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Abstract 
In this paper, an isogeometric error estimate for transport equation is ob-
tained in 2D to prove the convergence of isogeometric method. The result 
that we have obtained, generalizes Ern result, got in finite elements method. 
For the time discretization, the two stage Heun scheme is used to prove this 
result. For a polynomial of degree 1k ≥ , the order of convergence in space is 

2 and in time is 1
2

k + . 
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1. Introduction 

Some phenomena of the daily life such as particles transport in an electric field, 
the signal transport along a wire, evolution of cars on a road [1], and evolution 
of a pollutant in a narrow channel [2] are modelled by a transport equation. 
Study of numerical methods for solving this equation is very important to de-
scribe, to predict and to control these phenomena. 

Isogeometric Analysis has been introduced by Thomas Hughes, Austin Cot-
trell and Yuri Bazilevs in 2005 [3]. 

The objectives of Isogeometric Analysis are to generalize and improve upon 
Finite Element Analysis (FEA) in the following ways:  

1) To provide more accurate modeling of complex geometries and to exactly 
represent common engineering shapes such as circles, cylinders, spheres, ellip-
soids, etc.  

2) To fix exact geometries at the coarsest level of discretization and eliminate 
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geometrical errors.  
3) To vastly simplify mesh refinement of complex industrial geometries by 

eliminating the necessity to communicate with the CAD (Computer Aided De-
sign) description of geometry.  

4) To provide refinement procedures, including classical h- and p-refinements 
analogues, and to develop a new refinement procedure called k-refinement [4].  

The idea of Isogeometric Analysis is to build a geometry model and, rather 
than develop a finite element model approximating the geometry, directly use 
the functions describing the geometry in analysis [5] [6]. These functions are 
B-splines. 

Isogeometric Analysis is approached, using continuous or discontinuous Ga-
lerkin method. In the context of space semidiscretization by discontinuous Ga-
lerkin methods, explicit RK schemes are used to approximate in time systems of 
ordinary differential equations. These schemes have been developed by Cock-
burn and Shu [7], Cockburn, Lin, and Shu [8], and Cockburn, Hou, and Shu [9] 
and applied to a wide range of engineering problems [10]. They have been used 
by Alexandre Ern et al. [11] [12], for linear conservation laws using Disconti-
nuous Galerkin Method to prove a convergence result [12]. Authors did a space 
semidiscretization using the upwind DG method. Besides, others tools are fun-
damental to get this convergence result:  

1) Error equation.  
2) An energy identity obtained from error equations.  
3) A stability estimate using Gronwall lemma, Young inequality and inverse 

and trace inequalities for finite elements method.  
In the literature, there exist many numerical methods to solve transport equa-

tion [13] [14]. To our best knowledge, there is no error estimate for transport 
equation using isogeometric method. In our work, we give such an estimate to 
generalize results obtained by Alexandre Ern et al. [11] [12] in finite elements. In 
the framework of this dissertation, we want to prove a convergence result using 
isogeometric method. Among others, unlike finite elements, as far as the space 
semidiscretization is concerned, we have: 

1) Constructed a parametrization of the physical domain, indispensable to 
describe this domain.  

2) Constructed a parametric mesh making a tensor product of knot vectors.  
3) Introduced the discrete space on the physical domain, using our parame-

trization.  
Moreover, instead of using inverse and trace inequalities for finite elements 

method, we will use isogeometric inverse and trace inequalities to obtain our 
convergence result. As far as the discretization in time is concerned, the explicit 
two stage Heun scheme is used. Now, we consider the following model: 

( ) ( ) ( )( )
( )

2

0

, , 0, , 0;

., 0

0 in 0;

t f

f

u x t x u x t x t t

u t u

u t

β

−

  ∂ +∇ ⋅ = ∈Ω ⊂ ∈   = =


 = ∂Ω ×  



         (1) 
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where Ω  is a bounded open set in 2 ,  2: 0; fu t Ω×   R  is a scalar-valued 
function representing the unknown, ft  is a finite time,  

( ) ( ){ }, 0x x n xβ−∂Ω = ∈∂Ω ⋅ < , n is the unit outward normal to the domain 
boundary, β  is the advective velocity, ( )

2
Lβ ∞ ∈ Ω  , ( )Lβ ∞∇ ⋅ ∈ Ω  and 0u  

is the initial datum. 
Let us introduce some notations and assumptions:  

• Assume β  is a Lipschitz continuous functions i.e.  

( ) ( ) ( )2, , , .L x y x y L x yβ ββ β∃ ∀ ∈Ω − ≤ −  

where x y−  denotes the Euclidean norm of ( )x y−  in 2R .  

