World Journal of Condensed Matter Physics, 2019, 9, 75-90
https://www.scirp.org/journal/wjcmp

ISSN Online: 2160-6927

ISSN Print: 2160-6919

/
38 et
0.00 Publishing

Interplay between Carrier

Polarization, Spin-Orbit Coupling

and Exchange Field on Anomalous

Hall Conductivity in the Presence

of Magnetic Impurity in Mn Doped GaAs

Lijalem Kelemu Shita

Department of Physics, College of Natural Science, Arbaminch University, Arbaminch, Ethiopia

Email: lijalem.kelemu@amu.edu.et, kelemul129@gmail.com

How to cite this paper: Lijalem, K.S. (2019)
Interplay between Carrier Polarization, Spin-

Abstract

Orbit Coupling and Exchange Field on Ano- ~ We develop a model Hamiltonian to treat anomalous Hall conductivity in di-

malous Hall Conductivity in the Presence  Jyte magnetic semiconductor (DMS) of type (III, Mn, V) considering the im-
of Magnetic Impurity in Mn Doped GaAs.
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purity potentials (potential due to interaction of spin of carriers with loca-
lized spin of dopant (Mn) and coulomb like potential). Using equation of
motion in Green function together with Quantum Kubo-formula of conduc-

) tivity, the anomalous Hall conductivity is calculated as function of spin-orbit
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coupling, exchange field and carrier polarization. The calculated result shows
that at low impurity concentration, the interplay between spin polarization
of carriers, spin-orbit coupling and exchange fields is crucial for existence of
anomalous Hall conductivity. The monotonic increment of anomalous Hall
conductivity with exchange field is observed for strong spin-orbit coupling lim-
it. In weak spin-orbit coupling limit, the magnitude of anomalous Hall conduc-
tivity increases parabolically with the spin-orbit coupling. Our results provide
an important basis for understanding the interplay between the spin polariza-
tion, spin-orbit coupling, and exchange field on anomalous Hall conductivity
at low impurity concentration. The findings are also a key step to realize dis-
sipationless quantum transport without external magnetic field.
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1. Introduction

Transport properties of spin-polarized electrons receive considerable interest for
their importance in basic science and for their potential in technological applica-
tions [1]. One of the peculiar phenomena of the conduction of spin-polarized
electrons in magnetic metals that contains rich physics is the anomalous Hall ef-
fect (AHE). The anomalous Hall (AH) effect measurement has emerged as a
powerful tool to gain deep insights into magnetic materials, ferromagnetism in
diluted magnetic semiconductors (DMS), the materials with the best potential
for spintronic devices [2] [3] ferromagnetic metals and magnetic topological in-
sulators. Not only this, but also anomalous Hall (AH) effect is also one of the
most fundamental transport properties of magnetic materials, in which the in-
terplay between magnetism and spin-orbit coupling produces a transverse Hall
voltage perpendicular to the applied current and the magnetization [4]. Al-
though AHE was discovered more than a century ago, its mechanism is not yet
well understood [1]. Many different mechanisms that contribute to the AHE
were proposed by different scholars. Among them, one well-studied mechan-
ism is the intrinsic mechanism that is related to the Berry curvature of elec-
tronic bands [5] and many experimental results are ascribed to this mechanism
[6]-[11]. Moreover, S. Mekonnen and P. Singh have shown that the intrinsic
version of AHC is quantized [12], later, the extrinsic scattering mechanisms such
as skew-scattering (SS) [13] and side-jumps (S]) [14]. The skew-scattering model
predicts that there is a linear dependence of anomalous Hall resistivity ( 0, )
on the longitudinal resistivity ( p,, ), Ze. pPae ~ Pxx [13]; whereas the
side-jump model predicts a quadratic dependence, P, ~ P, [14]. On the best
of our knowledge, the detail investigation of interplay between carrier polariza-
tion, spin-orbit coupling and exchange field in the presence of impurity poten-
tial in DMS like Ga, ,Mn, is not yet studied in detail. Hence, the goal of this pa-
per is to examine the interplay between carrier polarization, spin-orbit coupling
and dopant induced exchange field on anomalous Hall conductivity in the pres-
ence of magnetic impurity in Ga,_ Mn,As DMS. The rest of the paper is orga-
nized as follows. Section 2 the model Hamiltonian is developed. In Section 3
some mathematical steps are highlighted. In Section 4, numerical estimation is
made using some experimental parameters. Section 5, main findings of the re-
sults were concluded and some of mathematical steps used in the Appendix Sec-
tion.

