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Abstract 
Let E be a toric fibration arising from symplectic reduction of a direct sum of 
complex line bundles over (almost) Kähler base B. Then each torus-fixed 
point of the toric manifold fiber defines a section of the fibration. Let aL  be 
convex line bundles over B, aA  smooth divisors of B arising as the zero loci 
of generic sections of aL , and : B Eα →  a particular fixed-point section of 

E. Further assume the { }aA  to be mutually disjoint. The manifold ( )E Aα  

is a new manifold with tautological line bundles over new projective spaces in 
the geometry, where previously there was a simpler vector bundle in the given 
local geometry (Section 1.5). Thus, we compute genus-0 Gromov-Witten 
invariants of ( )aa

E Aα



 in terms of genus-0 Gromov-Witten invariants 

of B and of { }aA , the matrix used for the symplectic reduction description of 

the fiber of the toric fibration E B→ , and the restriction maps 
( ) ( )* * *:

aA ai H B H A→ . The proofs utilize the fixed-point localization techni- 

que describing the geometry of ( )E Aα  and its genus-0 Gromov-Witten 

theory, as well as the Quantum Lefschetz theorem relating the genus-0 
Gromov-Witten theory of A with that of B. 
 
Keywords 
Gromov-Witten Invariant, Quantum Cohomology, Fixed-Point Localization, 
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1. Introduction 
1.1. Formulations 

Our main results are formulated in terms of the formal series 
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called the genus-0 descendant potential of M, where M is respectively ( )E Aα  
(as in the Abstract), the base of the toric fibration E, or a suitable divisor of the 
base. The ingredients of the series are defined in the generality of almost-Kähler 
manifolds M, as follows. The spaces 0, ,n DM  are moduli spaces of (equivalence 
classes of) degree-D stable maps into M of genus-0 (possibly nodal) compact 
connected holomorphic curves with n marked points. Two such stable maps 
( )1; , , , nf C x x  and ( )1; , , , nf C x x′ ′ ′ ′

  are equivalent if there is a holomorphic 
automorphism : C Cφ ′→  mapping marked points to marked points and 
preserving the ordering, such that f f φ′= . For a stable map ( )1; , , , nf C x x , 
the degree-D condition reads [ ]( )*f C D= . 

Then, 0, ,n DM    denotes the virtual fundamental class of 0, ,n DM . The 
ingredient aψ  is the 1st Chern class of the universal cotangent line bundle over 

0, ,n DM  whose fiber at a stable map ( )1; , , , nf C x x  is the cotangent line along 
the stable map at the a-th marked point. The maps 0, ,ev :a n DM M→  evaluate 
the stable maps at the a-th marked points. 

The Mori cone MC of M is the semigroup in ( )2 ,H M   generated by classes 
representable by compact holomorphic curves. Then DQ  is the element in the 
Novikov ring (the power-series completion of the semigroup algebra of the Mori 
cone) representing the degree D MC∈ . Lastly, ( )* , , 0,1, 2,kt H M k∈ =   
are arbitrary cohomology classes of M with coefficients in a suitable ground ring 
  (for now, the Novikov ring with rational coefficients  ). 

It is convenient for this purpose to choose a basis { }lρ  of ( )( )1,1 ,H E Aα 
, 

and extend to a basis of ( )( )2 ,H E Aα 
. Then, the dual basis can be thought 

of in terms of a corresponding basis of curve classes, and its extension to 
( )( )2 ,H E Aα 

. Define Novikov’s variables lQ ; these record, for the 
exponent, the pairing of lρ  on a curve class  . Equivalently, the variable lQ  
records the coefficients of the curve classes   along the dual basis vector to 

lρ , in the dual basis expansion of ( )( )2 ,H E Aα∈  
. 

1.2. Toric Fibrations 

Let ( )| 1, , ; 1, ,ijm i K j N= = = m  be an integer matrix, and consider the 
action of KT  on the Hermitian space N  that, for each 1, ,j N= 

, 
multiplies the coordinate jz  by ( )1exp 1K

ij ii m θ
=

−∑ . Let : N Nµ →   be 
the map given by  

( ) ( )22 2
1 2 1 2, , , , , ,N Nz z z z z z→  . 