• We set 
( ){ }

1:
max ;

c

L Lβ

τ
β ∞ Ω

=
′

 and ( )
2:c Lβ β ∞ Ω 

= .  

• We set ( ): min ,f ctτ τ= .  
• Assume ch β τ≤  .  

• x∀ ∈ , ( )1:
2

x x x= −  and ( )1:
2

x x x⊕ = + .  

• Let l∈ , we consider the space 

( ) ( ): 0, , ,l l
fC V C t V =                          (2) 

where V is a Hilbert space and equipped with the scalar product defined by:  

( ) ( ) ( ) ( ) ( )( ) ( ) ( )2 2
2, , , , , .V L L

u s u s u s u s Vβ β
Ω Ω

= + ∇ ⋅ ∇ ⋅ ∀ ∈        (3) 

The associated norm is:  

( ) ( ) ( )2 2

22 2 , .V L L
u u u u Vβ

Ω Ω
= + ∇ ⋅ ∀ ∈  [11] (page 39)       (4) 

This paper is organized as follows. In the first section, we will describe univa-
riate B-splines. In the second one, we will describe bivariate B-splines and geo-
metry of the physical domain. In the third one, we present main results of this 
work. In the fourth one, we will state inverse and isogeometric inequalities. In 
the fifth one, we will talk about the functional setting and space semidiscretiza-
tion. In the sixth one, we will look into the explicit two stage Heun scheme anal-
ysis. 

2. Univariate B-Splines 

Definition 1. Let 1 2 mx x x≤ ≤ ≤  be an increasing sequence of reals, B-splines 
functions of degree k are defined by Cox-de Boor-Mansfield recursion formula 
[15]:  

( ) [ [
( )

,0 1

,0

For 1 1
1 if ,

0 otherwise
i i i

i

i m
N t t x x

N t
+

 ≤ ≤ −


= ∈
 =

                       (5) 

( ) ( ) ( )1
, , 1 1, 1

1 1

For 1 and 1 1

,i i k
i k i k i k

i k i i k i

k i m k
t x x t

N t N t N t
x x x x

+ +
− + −

+ + + +

≥ ≤ ≤ − −
 − − = + − −

             (6) 
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with the convention : 0
0
x
=  for all real number x. 

The set ( ) ( )1
1m

i i
x i m

=
≤ ≤  is called knots vector. 

Now, we want to look into bivariate B-splines, obtained from univariate 
B-splines. 

3. Bivariate B-Splines and Geometry of the Physical Domain 

The definition of bivariate B-splines follows easily through a tensor-product con-
struction. Let us focus on the two-dimensional case. Notably, let us consider the 
unit square [ ]2 2ˆ 0;1Ω = ⊂  . Mimicking the one-dimensional case, given integers 

lp  and ln  for 1,2l = . Let us introduce open knot vectors: 

{ }1, 2,, ,
l ll l n p lE ξ ξ + +=   

and the associated vectors without repetitions for each direction l  

{ }1, ,, ,
ll l m lζ ζ ζ=   

There is a parametric cartesian mesh hQ  associated with these knot vectors 
partitioning the parametric domain Ω̂  into a rectangular grid. So, we have: 

( ){ }11,2 , ,, ,1 1
l lh l i l i d l lQ Q i mζ ζ

+== = ⊗ ≤ ≤ −  [16]         (7) 

For each element hQ Q∈ , we associate a parametric mesh size ,maxQ Qh h=  
where ,maxQh  denotes the length of the largest edge of Q. Also, for each element, 
we define a shape regularity constant as in [16]: 

,min

Q
Q

Q

h
h

λ =                            (8) 

where ,minQh  denotes the length of the smallest edge of Q. 
We associate with each knot vector ( ), 1, 2lE l =  univariate B-spline basis 

functions , li pN  of degree lp  for 1, , li n=   . 
On the mesh hQ , we define the tensor-product B-spline basis functions as in 

[16] by: 

( ) ( ) 1 21 2 , , 1 2, , , , 1, , , 1, , .i p j pi j p pN N N i n j n= ⊗ = =            (9) 

( ) ( ) 1 21 2 , , 1 2, , , , 1, , , 1, , .i p j pi j p pN N N i n j n= = =             (10) 

The span of these functions form the space of two-dimensional splines over 
Ω̂ , denoted by:  

( ) ( ){ } 1 2

1 2

,

, , , 1, 1

n n

h i j p p i j
S span N

= =
=  

The physical domain Ω  is defined through a geometrical mapping: 
1 2

1 2, ,
1 1

n n

ij i n j n
i j

F P N N
= =

= ∑∑  [16] 

where 2
ijP ∈  are the so-called control points. F is a parametrization of the 

physical domain Ω , that is, 
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[ ]2: 0,1F →Ω  

For each element Q in the parametric domain [ ]20,1 , there is a correspond-
ing physical element ( )K F Q= , as shown in Figure 1. 