The goal of this paper is to examine the interplay between spin-orbit coupling
and dopant induced exchange field on anomalous Hall conductivity in the pres-
ence of magnetic impurity in Ga, ,Mn,As dilute magnetic semiconductor.

The rest of the paper is organized as follows. In Section 2, the model Hamilto-
nian is developed. In Section 3, we make numerical estimation using some expe-
rimental parameters a brief review of maximum likelihood estimate and its
properties. We propose an alternative least square estimator in Section 4. We

made conclusion of main findings of the result and some of mathematical steps
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used in Appendix Section.

2. Theoretical Model

We consider two dimensional hole gas (2 DhG) in the presence of Spin-orbit
coupling considering the form of the usual Rashba term, exchange field, kinetic
energy of itinerant holes and magnetic impurity resulting from disorder. Our

Hamiltonian is in the form of

H=H,+H,, (1)
- n’ - - -
H, =F+aR (O'Xky—O'ka)—heXO' (2)

whereas the perturbing term of Hamiltonian is given by

Hipp = 2(JS, -0 +V)(r—R;), 3)

i
where o, is the Pauli matrix along X,y,Z, « is Rashba spin-orbit coupl-
ing, k,, is the wave vector along xand y; /is exchange coupling constant, S,

is spin magnetic moment resulting from impurity atom located at site /. Here we
are assuming that randomly distributed impurity atom (Mn*") interact with iti-
nerant carriers (holes) with its spin and results exchange field JS;o and it also

affects with some potential (like coloumb) potential V,, §,

is impurity spin lo-
cated at site 4, and o is Pauli spin operator for holes, here the korncker delta
o (r -R; ) assures that the impurity atoms (Mn?*) affects the hole if and only if
it is located at (r = R). Of course, we don’t know exactly position of impurities.
Therefore, we need to perform configuration average (position average). The
average can be done for only lower order of scattering. Employing change of va-
riables, the unperturbed Hamiltonian in Equation (2) can be rewritten in second
quantized form

HAO B zg(k)a‘;a‘(“ +Zk:%((ky + ikX)a;Taki +(kv - ikx)a;¢akT)

ko

(4)
- hex;(al:TakT - al:iaki )

Now we use equation of motion in Green function to determine spin resolved

Green function associated with unperturbed Hamiltonian in Equation (4)

0 < A,I§>>w=<[A,I§]>+<<fA,I:I],é>>w (5)
After detail mathematical manipulation
- —¢(k)-=h
GJ;(TZ @ 8( ) ex ~ (6)
—¢(k)-h -g(k)+V, )-—F
(0-6(0)-h,)(0-5(0k)+7..) -
R k, —ik — -
Gy = 2 2 £k, %

2((0_‘9('()_ eX) (a)—g(k)—vex)(a)—é(k)ﬁ-hex)—aakz
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ékilj _ w-¢(k)+h, ®)
2,2
(a)—s(k)+hex)(a)—g(k)—hex)—aRk
a .
—R(k, +ik,

21,2
agk

2| (w—e(k)-h, )(w—¢e(k)+h, )-——
(CECES RTINS
which can be written in matrix form in spin space as
~. [GR, GR
GoiT Gow
Using Equations (6)-(9) into Equation (10), we have

w-¢(k)-h %R(ky“kX)

ex

(0ot oot 0

Gy = (11)
o .
?R(ky_'kX) w—¢(k)+h,

2[(w—g(k)—hex)(w—g(k)+ h,)- “54"2] (0—e(k)+hy ) (@—e(k)~hy)

21,2
_agk

It is convenient to introduced the reference Green function g° to write Equ-

ation (11) more elegant form

1 1 1
= = = (12)
e Ze(K)22(K) @-E..
w-¢(k)+ oK +h2 o-e(k)te(k) 0B

+ o

g9

where E, (k)=¢(k)+¢y =&(k)+2y/azk?+h2 is the eigenvalue of the bar
(unperturbed) Hamiltonian. On the view of Equation (11), Equation (12) be-
comes

- k
G :%(gf +g?)| + ZO;R( y)(gf —QE)OA'X _20!;—('(;)(93 —gf)oty

hex 0 0\ 2
_zé,(k)(ng _g—)o-z

Hence, the Green function along &; where 7 designates identity matrix (J)

=~

(13)

and x, yand zcomponents of Pauli spin operators is given by expression.