If the moment map µm  has a regular value Kω∈ , then 

( ) ( )1 KTµ ω−
m  is a symplectic manifold. This construction is called symplectic 

reduction. The space ( ) ( )1 KTµ ω−
m  is also denoted by N KTω  , and is 

equipped with a canonical symplectic form, call it ω , induced by the standard 
symplectic form on N . All complex line bundles over B may be assumed to 
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have the unitary circle 1S  as structure group, as they are induced by pullback 
from the tautological line bundle over P∞ . Given complex line bundles 

1, , NL L  over B, it follows that NT  is the structure group of the vector bundle 

jL B⊕ → . Thus, the fiberwise symplectic reduction of jL⊕  is well-defined 
giving the toric fibration E B→ . The ith coordinate iθ  on the torus KT  
defines a circle bundle over E for which the expression 1 idθ−  defines 
connection 1-forms in the bundle. Denote by iP−  the first Chern class of the 
ith circle bundle over E, and ip−  its restriction to a fiber. The 1, , Kp p  
classes are of Hodge ( )1,1 -type by the Fubini-Study construction, though they 
need not be Kähler classes1. Let γ  be any NT -fixed point of ( ) ( )1 KTµ ω−

m , 
and ( ) ( )1p µ ω−∈ m  representing the KT -equivalence class γ . The orbits 

KT p  and NT p  are then identical. It follows that there is some coordinate 
subspace K N⊂   with coordinates 

1
, ,

Kj jz z , containing p, such that none 
of the coordinates ( ) ( )

1
, ,

Kj jz p z p  vanishes. It will be convenient to think of 
the NT -fixed strata γ  of E in terms of the corresponding indices 1, , Kj j . 
For each 1, ,j N= 

, the restriction of 
1

K
j ij i jiU m P

=
= −Λ∑  to a fiber is 

Poincaré dual to the jth coordinate divisor ( ) ( ) { }( )1 0 K
jz Tµ ω− = m . 

Define ( )1: T
j jc L−Λ =  for 1, ,j N= 

. The expressions for the pullbacks iPγ  
in terms of jΛ  may be summarized by the equations 

1

* * 0
Kj jU Uγ γ= = =

. 
Set : NT T= . All bundles introduced thus far are T-equivariant, so their Chern 

classes may be assumed to take values in the T-equivariant cohomology group 
( )*

TH E , or ( )( )* 1
TH Aπ − , with coefficient ring ( ) [ ]*

1, , , NH BT λ λ=   . 

1.3. The Cone ( )E A α  

Associated to the genus-0 Gromov-Witten theory of M is a Lagrangian cone M  
in a symplectic loop space ( ),Ω  [1] [2] [3]. The space + −= ⊕    is a 
module over the ground ring  . Pending further completions,   consists of 
Laurent series in 1/z with coefficients in ( )*: ,H H M=  , completed so that 

+  consists of elements of [ ]H z  at each order in Novikov’s variables, and 
1 1: z H z− −

− =  

 
 

 . Identify each ( ) 0
k

kkq z q z +=
= ∈∑   with the domain 

variables 0 1 2, , ,t t t   of M  by the dilaton shift convention  

,1, 0, ,k k kq t kδ= − = ∞ . Take the ring of coefficients for Novikov’s variables to 
be the (super-commutative) power series ring (with coefficients in the field of 
fractions ( ) ( )1: , , Nλ λ λ=   , in all of our applications) in the formal 
coordinates along ( )* ,H M  , and require the variables 0 1, ,t t   to vanish 
when Novikov’s variables and formal coordinates along ( )*H M  are all set to 
zero. This gives a Novikov ring   that is consistent with the formula for 

( )E AI α  in our Main Theorem. 
Let { }µφ  be a basis of ( )*H M  and { }µφ  the Poincaré-dual basis. 

Consider the symplectic manifold *T +  with standard symplectic form 

,0, k kk dp dqµ
µµ≥

∧∑ . It is symplectomorphic to   with symplectic form 

 

 

1Section 1.6 gives a description of a toric manifold for which the class p3 is non-Kähler. 
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( ) ( ) ( )( )0, : Res ,z M
f z g z=Ω = −f g , 

where ( ), M⋅ ⋅  is the Poincaré pairing. 
Let us implement this symplectomorphism via the map 

( ) ( ) 1
,

0, 0,
, kk

k k
k k

q p q z p zµ µ
µ µ

µ µ
φ φ − −

≥ ≥

+ −∑ ∑ . 

Consider the graph of the differential of ( )M t , which is a Lagrangian 
submanifold in *T + . From there, we arrive at  

( ) ( ){ }: , | t Mq p p d t= =   

by rigid translation in the direction of the dilaton shift. Thus   is also a 
Lagrangian submanifold. Henceforth we consider   as a submanifold of  . 
The work of Coates-Givental [1], establishes that   is a (Lagrangian) cone as a 
formal Lagrangian section of *T +  near q z= − ; that is,  

T zT= ∀ ∈f f f    . 