We assume throughout that F is invertible, with smooth inverse 1F − , on each 
element hQ Q∈ . 

We define the physical mesh to be: 

( ){ } ( ): , .h h hK K F Q Q Q F Qτ = = ∈ =               (11) 

We assume ( hτ ) is quasi-uniform: 

0, .KC h Ch∃ > ≤                       (12) 

with Kh  the diameter of K and : max
h

KK
h h

τ∈
= . 

We introduce hV , the space spanned by B-splines basis functions in Ω  as 
the push-forward of the B-splines space hS . 

( ) ( ){ } 1 2

1 2

,1
, , , 1, 1

: .
n n

h i j p p i j
V span N F −

= =
=   

Given a function ( )2 ˆv̂ L∈ Ω , we define a projective operator over the 
B-splines space hS  as: 

( ) ( ) ( ) ( )

1 2

1 2

,
2

, , ,
1, 1

ˆ ˆ ˆ: , :
h h

n n

S h S i j p p
i j

L S v v Nπ π ϕ
= =

Ω → = ∑ ,  

where the linear functionals ( )2 ˆLϕ ′∈ Ω  determine the dual basis for the set of 
B-splines. 

The projective operator over the B-splines space hV , is defined as the 
push-forward of the operator 

hSπ . 

( ) ( )( )2 1ˆ: , :
hh h h SL V v v Fπ π π −Ω → =   

4. Main Results 

This section is devoted to our convergence results obtained for respectively a 
polynomial of degree 2k ≥  and a polynomial of degree 1k = . We present our 
main results whose proofs are given in the subsection 6.6. 

Theorem 1. (Convergence for RK2, 2k ≥ )  

Assume the 
4
3

 CFL Condition:  

 

 
Figure 1. Definition of domains used in isogeometric analysis (Source [17]) (Page 181). 
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4
1 3
3

c

htδ τ
β

−  
′≤  

 
  for some positive real number ′         (13) 

and ( )( )0 1s k s
td u C H + −∈ Ω  for { }0,1s∈ . Then, 

( )2

1
181 22 2 2

1 2
0

4exp
N kN N m m

h h fL m

Cru u t u u t t h
β

δ χ δ χ
τ

− +

Ω
=

   − + − +         
∑ 



 (14) 

with 

( )( )0 2

1 1
4 32 2

1 f t C L
r t d uχ τ

Ω
=                       (15) 

( )( ) ( )( )0 1 0

1 1 1 1
5 52 2 2 2

2 k kf c f c tC H C Ht r u t r d uχ β β+

−

Ω Ω
= +            (16) 

[ ]22 21 1 ,
2 2i

h

FF
F

v n v n v
β

β β
∂Ω

∈

= ⋅ + ⋅∑∫ ∫


             (17) 

where  

( )max 1, max
h

Q KK
r

τ
λ λ

∈

 =  
 

                   (18) 

and tδ  is the time step. 
Theorem 2. (Convergence for RK2, 1k = ) 

Assume the 
4
3

 CFL Condition, assume ( )( )0 1s k s
td u C H + −∈ Ω  for { }0,1s∈  

and 24 3 0r− > . Then, 

( )2

1
1 22

=0

18
2 2

1 22

1 8exp
4 3

N
N N m m

h hL m

k

f

u u t u u

Cr t t h
r

β
δ

χ δ χ
τ

−

Ω

+

 − + − 
 

  
+   −   

∑




            (19) 

with 

( )( )0 2

1 1
4 32 2

1 f t C L
r t d uχ τ

Ω
=                      (20) 

and 

( )( ) ( )( )0 1 0

1 1 1 1
5 52 2 2 2

2 k kf c f c tC H C Ht r u t r d uχ β β+

−

Ω Ω
= +           (21) 

5. Inverse and Trace Inequalities 

In this section, we present isogeometric inverse and trace inequalities, useful 
tools to analyze partial differential equations. 

Let hK τ∈  and ( )1Q F K−= . 
Theorem 3. (see [11] [18])  

0, hh K τ∀ > ∀ ∈  and ( ) ( ) ( )
22 2

1
2 ,k

h h h K hL K L Kv v C h vτ −
 
 

∀ ∈ ∇ ≤   (22) 
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where C  depends on k and on the parametrization F. 
Theorem 4. (see [16])  

( ) ( ) ( )2 2
2 21

2 ,k
h h h Q K K hL K L Kv v C h vτ λ λ −

∂
∀ ∈ ≤             (23) 

where C depends only on 1p  and 2p , Qλ  is the local shape regularity con-
stant of Q, and Kλ  is the shape regularity constant of K.  