Gy =G +GR6, +GR6, + GRS, (14)
where,
1
G =2(gl+g) (15)
ok
GOR = Ry 0_ 0 16
: —M(k)(m o) (16)
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G, =—T(kx)(gf—gf’) 17)
OR _ hex 0_ A0
;= —2/1(k)(g+ g°) (18)

3. Self Energy and Life Time

To treat the impurity part of the perturbed Hamiltonian we use Dyson series. After

some mathematical simplification self energy can be found,

= = (Ving ), *+ (Vi ()G (2)Viry (1),
# (Vi (1) 8y (2)Vi (1) 8y (2)Vis (1), +

This expression can be also obtained using diagrammatic rule. Since we are

(19)

considering dilute limit (the concentration of impurity (Mn) is low). Therefore,
disorder potential is considered to be weak, it is common to take only two terms
(terms with linear with impurity (n,) from series of iterative equation, in this
limit Born approximation is valid). The self energy in Equation (19) can be writ-

ten in bases of kand &£ (Fourier transform) as

e = (K Vi [€) + 2KV (1) 8o (2)Vig (1) K
+%:<kvimp(r)Go(z)Vimp(r)GO(z)vimp(r)kr>+,,,

The first two leading order of self energy on the right side in Equation (20)

(20)

become

Zkk = <k |Vimp |k> <k|Vlmp GU (Z |mp |k > (21)

From Equation (21), the first term gives only constant shift in energy spec-
trum and it has no effect on disorder boarding (life time which is proportional to
imaginary part of self energy). Hence in born approximation the only remaining

term,

2 <k|vlmp )G ( |mp |k > (22)

which can be written in compact form
0 2
Ly = sz Ika'| (23)
kk’

From Equation (23), we plagout G_ from configuration average since it is

corresponding to non perturbative part of Hamiltonian (it is free from disorder).
After impurity averaging together with detail mathematical manipulation one
can obtain the impurity potential as

1 Nimp Nimp

Vige| =7 ZZ(V +38; - )exp(-i(k'=k)-R; )(V, + 5, -o)exp(i (k' k)R, ) (24)

For j= [ Equation (24) results

Vi = nvﬂ(v +35.0) (25)
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In Equation (24) we have used m Ny and substitution of Equation (25)
into Equation (23) yields
nimp —_ 2 0
S =2 (V+3S-0) Y6 (26)
\Y kk'

On account of Equations (14)-(18) Equation (26) becomes

I ok
Sy = n\';“” (V+3s -a)z%(%(gf +g°)i+ Z;(ky)(gf -9°)5,

(27)

aka 0 0) = Ve>< 0 0) ~
-—>0;-9")o, - -9 )o
2ﬂ“(k)(g+ g°)s, 2Mk)(@h g°) J

Due to symmetry (k, <>k, ) together and angular dependency of k, and
k,, the two terms, &, and &, , components vanishes. Therefore, the only sur-
viving terms of self energy,

R ) EEEE IR IR

On account of Equation (12)

zkk,:n‘""’(vus-a)ZZl SR S I}
\Y Kk’ 2 G)—Ek++|€ a)—Ek7+|6

Ve 1 1 -
- T — |0,
24(k) w-E, +ie w-E, +ie

here we introduced the small parameter ¢ in the denominator to account sin-

(29)

gularity of this expression. Since the self energy is complex function which can

be decomposed into real and imaginary part as

2, =RelZ+ilmX (30)
Using Dirac identity,
1 1_.
=O—Find(X 31
Xtie px+ () GV

Using Equation (31), Equation (29) becomes

Ry = n\‘;”’ (v +JS ~0')2 z{%[p(a)—lEh ]—iné‘(a)— E..)