In particular, each tangent space is preserved by multiplication by z. 
It may be that   contains (as a limit point) the ( ),q p -coordinate origin (0, 

0), as a special case of Getzler’s [4], Givental’s [5] solution, and its geometric 
formulation [1], of Eguchi-Xiong’s, Dubrovin’s ( )3 2g − -jet conjecture, as 
follows. 

The shift of the formal variable ( )t z  in the z-(or ψ -) direction appears to 
be well-understood, so perhaps formality of the geometry (to guarantee 
convergence of ( )q ) in the z-direction need not be assumed. This existence 
(via convergence) of the “vertex” or the “limiting vertex” of the cone gives an 
intuitive way to think about the introductory material; however, the author has 
not studied this convergence sufficiently. In our main theorem, the domain 
variable ( )t z  is consistent with the setting of formal geometry. 

The Lagrangian cone   of the T-equivariant genus-0 Gromov-Witten 
theory of ( )E Aα  lies in the corresponding symplectic loop space ( ),Ω  as 
above. A point in the cone can be written as  

( ) ( ) ( ) ( )( )
1

*
1 *

0 21

1, 1 ev ev
!

D n

i i
n D MC i

Qz t z t z t
n z

ψ
ψ

+∞

= ∈ =

 
− = − + +  − − 

∑ ∑ ∏F , 

where ( )1 *ev  denotes the virtual push-forward by the evaluation map 
( )( ) ( )1 0, 1,

ev :
n D

E A E Aα α
+

→  , and ( ) 0
k

kkt z t z∞

=
= ∑  is an arbitrary element 

of +  with coefficients kt H∈ . Define the J-function to be the restriction of 
( ),z t−F  to values 0t H∈  and to 0kt =  for all 0k > . For each ∈f  there 

is a unique ( )t H∈f  such that  

{ } ( )( ),zT z z J z t−− + = −f f  . 

This property of the set of all tangent spaces2 of   to be in 1-1 correspondence 
with the set H, which is a finite-dimensional  -module, is called overruled. For 
each t H∈  and for each open set U t , the J-function generates a module 

 

 

2Without distinguishing between 
1

T f  and 
2

T f  if they coincide as subsets of  . 
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over the algebra ( ) ( )( )1
0

r
U r tT H z∞ −

=Γ ⊕ ⊗ ⊗  of differential operators as follows,  

( ) ( ) ( )*, , , , ,
ta b a bz z J z t z J z t a b H M•∂ ∂ = ∂ ∀ ∈   

where  

0, 3,

3
* * * *
1 2 3

0 4
: ev ev ev ev

! n D

D n

t iM
n D MC i

Qa b a b t
n

µ
µφ φ

+

+∞

  = ∈ =

• = ∑ ∑ ∏∫  

is the unital, associative, (super-)commutative quantum cup product. Additionally, 
the J-function satisfies the string and divisor equations:  

( ) ( )1 , ,
M

z J z t J z t∂ = , 

and 

( ) ( )( ) ( ) ( )2, , ,D D
M

D MC
z J z t Q D z J z t H Mρ ρ ρ ρ

∈

∂ = + ∀ ∈∑   

respectively. The graded homogeneity, defined by degrees of formal variables, 
makes the quantum cup product a degree 0 operation, the J-function graded 
homogeneous of degree 1, and z of degree 1. 

1.4. Twisted Lagrangian Cones 

The forgetful maps 1 0, 1, 0, ,:n n D n Dft M M+ + →  induce the K-theoretic 
push-forward maps ( ) ( ) ( )1 0, 1, 0, ,*

:n n D n Dft K M K M+ + → . Let   be a complex 
vector bundle over M. The evaluation maps 1 0, 1,ev :n n DM M+ + →  induce the 
(virtual-) bundles *

1evn+  , in terms of which the (virtual-) virtual bundles  

( ) ( )*
0, , 1 1 0, ,*

: evn D n n n Dft K M+ += ∈   

are defined. The fiber of 0, ,n D  over a stable map ( )( ); ,f pΣ Σ  is  

( ) ( )0 * 1 *, ,H f H fΣ Σ   . 

Given a characteristic class ( )⋅c , define the twisted Poincaré pairing 
( ) ( ) ( )( ),, : ,

M
a b a b

⋅
=


c c . 

A point in the ( )( ),⋅ c -twisted cone can be written as  

( ) ( ) ( ) ( ) ( ) ( )( )
1

*
1 0, 1,, *

, 21

1, 1 ev ev
!

D n

n D i i
n D i

Qz t z t z t
n z

ψ
ψ

+

+⋅
=

 
− = − + +  − − 

∑ ∏cF c  . 

