently 

,PQ P Q P P Qq q= + ×f E v B                    (55) 

where the two fields are understood to be evaluated at the position, Px , of the 
charge Pq . If charge Pq  should also be the source of a field that exerts an in-
fluence on charge Qq , then there must be analogous relations that result from 
the above with the interchange of the subscripts P and Q. 

A derivation, analogous to what one finds often used for proving the inva-
riance of Green’s functions [53] under reciprocity, proceeds from the Maxwell 
equations for the fields QB , QE , PB , and PE , and yields the result 

( ) ( ) ( ) ( )

,

.

PQ ij PQ
j

ij i

P Q P Q P Q P Q P Q

M
x t

q qδ δ

∂ ∂
+

∂ ∂

= + × − + + × −

∑
N

e

E v B x x E v B x x
     

(56) 

[This is a special case of a more general relation previously derived by Goe-
decke [27]]. The most important feature of the left side of this equation, from 
the standpoint of the present discussion, is that it is a sum of derivatives. The 
abbreviated differentiated quantities are 

, , , , , , ,

, , , , , ,

1

,

PQ ij P k Q k ij P j Q i P i Q j
ko

o P k Q k ij P j Q i P i Q j
k

M B B B B B B

E E E E E E

δ
µ

δ

 = − + + 
 

 + − + + 
 

∑

∑
         

(57) 

( ).PQ o P Q Q P= × + ×N B E B E
                 

(58) 

Integrating both sides of Equation (56) over the volume of a large sphere sur-
rounding the two charges, using Gauss’s theorem to convert some volume inte-
grals to surface integrals, and then letting the radius of the sphere approach in-
finity, yields the result 

d d .
dPQ QP PQV

V
t

+ = ∫f f N
                   

(59) 

[The vanishing of the surface integrations at infinite radius is not trivially true 
in all instances, but its plausibility is evident when one considers the transient 
case and allows that the disturbances propagate at a finite speed, so that they 
never reach infinity]. 

Equation (59) is the precise covariant statement of Newton’s third law in the 
present context, and its emergence justifies the physical equivalence of the 
charge in source terms to that of the test particle. If the particles are stationary, 
then the forces are equal and opposite, PQ QP= −f f . It is beyond the scope of 
the present article to discuss all the circumstances when this is still a good ap-
proximation, but it is evident that time integrals over extended time intervals 
will tend to smooth out fluctuations, so that 

d d .PQ QPt t≈ −∫ ∫f f
                      

(60) 

[A comparable discussion to what appears above can be found in the 1966 
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paper by Tessman [11], who derived the electric and magnetic fields of an acce-
lerating charge, using a number of plausible assumptions, but not explicitly in-
voking Maxwell’s equations. One of the assumptions, replacing Newton’s third 
law, was that “the total electric force which a stationary charge exerts upon a 
system of charges in steady state is equal in magnitude and opposite in direction 
to the total electric force exerted by the steady state system upon the steady 
charge”. This apparently was sufficient, although from the standpoint of the spe-
cial theory of relativity, it is desirable to have a statement that does not require 
the existence of a special coordinate system in which all the relevant charges are 
stationary. Another assumption which Tessman makes is that the force exerted 
on a second charge at a given time is due only to the first charge’s dynamical 
state at the retarded time ( )t r c− , where r is the distance from the first 
charge’s position at that time to the second charge’s position at the current time. 
Such is more in keeping with the stronger use of the principle of reciprocity, but 
the statement can become unwieldy for general formulations when one consid-
ers that there may be more than one point on the first charge’s trajectory that 
meets this criterion]. 

There is still one further requirement to be satisfied: both Pq  and Qq  must 
have the same units. This is guaranteed if the numerical values that are assigned 
to both charges are measured in a consistent manner. Consideration of the case 
of only two charges cannot resolve this, as the forces depend only on the product 
of the two charges. One can calibrate the charges, however, if one has a third 
charge 3q . The value of 3q  need not be known, but the forces exerted by it on 

Pq  and Qq  in the static limit, in conjunction with Coulomb’s law (which is 
derivable from the equations given above), enable one to determine the ratio of 
the two charges. Then the Coulomb’s law relation for the force between the two 
suffices to determine the magnitude of either Pq  or Qq . Given the choice of 

o  represented by Equation (39), this would determine the numerical value in 
coulombs of either charge. One does not necessarily measure charge in this 
manner, but the mere fact that some measurement procedure exists insures that 
one can always take the two charges to have the same units. 