Kk’

+So(a)—1Ek J—in5(a)—Ek )]f

(32)

(33)
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Since the real part has only effect on of quasi particles and it has no effect on
life time of quasiparticles, we shall take only imaginary part (it is common ap-
proximation if the disorder effect is weak). Therefore, after removing the real
part we left only,

e = —imi, (V38 -0')2 (%%;5(@— Ee. )+%;5(w— Ec )) ]

Sl Ee-s ) )

In Equation (34) we have used U instead of V which designates volume in

(34)

order to save ourselves from confusion of impurity potential (V) and volume.

Now defining spin split density of states (holes in DMS) as

1
D.(0)=->.6(0-E,). (35)
U%
Using Equation (35) into Equation (34), it becomes
= . —(1 ~ Vv -
2R =—imn VY (E(Q (@)+D_(w))l- - (k) (D, (@)-D_ (a)))az] (36)

— 2
where we have introduced notation V; :(V +JS 'O') for the seek of simplify.

However, most commonly notation ' is used instead of ImX or (ImX=T),
thus,

Fecimn 7 3(0.(0)0 (@) Y50, )0 (o), | @)
r=-i(r,i+r,6,) (38)
where, T, = rrnimp\/_TZ%(D+ (w)+D_(®)) and
L2 =ty 37650 (0)-0. (o)

where indices (+) indicates spin up and spin down components of density of
holes associated to system under consideration. The single particle relaxation

rate 7, is given by the imaginary part of the self-energy,

1
? = —SZKU (60) (39)

o

Using Equation (39) together with assumption that spin dependent density of
states (DOS) is evaluated at the Fermi level (&;) e (wh — & ), we shall write

spin split life time as

1 . v ~ h -
—=inn_ V. D,+D_)I-—2-(D,-D_)o 40
T, imp °T (( + —) ((k)( + —) z] ( )
L ian, V2| (D, +D. )i+~ (D, -D )& (41)
T imp T + - é,(k) + - z
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which can be written as in compact form in component wise

1 1: h, 1.

—= | - —=_— 42
. 7, <(k), 7 (42)
1 1~ h 1 .

Ry I S —— 43
T T ¢(k), g (43)
S L (44)

where, i = innimp (V +JS -0)2 (D+ +D_ ) ,
7y

1 . ——=2 h
— —izn._ (V +JS- * (D —D h d laxati
- Iﬁnlmp( + 0') {(k)( ,—D_) where 7, and ¢ are relaxation

times holes in different sub-bands.

To introduce the contribution impurities (disorder) into bar reference Green
: R/A . .
functions g~/*, we use Dyson series for reference Green function as

SRIA _ G

RA_____Ser 45
ST (2 )
where
1 1 1
05" = — = = —  (46)
—&(k)x(k —-E,_ +
o—e()s BB e 0~ EREE() 0-E e

4

After plugging Equation (46) into Equation (45) and after some mathematical
algebra it yields
1
RA 47
Y w-E, +izt" “7)
Then relating the life time and imaginary part of self energy using Equation
(39)
iR/A — ;1 (48)
o-E, ti—
A
where E, (k)=e&(k)+¢y =&(k)t\Jaik® +hZ . Therefore, after impurity cor-
rection the Retarded Green function along &; can obtained as

1
Gr =2(g7+0") (49)
Ay .
k=Fsin(¢)
Gf =1 "(gF-g" (50)
2§(k) ( )
k%cos(qﬁ)
GR—__"h R_ 4R 51
; 22 (9f-0%) (51)
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hex+ii

OB 2 (gf - g") (52)

After detail mathematical manipulation, the impurity averaged retarded and

corresponding advanced Green function respectively along &, reads
G* =G} +G}6, +G['6, +Gf 5, (53)
G* =G} +G}6, +G)'6, +G}'5, (54)
4. Anomalous Hall Conductivity

The Anomalous Hall Conductivity o, which corresponds to the non vertex
correction at zero temperature based on the Kubo’s formula for Fermi surface

contribution is given by
ZTF( " (k)v,G" (K)v, ). (55)

The x, y components of velocity will be calculated from unperturbed part of

Ty = ZnV

Hamiltonian in Equation (2)

.k, oy
V,=—%-—-0, 56
Y (56)
kK, «
Vv =—2L+Rgs 57
mon (57)