We set { }1 2: min ,p p p=  (see. [4] [19]). 
Theorem 5. (see [20]) Given the integers l and s such that 0 1l s p≤ ≤ ≤ +  

and a function ( )su H∈ Ω , then:  

( )
( )

( )
2 22 ,sl

h

s l
h HH K

K
u u Ch u

τ
π −

Ω
∈

− ≤∑                 (24) 

where C is independent on h.  
Theorem 6. Given the integer s such that 0 1s p≤ ≤ +  and a function 

( )su H∈ Ω , then:  

( ) ( ) ( )
( )2

2 22 1max ,s
hh

s
h Q K HL K KK

u u C h u
ττ

π λ λ −
Ω∂ ∈∈

− ≤∑           (25) 

where C is independent on h.  
Proof 1. Let ( )su H∈ Ω . Using the inequality (23), we have: 

( ) ( )2 2
2 21 ,

h h
h Q K K hL K L K

K K
u u C h u u

τ τ
π λ λ π−

∂
∈ ∈

− ≤ −∑ ∑          (26) 

( )h h
τ  being quasi-uniform, Kh Ch≤ .  

1 1 1

1 1

1 1

K K

K

K

h Ch C h h

h Ch

Ch C h

− − −

− −

− −

≤ ⇒ ≤

⇒ ≤

′⇒ ≤

                     (27) 

So  

( ) ( ) ( )2 2
2 21max

hh h
h Q K hL K L KKK K

u u C h u u
ττ τ

π λ λ π−
∂ ∈∈ ∈

− ≤ −∑ ∑       (28) 

Using the inequality (24), we have:  

( ) ( )2
2 22

s

h

s
h HL K

K
u u Ch u

τ
π

Ω
∈

− ≤∑                 (29) 

Thus, we get:  

( ) ( ) ( )
( )2

2 22 1max s
hh

s
h Q K HL K KK

u u C h u
ττ

π λ λ −
Ω∂ ∈∈

− ≤∑          (30) 

6. Functional Setting and Space Semidiscretization 
6.1. Functional Setting 

In this part, we introduce some basic notations for space-time functions and 
important theorems. 

Theorem 7. (see. [11]) ( )lC V  is a Banach space when equipped with the 
norm:  

( ) ( )00
maxl

m
tC V C Vm l

dφ φ
≤ ≤

=                    (31) 
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with  

( ) ( )0
0
max

f
C V Vt t t

tφ φ
≤ ≤

=  [11] (page69)              (32) 

We want to specify mathematically the meaning of the boundary condition 1. 
Our aim is to give a meaning to such traces in the space. Thus, we need to inves-
tigate the trace on ∂Ω  of functions in the space defined by: 

( ) { }2 2, is defined on ,L n v n vβ β
∂Ω

⋅ ∂Ω = ∂Ω ⋅ < ∞∫  [11]    (33) 

6.2. Space Semidiscretization 

Considering ( hτ ), we present following notations: 
• Interfaces are collected in the set i

h  and boundary faces are collected in 
the set b

h . We set : b i
h h h=    . { }, : ,h T hT F F Tτ∀ ∈ = ∈ ⊂ ∂  . 

• i
hF∀ ∈ , the mean of v is denoted by {{v}}. 

• The jump of v is denoted by [v]. 
• Assume { }1i i N

P
ΩΩ ≤ ≤

= Ω  is a partition of Ω  such that, for the exact solu-
tion u,  

( )
1
2 , 0u V V H P

ε
ε

+

Ω∈ = >  [11] 

where  

( ) ( ) ( ){ }2 2,V u L u Lβ= ∈ Ω ∇⋅ ∈ Ω                  (34) 

We set  

:h hV V V= +   with ( ) ( ) ( ){ }2
2 / 2; ,k k

h h h TV v L T v Tτ τ= = ∈ Ω ∀ ∈ ∈   (35) 

We define the discrete operator :h h hA V V→  such as ( ), h h hv w V V∀ ∈ × ,  

( ) ( ) ( ) ( )

( )[ ] { }{ } [ ][ ]

2,

1
2i i

h h

h h h hL

F h F hF F
F F

A v w v w n vw

n v w n v w

β β

β β

Ω Ω ∂Ω

∈ ∈

= ∇ ⋅ + ⋅

− + ⋅

∫ ∫

∑ ∑∫ ∫



 

 [11] (36) 

6.3. Assumptions 

For all hv V∈  , set: 

( )2
2 2 2

, cuwb Lv v h vβ
Ω

= + ∇
 

                    (37) 

( )2
2 2 2

,
h

cuwb uwb L T
T

v v v
τ
β

∂
∈

= + ∑                    (38) 

( )2
2 2 21
uwb L

c

v v v
βτ Ω

= +                       (39) 

( )( ) ( )0 2 2

1 1
3 22 2n n n n

h t hC L L
E d u tπ πε ζ τ δ τ ε

−

Ω Ω
= + + +  

       (40) 

We abbreviate as a b  the inequality a Cb≤  with positive C independent 
of , ,h tβ δ . The value of C can change at each occurrence [11]. 