8. Concluding Remarks 

The present paper presents an alternate derivation of a standard result, i.e., 
Maxwell’s equations. Whether it provides significant new insight, a significantly 
new way of thinking, or a much simpler approach, is, as Krefetz [12] wrote many 
years ago in a similar context, “after all, a matter of taste”. Newton’s laws are an 
attractive starting point, as they seem the most intuitively appealing of all the 
laws of physics, even though the idea of their universal applicability has long 
since been abandoned. Their vestiges remain in practically all of current physics, 
and it is difficult to conceive of a curriculum in physics or in one of the many 
branches of applied physics that does not begin with Newton’s laws. 

Various options were left open throughout the derivation as to what is meant 
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by the “covariance requirement”. In the bulk of the literature on special relativity, 
covariance is implicitly understood to mean covariance under the orthochron-
ous proper Lorentz group, and thereby such literature has implicitly ignored the 
possibility of achieving or not achieving covariance under time reversals and 
spatial inversions. As Dixon [54] points out: “[Although] attention is normally 
restricted to coordinate systems in which the time coordinate increases into the 
future and in which the spatial coordinates are right handed, this is very differ-
ent from the question of whether the laws of physics themselves determine a 
particular orientation or time-orientation in spacetime. However, no funda-
mental law outside the domain of quantum physics has yet shown such an 
asymmetry. [Although] it is inconvenient to develop the laws of physics without 
ever making definitions which depend on an arbitrary orientation or time-ori- 
entation, the behavior of equations under a change of convention is important”. In 
this spirit, the development in the present paper has been careful to specify the 
manner in which quantities such as the four-vector particle velocity and the two 
electromagnetic field tensors transform under the full Lorentz group. 

One difference between the treatment here from that in many treatments of 
electromagnetism is that no potentials are introduced. In retrospect, the setting 
of the four-vector source term Hα  to zero in the differential equations, Equa-
tion (32), is equivalent to assume that such potentials exist. [See, for example, 
Exercise 9 on page 140 of the text by Synge and Child [46]]. The relevant ques-
tion is what is intrinsically more plausible. The development here rests on a 
presumed symmetry in spacetime. If the equations are to be covariant under 
time-reversal or if they are to be covariant under spatial inversion, then poten-
tials exist. In some literature, the competing argument is that magnetic mono-
poles do not exist. The argument here is that magnetic charge is precluded in 
source terms in equations of macroscopic physics if such equations are to be co-
variant under either spatial inversions or time-reversals (not necessarily both). 
In various places in the literature, one finds one or the other mentioned as prec-
luding magnetic charge. In retrospect, it is clear why either type of covariance 
suffices, as ∇⋅B  changes sign under either time-reversal or spatial inversion. 

In this respect, one may note an intriguing remark made some time ago by 
Schiff [55]: “It is usually said that Newton’s laws and Maxwell’s equations are 
time-reversible. These are time-reversible if there are no charges but no mono-
poles or if there are monopoles but no charges, but not if there are both”. The 
context does not make it clear exactly what Schiff meant, but the development 
here yields an interesting interpretation. The analysis here started with the hy-
pothesis of the existence of a test particle with a scalar property. The ensuing re-
sult was that the fields that affect such a test particle are caused by the presence 
of other particles with the same type of scalar property. Perhaps other types of 
fields exist, such as are caused by some particles with a different type of scalar 
property. Given full covariance, our test particle cannot sense their presence. 
Suppose, on the other hand, one started with a test particle that had a scalar 
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property which one chose to term “magnetic charge”. The same equations will 
result but one can always choose the symbols for the elements of the field tensors 
so that the new Lorentz force will involve a linear combination [56] of terms 
such as mq B  and m Pq ×v E . But in this case, time-reversal covariance or spa-
tial inversion covariance will preclude the presence of source terms which in-
volve electric charge. Thus, something like magnetic charge could very well exist, 
but at the macroscopic level its presence cannot be sensed in terms of forces on 
particles with electric charges, given that the equations are to be fully covariant. 
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