Upon substitution of Equation (56) and Equation (57) into Equation (55), we have

- k, «
GRI+GR6, +GR6, +GR6 x| 2 —-ZR &
(( | X X y“y z z) m h y

Q

xy:Zn

(58)
Al L AR A A Ky  ag
><(GI I +G, 0, +Gjo, +G, JZ)X —+—0, ||
m h
dD
After changing Summation into integration using Zk -V DI . For 2D

(2n)”

d’k
case Zk —>sz , some terms get vanishes due to angular integration (in-
2n

tegration of sin(¢)cos(¢)) and after detail mathematical algebra we shall obtain

aR kcos(¢) R~ A R~ A H R~ A R~A
Oy jjd¢ - (GXG, +GG} +i(G}G] ~GfG; ))
% ksm(¢)
jj ¢ - (GyG! +GfG) +i(GFG! -GfG})) (59)
kdk % (G G} +GFG) +i(G}G, ~GG))

The final expression for Hall Conductivity in the presence of random mag-
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netic impurity were obtained by substitution of Equations (49)-(52) into Equa-

tion (59), the detail mathematical step are indicated in Appendix Section.

Gim__iaqu _jT%R D, & +& Loy De D )z
Vo g 2n (L ¢ 2, )z, A2 ¢\,
iTag [D+ (q] D (r_ JD

+ _ — | —— —
2h §+ 7, g— 7,

Hence some terms are canceled and we left with

op = a0 [D; (£J+D_Z[T_J] (60)
h (&ln) &g

where
1 hex 61
Z: i, (V43S 0') m(D+—D_) (61)
— 2 ~ h, ~
- =imny, (V+35-0) ((D++D_)I—g(k)(D+—D_)GZJ (62)
= |nn,mp<V+JS~0)2((D++D_)f+%(D+—D_)6ZJ (63)

£ =+ Jalk? +h? (64)

and D, is the density of state in 2D system given by expression

_ o me(k)
(k) £m'ed (69

Numerical Estimation and Discussion

From Equation (60), as we see it the Fermi surface contribution of Anomalous
Hall conductivity in the presence of magnetic impurity does not depend on im-

. . . 2 7_ .
purity concentration at all, but the ratio between — and — which are re-

T T

z z

lated to polarization of carriers. Now it is convenient to approximate — and
T
z

T
— to rewritten Equation (60) more elegant form

TZ
(D,-D.)

Lo 4,“( ) (66)

T h “

z | - D,-D )o,

Using valid approximation, Ze. D, +D_ > ;(G’I‘() (D,-D.)
T h, D -D

[ O . + - 67
T, g’(k) D, +D_ (67)
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D,-D . o L . .
But [;—D is polarization of carrier, in our particular case the carriers are
L+
holes and let it be B,, hence
T h
L =__p (68)
r, ¢(k) "
Similarly
(B.-D.)
L g“( ) (69)
(D, +D.)i+ D,-D.)é
(0.+D )i+ (D, -D.)
h
Using similar approximation D, + D_ > g(‘*’l‘() (D,-D.)
T h
I _—_& p (70)
r, ¢(k) "

making use of Equation (68) and Equation (70) into Equation (60), anomalous
Hall conductivity in the presence of magnetic impurity is related with spin pola-

rization of carrier as

im:_aéngF D+ hex P+D_LPJ (71)

Equation (71) shows that Anomalous Hall conductivity in the presence of

magnetic and non magnetic impurity, resulting from Fermi surface is indepen-
dent of lifetimes 7 and depends only on its spin-dependence (polarization of
carriers). The life time independent of anomalous Hall conductivity is characte-
ristic of side jump mechanism [15]. Therefore, anomalous hall conductivity in
the presence of weak impurity potential is more likely mediated by skew scatter-
ing. Moreover, Equation (71) clearly reveals that if both bands (spin up and spin
down) are occupied, the value of spin polarization ( p,) get vanishes which
yields zero (GiTy =0). And also increasing carriers polarization results increas-
ing anomalous Hall conductivity. Therefore, the polarization of carriers resulting
from exchange interaction between localized spin of dopant (Mn*") and itinerant
holes are crucial for existence of Skew type of anomalous Hall conductivity low
impurity limit. Hence it is formal improcedure to assume only majority band
contribute for O')Ty and switching off the minority band, which simplifies Equ-
ation (71) to