We now state some assumptions on the discrete operator hA . The first one 
(41) is important to introduce the notion of numerical fluxes: 
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1) For all ( ), h h hv w V V∈ × ,  

( ) ( ) ( )

( ) { }{ }[ ] [ ][ ]

,

1
2i i

h h

h h h h

F h F hF F
F F

A v w w v n vw

n v w n v w

β β

β β

⊕

Ω ∂Ω

∈ ∈

= − ⋅∇ + ⋅

+ ⋅ + ⋅

∫ ∫

∑ ∑∫ ∫
 

 [11]   (41) 

2) From equality (41), Cauchy-Schwarz inequality and inverse inequality (22), 
we can infer: 

For all ( ) ( )1, h hv w H V∈ Ω × ,  

( )( ) ( )2 ,
,h h h h huwb uwbL

A v v w v v wπ π
Ω

− −


              (42) 

3) The three next assumptions are useful to bound the operator hA . 
For all  

( )2

1 1
2 2,h h cLv V A v r h vβ

−

Ω
∈  

 with ( )max 1, max
h

Q KK
r

τ
λ λ

∈

 =  
 

   (43) 

For all  

( )2

1 1
2 2,h h h c h Lv V v r h vβ

−

Ω
∈ 


                  (44) 

For all  

( ) ( )2 2
2 1,h h h c hL Lv V A v r h vβ −

Ω Ω
∈                 (45) 

4) The two next inequalities are bounds of ( ) ( )2

2
,

2
n n n
h h hL

tt
β

δδ α ε ε
Ω
−  and 

( ) ( )2

2
,

2
n n n
h h hL

tt
β

δδ β ζ ζ
Ω
− . 

( ) ( ) ( )2

22
,

2
n n n n
h h h hL

tt t E
β

δδ α ε ε δ
Ω
−               (46) 

( ) ( ) ( )2

22 4,
2

n n n n
h h h hL

tt r t E
β

δδ β ζ ζ δ
Ω
−              (47) 

5) The two last inequalities are obtained thanks to CFL condition and isogeo-
metric inverse and trace inequalities: 

( )1

2 22 2 1
k

m k m
c H

r h uπε β +
+

Ω



               (48) 

( ) ( )( )1

2 2 22 2 1 2
k k

m k m m
c c tH H

r h u d uπζ β β+
+ −

Ω Ω
+


      (49) 

For the time discretization, we are interested in an explicit scheme: the two 
stage Heun scheme. 

7. The Explicit Two Stage Heun Scheme Analysis 

In this section, we want to tackle the convergence analysis of the two stage Heun 
scheme. 

7.1. The Explicit Two Stage Heun Scheme 

Let tδ  be the time step such as ft N tδ=  where N is an integer. For 
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{ }0, ,n N∈ 
, we define the discrete times :nt n tδ=  and ( )n nu u t= . Assume 

tδ τ≤   with ( )min ,f ctτ τ= . 
We consider the following explicit scheme:  

( )

,1

1 ,1 ,1

0 0

1 1
2 2

with

n n n
h h h h

n n n n
h h h h h

h h

u u tA u

u u u tA u

u u

δ

δ

π

+

 = −

 = + −

 =

 [11] 

7.2. Error Equation 

This step is to identify the error equation governing the time evolution of n
hε  

and n
hζ . 

We set  
n n n
h h hu uε π= −                             (50) 
n n n

hu uπε π= −                             (51) 
n n n
h h hw wζ π= −                            (52) 
n n n

hw wπζ π= −                            (53) 

with  

tw u td uδ= +  [11]                         (54) 

From (50) and (51), we have n n n n
h hu u πε ε− = − . 

From (52) and (53), we have n n n n
h hw w πζ ζ− = − . 

We get:  
n n n n
h h h h htA tζ ε δ ε δ α= − +  [11]                   (55) 

( )1 1 1 1
2 2 2

n n n n n
h h h h h htA tε ε ζ δ ζ δ β+ = + − +  [11]           (56) 

where  
n n
h hA πα ε=                              (57) 

where  
n n n
h h hA πβ ζ π θ= −                          (58) 

and  

( )
1 21 31 d

n

n

tn n
tt

t t u t
t

θ
δ

+
+= −∫                      (59) 

7.3. Energy Identity 

This step is to derive an energy identity for our scheme (6.1).  