The overruled Lagrangian cone ( ),c ⋅   in the ( )( ),⋅ c -twisted genus-0 
Gromov-Witten theory of M lies in the symplectic loop space ( )

( )( ),
,,⋅

⋅Ω
c

c , 
where ( ) 0

k
kkt z t z∞

=
= ∑  is an element of ( ) ( ), : M

⋅
+ +

= c  with arbitrary 
coefficients ( ), :k Mt H H⋅∈ =c . The examples we will consider are: 

Example 1.4.1. ( ) ( )Euler⋅ = ⋅c , and   is a convex line bundle; i.e., 

( )1 *, 0H fΣ = ; or equivalently, ( )( )*
1 1f c Σ ≥ −  for all genus-0 stable maps 

( )( ); ,f pΣ Σ  to M. 
Example 1.4.2. ( ) ( )1

TEuler−⋅ = ⋅c , and   is a complex vector bundle with a 
hamiltonian T-action that decomposes   into a direct sum of complex line 
bundles, each of which carries a non-trivial T-action. 
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1.5. Torus Action on ( )E A α  

The manifold ( )E Aα  may be described as the result of surgery on E, along 
the divisor ( )Aα  of the T-fixed section Eα ⊂ , as we now recall. The notation 

( )E Aα , and ( ): E A Eπ α →
  recall the detailed local geometry near the 

exceptional divisor ( ) ( )
1 * *

A AA i N Eαπ −  . Define a map from a tubular 
neighborhood of the ( )1O −  bundle over the projective space bundle 

( ) ( ) ( )
1 * *

A AA i N Eα απ −   over ( )Aα  to a tubular neighborhood of  

( )
* *
A AAN E i L i N Eαα ⊕  over ( )Aα  as follows. Fiberwise, it is described by the 

projection map π  

( ){ }
( )

1 1

1

, : a line in through the origin;

, , .

N K N K N K

N K

v P v

v v

− + − − +

− +

∈ × ∈

→

  

 

  


 

This construction holds in the generality3 of complex manifolds and 
submanifolds, respectively, where ( )1 AN K dim N Eα− + =   is replaced by dim

(normal bundle to the submanifold within the ambient manifold). The map π  
collapses the projective space fibers 0 N KP −×  fiberwise over ( )Aα . The map 
π  is the identity map away from the points ( )0,  above, and thus extends over 
the entire gluing space ( )E Aα . This map identifies T-equivariantly the 
complements of the 0-sections of the total spaces of the preceding two vector 
bundles. Remove a tubular neighborhood of ( )AN Eα  from E, and replace it by a 
tubular neighborhood of the ( )1O −  bundle over ( ) ( )

1 * *
A AA i N Eαπ −  . 

We will call the resulting manifold the projective-space (surgery, gluing, 
quotient) of E along ( )Aα , the ( )

*
AN Eα   quotient-space of E along ( )Aα , 

the ( )* * *
A Ai L i N Eα⊕   quotient-space of E along ( )Aα  (Section 2.1), the 

*  surgery-space of E along (or normal to) ( )Aα . Henceforth, we denote 
this by ( )E Aα , for simplicity of notation. 

1.6. Simplification: Toric Manifold 

Let X be a compact symplectic toric manifold and let ( )* dim X
T ⊂   be the 

maximal unitary torus, and let Y be a T-invariant submanifold of X. Then 
X Y  is again a toric manifold. As explained in Section 1.5, though not in the 

generality needed here, the action of T on X induces an action of T on X Y . 
Thus, we may study T-equivariant genus-0 Gromov-Witten invariants of X Y , 
the * -quotient of X along (or normal to) Y directly, using fixed-point 
localization. All faces of the moment polytope of Y are faces of the moment 
polytope of X. The moment polytope of X Y  admits a canonical inclusion 
into the moment polytope of X, for which all faces of the moment polytope of  

( ) ( ) ( )1 *\ \ \Y YX Y Y X Y N X X Y N Xπ −
       are contained in faces 

of the corresponding same dimension of the moment polytope of X. Let 1, , mv v  
be the primitive integer normal vectors to the codimension one faces of the moment 
polytope of a toric manifold. Let 1, , Km m  be a basis of the  -vector space  

 

 

3With no assumption of torus actions on the ambient space. The same construction generalizes to 
the case of smooth real manifolds and submanifolds, respectively. 
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( )1
1

, , | 0 ,
m

m i i
i

a a a v
=

 = 
 

∑  

consisting of primitive integer vectors. The toric manifold is then recovered 
from symplectic reduction referred to the matrix m , whose row vectors are 

1, , Km m . By a mirror theorem of Givental [6] and its extensions [7], a 
particular family of points on the Lagrangian cone of the genus-0 Gromov-Witten 
theory of a toric manifold is given by an explicit formula4 in terms of 1, , Km m ,  

( )
( )

( )
( )( )

1

1, : e e .
j

dPt z t
X U d

d MC X jm

I t z z q
U mz∈

=

=
+

∑
∏

 

This project has its roots in the following instructive example. Let E be the 
total space of the projective bundle 

 
described by symplectic reduction with respect to the matrix  

1 2 31 1 1
.