2.2
i h, ( D
O')I(r; =_aRq ;F ex (g;]p (72)
To investigate the role of energy splitting due to spin-orbit coupling A, and

ex

i a.k .
and o), versus a=-—F-"+ which
R™F ex
associated with strong and weak limit of spin-orbit coupling respectively (see

exchange field (h, ), we plot f=

Figure 1 and Figure 2). The parameters used in our calculations are taken from
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ex so

Figure 1. The magnitude of Anomalous Hall conductivity in the presence of magnetic impurity Vs. the

ratio of exchange field and energy splitting due to spin-orbit coupling (ﬁ:h—elx() for strong spin-orbit

coupling limit.

RTF

To.16 ! \ \ ! =
E 0.14’ o" n
En R4

o o’

> 0.12F R i
2 .

8 0.1f .
Fo0.08F .
€ 0.06F .
5 .

20.04r |
2 0.02f |
GE) Qhmmmm=m===2" | | I |

g 0 0.2 0.4 .. 0.6 0.8 1

S0 ex

Figure 2. The magnitude of Anomalous Hall conductivity in the presence of magnetic
impurity Vs. the ratio of energy splitting due to spin-orbit coupling and exchange field

(p= aﬁ—kF ) for weak spin-orbit coupling limit.

ex

[16]. Experimentally, observed values of Rashba SOC parameter lie in the range
1 x 10" eVm - 6.3 x 10" eVm for a large variety of systems [16], the values of
exchange field can vary from (0 - 200) meV [2]. From Figure 1, we can see that
as f increases the magnitude of anomalous Hall conductivity increases mo-
notonically, which in turn shows that as magnitude of exchange field (h,, re-
sulting from interaction of localized spin of Mn atoms and itinerant holes spin)
increases the anomalous Hall conductivity for strong-spin orbit coupling limit
our results are in good agreement with experimental trend [4]. On the other
ArKe. "

hand, as o = increases, magnitude of

increases in parabolic way
ex

(see Figure 2). Since a proportional to A . Therefore we can conclude that
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that magnitude of anomalougs Hall conductivity increases approximately half
parabolic way as energy splitting due spin-orbit coupling increases the result also
agree with recent experimental findings reported on anomalous Hall conductiv-
ity in Mn,_,Fe Ge [17]. And hence, the interplay between spin-orbit coupling and
Zeeman like exchange field are crucial for existence of finite values of anomalous
Hall conductivity in the presence of weak impurity potential.

5. Conclusion

In conclusion, we have studied anomalous Hall conductivity in Ga, Mn,As DMS
in low impurity potential limit. The calculated result revealed that, the interplay
between carrier polarization, spin-orbit coupling and Zeeman like exchange field
is vital for existence of finite values of anomalous Hall conductivity in dilute limit.
Our results are in agreement with latest experimental trends. This result shows
opportunity associated to control, enhance and create anomalous Hall conduc-
tivity by controlling the density of spin-polarized density of electrons, spin-orbit
coupling and exchange field, which also platform to realize dissipationless con-

ductivity in low impurity limit.
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Appendix
Steps to Evaluate Trace

After messy and detail mathematical algebra, the trace part (expression in big

bracket of Equation (58)) yields

) ] k
Tr((G,RI +GR6, +Gf6, +GFé, )x[k—i—“—;aij(e,“l 1G5, +G15, +G16, )x£—{+“7Ro—XD
m m

- KOs OIINE) 1) - 676 Te (6 + 66! 6 T)  6761Te (1)

y

k2 cos rﬁz)sin(@(GlRGxATr(fax)+GXRGXA-|-r(&XGX)+G$G;\Tr(&ygx)+GZRGXATr(<}Z&X))
L KLcos(g)sin(¢) (:jz) sin(¢) (676} (o, )+ GFGLTH (6,6, ) +GIG/Tr (6,6, )+ GIGITr(5,6,))
. W(Gfem(f&z)mfem(&x&z )+GIGITr(6,6,)+GIG!Tr(6,5,))
(24
+—;kCOS(¢)(GRGATr(IT& )+GIGITr(6,i6,)+G;G/Tr(6,i6,)+GRG!Tr(6,i6 ))
m | | X x | X X y I y X z >l z X
YR K cos @