( )

( ) ( ) ( ) ( ) ( )

2 2

2 2 2

2 2 2 21

( )

21 , ,

n n n n
h h h hL L

n n n n n n n
h h h h h h hL L L

t t

t t

β β
ε ε δ ε δ ζ

ε ζ δ α ε δ β ζ

+

Ω Ω

+

Ω Ω Ω

− + +

= − + + −Λ
 [11]     (60) 

with  
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( ) ( ) ( ) ( )2 2, ,n n n n n
h h h h hL L

t tδ ε ε δ ζ ζ
Ω Ω

Λ = Λ + Λ                 (61) 

7.4. Stability Estimate 

Our aim is to bound the right terms in the energy identity (60). 
We want now to establish a stability lemma for a polynomial of degree 1k =  

(68). To get it, we need the next lemma. 
Lemma 1. Let 0

hπ  denote the L2-orthogonal projection onto ( )0
2 hτ . 

( )0
2 hτ  is spanned by piecewise constant functions on hτ . 
Then, ( ),h h h hv w V V∀ ∈ × , 

( ) ( )2

1 1
0 02 2,h h h h h c h h h huwb L

A v w w C r h v w wπ β π
−

Ω
− ≤ −          (62) 

where C  is independent of ,h tδ  and of β .  
Proof 2. This result is obtained using Cauchy-Schwarz inequality and equality 

(41).  

7.5. Preliminary Results  

This lemma is a preliminary stability bound. 
Lemma 2. Assume ( )( ) ( )( )3 2 0 1u C L C H∈ Ω Ω . 
Assume the CFL condition:  

c

htδ
β

≤   for some positive real number  .            (63) 

Thus,  

( ) ( ) ( ) ( )2 2 2

22 2 2 2 21 1 4

2 2
n n n n n n n
h h h h h h hL L L

t t Cr t E
β β

δ δε ε ε ζ ε ζ δ+ +

Ω Ω Ω
− + + ≤ − +   (64) 

where C is independent of ,h tδ  and β .  
Proof 3. Using CFL condition, energy identity (60), inequalities (46) and (47), 

we get (64).  
Lemma 3. (Stability lemma, 2k ≥ ) Assume ( )( ) ( )( )3 2 0 1u C L C H∈ Ω Ω . 

Assume the (
4
3

 CFL Condition)  

4
1 3
3

c

htδ τ
β

−  
′≤  

 
  for some positive real number ′          (65) 

Then, we infer:  

( ) ( ) ( )2 2

22 2 2 21 8

2 2
n n n n n
h h h h hL L

t t Cr t E
β β

δ δε ε ε ζ δ+

Ω Ω
− + + ≤          (66) 

Proof 4. The stability lemma (66) for a polynomial of degree 2k ≥  is ob-

tained by bounding the term 
( )2

21n n
h h L
ε ζ+

Ω
−  in the energy identity (60).  

Lemma 4. (Stability lemma, 1k = ) Assume ( )( ) ( )( )3 2 0 1u C L C H∈ Ω Ω . 
Assume the CFL condition:  
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c

htδ
β

≤   for some positive real number               

with ( ) ( )
22
3

1 1min ;
8 2

C C C− − ′≤  
 

                  (67) 

Thus,  

( ) ( )

( )

2 2

2 2 2 21 2 2

24

1 3 1 3
2 8 2 8

n n n n
h h h hL L

n
h

t r t r

Cr t E

β β
ε ε δ ε δ ζ

δ

+

Ω Ω

   − + − + −   
   

≤

      (68) 

where C is independent of ,h tδ  and β .  
Proof 5. This lemma is proven as in [11] (Page 96).  

7.6. Proofs of Our Main Results  

Proof of theorem 1  

( ) ( )

( ) ( )

2 2

2 2

N N N n n N
h h h hL L

N n n N
h h hL L

u u u u u u

u u u u

π π

π π

Ω Ω

Ω Ω

− = − + −

≤ − + −
 

( ) ( ) ( )2 2 2
N N N N

h hL L L
u u πε ε

Ω Ω Ω
− ≤ +  

Using the triangle and Young inequalities, we deduce:  
1

1 11 1 122
2 2

0 0 0

N N N
m m m m

h h
m m m

t u u t tπβ β
δ δ ε δ ε

− − −

= = =

 − + 
 
∑ ∑ ∑


 

Thus, we obtain: 

( )

( ) ( )

2

2 2

1
1 22

0

1 11 1
2 2

0 0

N
N N m m

h hL m

N N
N N m m

h hL L m m

u u t u u

t t

β

π π β

δ

ε ε δ ε δ ε

−

Ω
=

− −

Ω Ω
= =

 − + − 
 

+ + +

∑

∑ ∑


        (69) 