0 0 0 1 1 1X

a a a− − − 
=  
 

m  

Let [ ]0,0,1  be the section of E that maps each point 2x∈  to the point 
[ ]0,0,1  in the fiber over x. When X is the toric bundle E and Y is [ ]( )0,0,1 A  
then a calculation gives  

( )

1 2 31 1 1 0
0 0 0 1 1 1 0 .
1 0 0 1 1 0 1

X Y

a a a− − − 
 =  
 − 

m


 

In particular,  

( )( ) ( )1 1 3the pull back of 2 .c T X Y c TX P= + “ ”  

This example provides a reference point for navigating the project. The matrix 
may be computed using Appendix A in [8], which is itself a summary of 
literature [9] [10] [11] [12] on moment maps and aspects of toric manifolds. 
Namely, in the momentum polyhedron of a toric manifold, the 1-dim edge 
vectors leaving a vertex at a T-fixed point γ  are positive multiples of the 
elements of the set { }*

j j
U

γ
γ

∉
. These latter are the weights of the T-action on 

the normal bundle to γ  in the toric manifold. 
Apply this first to the original projective bundle X E= . Then compute the 

weights of the T-action on the normal bundles in X Y  to the T-fixed points of 
the exceptional divisor. Finally, compute the normals to the codimension one 
faces of the momentum polyhedron of X Y . A basis of linear relations among 
them is given by the rows of the matrix. 

However, in fact, our main theorem arises as a generalization of this example. 

 

 

4The product formula convention is given in Section 4. 
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Here we are using the toric mirror theorems [6] [7] [8] as a guide to the 
structure of genus-0 Gromov-Witten invariants more generally (following the 
initial proposals of A. Elezi and A. Givental). Elezi’s work focused on projective 
bundles [13]. In [14], Givental proposed a toric bundles generalization of Elezi’s 
approach using toric mirror integral representations [6] [7]. This is an 
ingredient in [8] and in the present work. 

1.7. Organization of the Text 

We recall in Section 2.2 the Atiyah-Bott fixed-point localization Theorem which 
implies, in particular, that any element of ( )( )*

TH E Aα  is uniquely determined 
by its restrictions to the T-fixed strata ε  of ( )E Aα . Points ( )zF  on the 
overruled Lagrangian cone of the genus-0 T-equivariant Gromov-Witten theory 
of ( )E Aα  are certain H-valued formal functions, which we study in terms of 
their restrictions ( ){ }* zε F . As we recall [8] in Section 5, the −  projection of 
each of the restrictions ( )* zε F  consists of two types of terms. Namely, there 
are terms ii) that form simple poles expanded as 1z−  series about non-zero 

( )*
TH B -values of z. The remaining terms i) are polynomial in 1z−  at any given 

order in formal variables , , , , ,t t q q Qτ

 . The organising principle of the text, 
formulated as Theorem 2, characterizes the Lagrangian cone of the genus-0 
T-equivariant Gromov-Witten theory of ( )E Aα  in terms of two conditions i) 
ii) on ( ){ }* zε F . The condition ii) says that the residues of *ε F  at its simple 
poles at non-zero values of z are governed recursively with respect to ( ){ }* zε F . 
The condition i) describes the remaining poles at 0z =  in terms of a certain 
twisted Lagrangian cone of the stratum ε . The Main Theorem gives a family of 
points ( )E AI α  whose restrictions satisfy the conditions of Theorem 2. 

In Section 6 we verify condition ii) for the restrictions ( ){ }*
E AI αε


 directly, 
using their defining formulae. In Section 7, we verify condition i) using 
transformation laws [1] of Lagrangian cones with respect to the twisting 
construction from Section 1.4 and example 1.8 (expanding simple poles at 
non-zero values of z in non-negative powers of z). A new aspect of the present 
work relative to toric bundles is that ii) relates the series ( ){ }* zε F  that, 
according to condition i), lie in Lagrangian cones derived from genus-0 
Gromov-Witten invariants of B and of aA , respectively. The Quantum Lefschetz 
Theorem relates the Lagrangian cone associated to the genus-0 Gromov-Witten 
theory of A with that of B. If the push-forward ( ) ( )* 2 2: , ,

aA ai H A H B→   
does not identify the Mori cone of aA  with that of B, the opposite relation 
describing the Lagrangian cone of B in terms of that of aA  is realised 
algebraically by the Birkhoff factorization procedure and dividing by powers of z. 
Division by z does not preserve the Lagrangian cone, so we must then clear 
denominators on both sides. For each ( )D MC B∈ , denote the greatest power 
of z that we divide by up to order DQ  in this process by ( )Aht D . We work out 
an example where A is a smooth quintic 3-fold. 