+hT(G,RG;‘Tr( 6,0,)+GfG/Tr(6,6,6,)+GG/Tr(6,6,6,)+GfG/Tr (5,6, “x))

a
7R|(COS(¢)RA (A RA A Ao~ on R A Ao~ RA A ~ono
P (G, G,Tr(i6,0,)+GFG,Tr(6,6,6,)+GIG,Tr(6,6,6,)+GFG,Tr (3, yax))
(04
7R|(COS(¢)RA g R A Aona RA A . RA A A o~oa
- (676! Tr(i6,0,) +GIG/Tr (6,6,6,)+ GG Tr(6,6,6,)+ GIGLTr (6,6,6,)
(04 .
—M(GRGATr(f& )+GEG!Tr (i6,6, )+GIG!Tr(6,6,1)+GrG Tr (i6,6 ))
m | | y x | Xy y I y=u z >z 7y
[04 .
—M(GRGATr(f&& )+GfGITr(6,6,6,)+GJG/Tr(6,6,6,)+ GIGLTr(6,6,5, )
m 1 “x y“x X =X x“y“x y X y“y“x z Zx ¥ y“x
) (6fepTr(i6,6,)+GiG/Tr(6,6,6,)+GJG,Tr(6,6,6,)+GIG,Tr (6,6,5, )
m | y yoy X =y XTyTy y -y y-yoy z 7y Z7yTy
—Rksin(¢

(GRGATr(|}}y&z)+c35(3;*Tr(&x 5,6,)+GrGLTr (6,6,6, )+ GFGLTr(6,6,6, ))

_“_;(GFG,ATr(f&y&X)+GfG,’*Tr(f&x 5,6, )+GEGTr(5,6,16,)+GFG!Tr (5, ‘y&x))

_ % (GIRGXATr(fg—y&xa-x)+GXRGXATr(6'X&y6'X&X)+GyRGXATr(6y&y6'X&X)+GZRGfTr(&Zc3'y&X6'X)) -
~28(676)Tr(16,6,6, )+ GIG/Tr(6,6,6,6, )+ G]G/Tr(6,6,6,6, )+ GIG/Tr(5,6,6,5, )
~r(6r6!Tr(i6,6,6,)+ GG/ Tr(6,6,6,6,)+6]6]Tr(6,6,6,6, )+ GIG!Tr(6,6,6,6,

DOI: 10.4236/wjcmp.2019.94006 89 World Journal of Condensed Matter Physics


https://doi.org/10.4236/wjcmp.2019.94006

K. S. Lijalem

To solve Equation (73), we use the following properties of Pauli matrices:
e All of Pauli matrices are orthogonal to each other and the product of any two

Pauli matrices, up to a factor of =i, is another Pauli matrices

6,6, =16,,6,06, =-ig,
6,06, =i6,,6,6, =-G,,
6,0,=i6,,0,6, =-ic, (74)
e All Pauli matrices have zero trace,
Tr(6,)=Tr(6,)=Tr(5,)=0 (75)
e Square of any Pauli matrix is identity and whose trace value is two Ze.
Tr(62)=Tr(82)=Tr(67)=Tr()=2 (76)
After applying Equations (74)-(76) into Equation (73) we have
A k? cos(¢)sin(¢)
Tr(67,GM, )= 2+(GFG,’* +GFGH +GTGE + GG
PRy cos(¢)
+2-——(GfG! +GfG, +i(G]G! -GG} )
m (77)
R sin (9)

ot (676! 616} +i(G/G! 616

~2% (676! +676) +i(67e! -676})

DOI: 10.4236/wjcmp.2019.94006 90 World Journal of Condensed Matter Physics


https://doi.org/10.4236/wjcmp.2019.94006

	Interplay between Carrier Polarization, Spin-Orbit Coupling and Exchange Field on Anomalous Hall Conductivity in the Presence of Magnetic Impurity in Mn Doped GaAs
	Abstract
	Keywords
	1. Introduction
	2. Theoretical Model 
	3. Self Energy and Life Time 
	4. Anomalous Hall Conductivity 
	Numerical Estimation and Discussion 

	5. Conclusion
	Acknowledgements
	Conflicts of Interest
	References
	Appendix
	Steps to Evaluate Trace 