Let { }0, ,n N∈ 
 

Set 
2 2

2 2
n n n

h h
t tb

β β

δ δε ζ= +  

Given ( )2 2 2 2 24 4 4 4a b c d a b c d+ + + ≤ + + +  

From the relation (66), we deduce that: 

( ) ( ) (
( )( ) ( ) )

2 2

0 2 2

2 2 2 21 8

2 23 4 1

4 4

4 4

n n n n n
h hL L

n
t hC L L

b Cr t

d u t t

π πε ε δ ε ζ

τ δ δ τ ε

+

Ω Ω

−

Ω Ω

+ ≤ + +

+ +

 

 

 

Set 
( )( )0 2

2 2 28 3 44n n n
t C L

d Cr t d u tπ πδ ε ζ τ δ
Ω

 = + + 
 

 
        (70) 

whence, we have: 

( ) ( ) ( )2 2

2 21 8 11 4n n n n
h hL L

Cr t d bε δ τ ε+ −

Ω Ω
≤ + + −             (71) 
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Applying the Gronwall lemma, we get for 1n N= − : 

( ) ( ) ( ) ( ) ( )2 2

8 812 20
0 1

0

4 4exp exp
N

N i i
h f h f iL L i

Cr Crt t t t d bε ε
τ τ

−

+Ω Ω
=

   
≤ − + − −   

   
∑

 

 (72) 

So  

( ) ( ) ( )2

812

1
0

4exp
N

N i i
h f iL i

Cr t t d bε
τ

−

+Ω
=

 
≤ − − 

 
∑



 for 0 0 0 0h h hu uπ ε= ⇒ =   (73) 

So  

( )2

1
1 8 21 1
2

0 0

4exp
N N

N i i
h h fL i i

Crt t d
β

ε δ ε
τ

− −

Ω
= =

    
+            
∑ ∑



          (74) 

where  

( )( )0 2

2 2 28 3 44i i i
t C L

d Cr t d u tπ πδ ε ζ τ δ
Ω

 = + + 
 

 
 

Therefore, we have:  
1

1 8 21 1
2

0 0

4exp
N N

i i
f

i i

Crt t dπδ ε
τ

− −

= =

    
           

∑ ∑




               (75) 

From inequalities (69), (74) and (75), we get: 

( ) ( )2 2

1 1
81 12 22

0 0

4exp
N N

N N m m N i
h h fL Lm i

Cru u t u u t dπβ
δ ε

τ

− −

Ω Ω
= =

    − + − +     
    
∑ ∑



 (76) 

From inequalities (48), (49) and CFL condition, we obtain: 

( ) ( )

( )( )

1

0 2

1
1 1 1 1 1 11 2 5 52 2 2 2 2 2

0

1 1
4 3 22 2

k k

N k ki m m
f c f c tH Hi

f t C L

d t r h u t r h d u

r t d u t

β β

τ δ

+

− + − +

Ω Ω
=

Ω

  + 
 

+

∑ 



 

Using inverse inequality (24), 

( ) ( )2 1

2 22 2
k

N k m
L H

h uπε +
+

Ω Ω
  

So  

( ) ( )( )0 12
1

k
N k

C HL
h uπε +

+
ΩΩ

  

Therefore, inequality (76) becomes: 

( )

( )( ) ( )( )

( )( ) ( )( )

2

0 1 0 1

0 0 2

1
1 22

0

1 1 18
1 52 2 2

1 1 1 1 18
5 4 3 22 2 2 2 2

4exp

4exp

k k

k

N
N N m m

h hL m

kk
f f cC H C H

k

f c t f f tC H C L

u u t u u

Crh u t t r h u

Crt r h d u t r t d u t

β
δ

β
τ

β τ δ
τ

+ +

−

Ω
=

++
Ω Ω

− +

Ω Ω

 − + − 
 

 
+   

  
+ +    

∑







  (77) 

Set  
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( )( )0 2

1 1
4 32 2

1 f t C L
r t d uχ τ

Ω
=   

and  

( )( ) ( )( )0 1 0

1 1 1 1
5 52 2 2 2

2 k kf c f c tC H C Ht r u t r d uχ β β+

−

Ω Ω
= +          (78) 

( )( ) ( )( )

( )( )

0 1 0 1

0 1

1
1 2

1 1 1
2 2 2 for

k k

k

kk
C H C H

k

f c f cC H

h u hh u

t h u h tβ β

+ +

+

++
Ω Ω

+

Ω

=

 
 

( )( )0 1

1
1 2

2k

kk
C Hh u hχ+

++
Ω

  