It suffices without loss of generality to assume that { }aA  is a single connected 
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manifold A, as regards most aspects of the project. In case there is a subtlety, we 
address it as it arises. 

A key result to keep in mind while reading the paper is the Proposition in 
Section 2.1, describing the T-equivariant normal bundles to the T-fixed sections 
of the exceptional divisor. The Proposition is used for both the Atiyah-Bott 
fixed-point localization theorem for ( )( )*

TH E Aα  in Section 2.2, and for 
stating the twisting construction in genus-0 Gromov-Witten theory in Section 
7.1 for ( ) ( )

*, E Aj I αα +


. 

1.8. T-Fixed Strata of ( )E A α  

Recall that L gives rise to A B⊂  as the zero locus of a generic section. The 
tautological line bundle with fiber  , i.e. the ( )1−  bundle, over the 
exceptional divisor ( ) ( )( ) ( )1 * * *

A AAA N E i L i N Eααπ − ⊕    is central to the 
results. 

The T-action on ( )E Aα  induces a T-action on the moduli spaces of stable 
maps to ( )E Aα , which in turn induces a T-action on the universal cotangent 
line bundles at each of the marked points. For a given T-fixed stratum ε  of 

( )E Aα  and a line bundle ε→  with a fiberwise T-action, we refer to the 
class ( ) ( ) ( ) ( )2 2 2, , ,T TEuler H H BT Hε ε∈ ⊕     as the T-weight of   
at ε . The T-fixed strata of ( )E Aα  are in comparison with those of E as 
follows. The stratum ( )Bα  of E is replaced by ( ) ( ) :B Aα α α= 


, which is 

canonically diffeomorphic to ( )Bα . Let ε  take on the values ( ), 1,0α   


 as a 
substratum of α , as well as ( ) ( )\ , 1,0Bε α α  =  



 . 
Example 1.8. If ε  is a T-fixed stratum in the complement of the exceptional 

divisor, then take M B ε=   in Example 1.4.2. If ε  is a T-fixed stratum in 
the exceptional divisor, then take M A ε=   in Example 1.4.2. In either case, 
set ( )( )N E Aε α= 

 in Example 1.4.2 and also define ( )( ): N E Aε
ε α= 

.  

Finally, set ( )
( )

, 1,0 * *
, 1,0 Ai iα α α

α

  
  

=


 

   . 

For each T-fixed section γ α≠  of E, the strata ( )Bγ  of E is canonically a 
stratum of ( )E Aα  that we also denote by ( )Bγ . Lastly, there are T-fixed 
strata of ( )E Aα  that have no counterpart in E. Namely, each T-equivariant 
line bundle summand of ( ) ( )* *

A AAN E i L i N Eαα ⊕  gives rise to a T-fixed section 
over A in the exceptional divisor. 

In the case ( ), 1,0ε α  =  


, *ε  will denote (Section 2.1 for the definition) 
( )( ) ( ) *

1 1Im c L c L α⋅ ⊂   rather than the pullback to ( )*H A  (which is modded 
out as in Section 2.1). Thus, *ε  is given a new definition in this case. Let also 
γ  take the value ( )( ) *

1Ker c Lγ α= ⋅ ⊂  . 
In particular (Section 2.1), the summand *

Ai L  gives rise to a section  

[ ] ( ) ( )( ) ( ) ( )( )*1,0, ,0 : 0A AN B N Bα αα α α= ⊕ ⊂ 
     

over A in the total space of the exceptional divisor. The T-fixed set ( ), 1,0α   


 is 
only a proper subset of the T-fixed stratum α . Thus we must check the 
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conditions 1.a) and 2.aa) for the projections to  
( )( ) ( )( ) ( ) *

1 1 1,Ker c L Im c L c L α⋅ ⋅ ⊂   (see Section 7.3 for the integral  
asymptotics of α ), and not for ( )*, 1,0α   



, for the series ( )E AI α . 
From now on let the symbol γ  stand for the T-fixed strata denoted γ  

above, or for the “substrata” ( )( ) *
1Ker c L α⋅ ⊂   of α . Let us denote the 

situation of a torus fixed point β  connected to α  by a 1-dimensional edge of 
the momentum polyhedron of a fiber of E, by ~β α . In this case 

1Kα β = + , 1Kα β = − , and 1
,:KT Pα β

α β=  . Let ( ),j α β−  be the 
coordinate from \α α β  and ( ),j α β+  the coordinate from \β α β . 
Similarly, we have the notation ( ), jα β −  and ( ), jβ α + . In the next section, we 
enhance this description of the T-fixed points of E to a description of the T-fixed 
points of ( )E Aα . 