We obtain thus:  

( )2

1
181 22 2 2

1 2
0

4exp
N kN N m m

h h fL m

Cru u t u u t t h
β

δ χ δ χ
τ

− +

Ω
=

   − + − +         
∑ 



 

Proof of theorem 2  
Using inequality (68), we get inequality:  

( )2

81 12

0 0

8exp
N N

N i i
h fL i i

Crb t dε
τ

− −

Ω
= =

 
+ ≤  

 
∑ ∑



             (79) 

with  
2 22 21 3 1 3

2 8 2 8
i i i

h hb t r t r
β β

δ ε δ ζ   = − + −   
   

 

2 22 24 3 4 3
2 8

i i i
h h

r rb t t
β β

δ ε δ ζ
   − −

= +   
   

 

( )

( )

2

2

2
1 12 21 1
2 2

0 0

2 21 12 2 2

0 0

4 3 4 3
2 2 2 2

4 3 4 3
8 8

N N
N i i
h h hL i i

N N
N i i
h h hL i i

r rt t

r rt t

β β

β β

ε δ ε δ ζ

ε δ ε δ ζ

− −

Ω
= =

− −

Ω
= =

 − −
 + +
 
 

− −
+ +

∑ ∑

∑ ∑

 

Thus  

( )2

1 12 21 1
2 2

0 0

1
8 21

0

4 3 4 3
2 2 2 2

8exp

N N
N i i
h h hL i i

N
i

f
i

r rt t

Cr t d

β β
ε δ ε δ ζ

τ

− −

Ω
= =

−

=

− −
+ +

  
     

∑ ∑

∑


 

So  

( )2

1
1 8 21 1

2 2

0 0

84 3 exp
N N

N i i
h h fL i i

Crr t t d
β

ε δ ε
τ

− −

Ω
= =

  
+ −      
∑ ∑



        (80) 

whence  

( )2

1
1 8 21 1

22
20 0

1 8exp for 4 3 1
4 3

N N
N i i
h h fL i i

Crt t d r
rβ

ε δ ε
τ

− −

Ω
= =

  
+ − ≤   −   
∑ ∑



 (81) 
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Therefore,  

( )

( )( )

( )( ) ( )( )

( )( )

2

0 1

0 1 0

0 2

1
1 22

0

8
1

2

1 1 1 1 1 1
5 52 2 2 2 2 2

1 18
4 3 22 2

2

1 8exp
4 3

1 8exp
4 3

k

k k

N
N N m m

h hL m

k
fC H

k k

f c f c tC H C H

f f t C L

u u t u u

Crh u t
r

t r h u t r h d u

Cr t r t d u t
r

β
δ

τ

β β

τ δ
τ

+

+

−

Ω
=

+
Ω

+ − +

Ω Ω

Ω

 − + − 
 

 
+  

−  
 

× +  
 

 
+  

−  

∑







         (82) 

( )

( )( )

( )( ) ( )( )

( )( )

2

0 1

0 1 0

0 2

1
1 22

0

8
1

2 2

1 1 1 1 1 1
5 52 2 2 2 2 2

1 18
4 3 22 2

2 2

1 1 8exp
4 3 4 3

1 8 1exp for 1
4 3 4 3

k

k k

N
N N m m

h hL m

k
fC H

k k

f c f c tC H C H

f f t C L

u u t u u

Crh u t
r r

t r h u t r h d u

Cr t r t d u t
r r

β
δ

τ

β β

τ δ
τ

+

+

−

Ω
=

+
Ω

+ − +

Ω Ω

Ω

 − + − 
 

 
+  

− −  
 

× +  
 

 
+ ≤ 

− − 

∑







    (83) 

( )2

1
1 22

0

18
2 2

1 22

1 8exp
4 3

N
N N m m

h hL m

k

f

u u t u u

Cr t t h
r

β
δ

χ δ χ
τ

−

Ω
=

+

 − + − 
 

  
+   −   

∑




                 (84) 

Remark 1. When F is the identity mapping, K Q=  so 1K Qλ λ= =  [16] 
(page 10). Therefore 1r = . We get same results as Alexandre Ern. Thus, Our 
results are a generalization of Ern results because in finite elements method, Ern 
obtained his error estimate, working on a polygon [11]. In the framework of our 
work, we got the same order of precision in time and space like Alexandre Ern. 
But our result is obtained for anygeometry.  

8. Conclusion 

The isogeometric method has been used to establish an error estimate for trans-
port equation in 2D using the explicit two stage Heun scheme, for smooth solu-
tions, in the energy norm comprising the L2-norm and the jumps. These results 
generalize Ern results. An extension of this present paper is to tackle Burgers 
equation to get an isogeometric error estimate. 
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