2. Geometry of ( )E A α  

2.1. Geometric Preliminaries and Decomposition of Cohomology 

The action of T on E decomposes ( ) ( )*
Ai TE T Aα α  into a direct sum of 1-dim- 

ensional eigenspaces, 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
* * * * * .AA A A A AN E i TE T A i T B T A i N E i L i N Eα αα α α α αα α α= ⊕ ⊕   

Let jj+  be an ordering index of these eigenspaces, where the index value 
1,0jj+  =  


 corresponds to the bundle *
Ai L , and jj j+ +=  indexes the 

summand of N Eα  with T-weight *
jUα
+

. Denote the T-fixed section of 

( ) ( )1 * * *
A AA i L i N Eαπ − ⊕ 

 corresponding to the index jj+  by ( ), jjα + . In 
the ( )l E Aα−   case, we need to include the index a, for the divisors of B 
along which we replace the geometry of E by the ( )aE Aα  geometry. The 
strata ( ), jα +  is connected to the strata ( ), jβ α +  by the T-invariant edges 

( )
1

, ,jPα β+
 . Denote by ( )2

, THε εχ ε′ ∈  the T-weight of 1
,T Pε ε ε ′ . 

Denote by ( ): E A Bπ α →  the composition of ( ): E A Eπ α →
  with 

the projection to the base B. It is now mandatory that we introduce the diagram 

 
Let ( ), jjN α +  be the normal bundle within ( )E Aα  to the T-fixed section 

over A with index jj+  in ( )( ) ( )* * *
A AAN E i L i N Eαα ⊕  . 

Proposition. The action of T on ( )E Aα  decomposes ( ), jjN α +  into a direct 
sum of T-equivariant line bundles, whose T-equivariant Euler classes are the 
elements of the set 
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{ } ( ){ } { }

( ){ } ( ){ }

* * * * *
1,

* * *
1 1

if :

,

if 1,0 :

.

jj j jj A jjj jj

A j Aj

jj j

U U U i c L U

jj

i c L U i c L

α

α

α α α α

α

+ + ++

+ +

≠ ∉

+

∉

=

− + − +

 =  

− +

 





 

Let us now turn attention to the restriction map ( )( ) ( )( )* * 1H E A H Aα π −→
. 

Denote P  the T-equivariant Euler class of the ( )1T  bundle on the exceptional 
divisor. By the Lerray-Serre theorem,  

( )( ) ( )* 1 * .H A H A Pπ −   




 

In the following, we extend the definition of P  to the entire ( )E Aα . 
With this interpretation of P , recall the isomorphism of vector spaces [15] 

( )( ) ( ) ( )( ) ( )( )* * * 1 * ,H E A H E H A H Aα π −⊕   

where the quotient is an additive quotient and ( ) ( )* *H E Im π

. On the other 
hand, ( ) ( )[ ]* *

1, , KH E H B P P . The restriction of iP  to the exceptional 
divisor is ( )

* *
iAi Pαπ , which restricts to ( )

*
iAi Pα  to ( )( ), jj Aα + . 

Let us assume that ( ) ( )( )* * 0A AIm i Im i
⊥
= , so that  

( ) ( ) ( )( )* * * .A AH A Im i Im i
⊥

⊕  

This holds true in the examples of quintic 3-folds for which the base is 
projective space. More generally, examples follow from the Lefschetz hyperplane 
Theorem and the Hard Lefschetz Theorem. 

The restriction map ( ) ( )* * *:Ai H B H A→  and the Poincaré pairing give the 
orthogonal projection π ⊥ : 

 
The short exact sequence 

( )( ) ( ) ( ) ( )( )1*
1 10 0c LKer c L H B Im c L⋅→ ⋅ → → ⋅ →  

gives a direct sum decomposition ( ) ( )( ) ( )( ) ( )*
1 1 1H B Ker c L Im c L c L⋅ ⊕ ⋅

 
with respect to the Poincaré-pairing on ( )*H B . 

The result of “division by ( )1c L ” is only defined at the level of coset 
representatives of ( ) ( )( )*

1H B Ker c L ⋅ . The choice of a basis of coset repre- 
sentatives from ( )*H B  suffices for integration over ( )Bα  weighted by 
( )1c L , which represents integration over the fundamental class of ( )Aα . Thus, 

the subspace ( )( ) ( )1 1Im c L c L⋅  represents the span of an arbitrary basis of 
coset representatives from ( )*H B , and is not uniquely defined. The space 

( )( ) ( )1 1Im c L c L⋅  can be thought of as ( ) ( )( )*
1H B Ker c L ⋅ . 
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For the purpose of integrating over fundamental cycles, the pullback ( )*
Ai b , 

( )2dim Bb H B−∀ ∈  , of b to ( )*H A  can be described with respect to ( )*H B  by 
a multiplicative factor of ( )1c L ,  

( )*
1 .AA B

i b c L b=∫ ∫  

Let us now establish that  

( ) ( )( )*
1 .AKer i Ker c L⊂ ⋅  

Both are subsets of ( )*H B . In general, the subspaces can differ only on 
( )dim BH B , about which the Hodge diamond is symmetric w.r.t. the Lefschetz 

theorems. The inclusion is clearly an isomorphism when the base is projective 
space. 

Thus, ( ) ( )* *,Ac Ker i b H B∀ ∈ ∀ ∈ ,  

( ) ( )( )*
1 0.AA B

i cb c L c b= =∫ ∫  

Thus, ( )1 0c L c = . This gives the inclusion. Finally, taking the quotients of 
( )*H B  gives  

( ) ( ) ( ) ( ) ( )( ) ( )( ) ( )* * * *
1 1 1 .A AIm i H B Ker i H B Ker c L Im c L c L→ ⋅ ⋅ 

 

Let us assume the map on the LHS is an isomorphism (an equality). This is 
also assumed as hypotheses for the main theorem (Section 4) and Theorem 2. 

The RHS is used in the comparison of projection maps. Then, ( )( )1Ker c Lπ ⋅  and 

( )( ) ( )1 1Im c L c Lπ ⋅  extend to ( )( )*H E Aα  by 

( )( )1
0,Ker c L Pπ ⋅ =  

and 

( )
( )( ) ( ) ( )( ) ( ) ( )

1 1 1 1

, 1,0
1: ,Im c L c L Im c L c LP P c Lα

π π
  

⋅ ⋅= = −


 

 

respectively. 

2.2. Fixed-Point Localization 

For each ( )( )TE Aε α∈  , the action of T on ( )E Aα  decomposes 
( )N E Aε α  into a direct sum of 1-dimensional eigenspaces. Define N ε  as in 

Example 1.8. Let ( )( )2 1
,A jj TU H Aπ −∈  be the classes that restrict to the 

T-equivariant Poincaré duals of the torus-invariant divisors in the fibers of the 
exceptional divisor ( ) ( )1 * * *

A AA i L i N Eαπ − ⊕ 

:  

( )

( ) ( )
( )

* *

2
, *

1

,
1,0 .

, 1,0

jA

A jj T

A

P i U jj j
U H A

P i c L jj

α

α

α α + = ∉  = ∈   + =  









 

The Atiyah-Bott Theorem says that the pairing of a class ( )( )Tf H E Aα∈ 
 

against the fundamental class of ( )E Aα  is given by 
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( ) ( ) ( )

( ) ( )( ) ( )

( )( )

1

1

,

1
0

1

1
0

0,
1,0 ,

d d
Res d d

d d
Res d d

dRes .

j jK

j jK

A jj

K
U UE A B

n

K
U UB

j jj j

Ujj A
jj A jjjj

f P Pf det U P
U U

f P P det U P
U U P

f P
P U

α γ
γ α

α
α α

α ++
+ ++

= = =
≠

= = =

∈ ∉

=
 ≠ ′′ 

∧ ∧
=

∧ ∧
+

+

+
−

∑∫ ∫

∫
∏ ∏

∑ ∫ ∏

























 

Namely, we sum over each of the T-fixed strata ( )( )TE Aε α∈   the pairing 
of the class  

( ) ( )
*

T
T

f H
Euler N ε

ε ε∈  

against the fundamental class of ε . 
Thus, denote P  the class in ( ) ( )( )* ,TH E Aα λ

 that restricts to the 
T-equivariant Euler class of the ( )1T  bundle on the exceptional divisor, and 
restricts to zero at all T-fixed strata in the complement of the exceptional divisor. 

Define a T-equivariant line bundle l  over the union of torus-invariant edges 
of ( )E Aα  as follows. It restricts to the ( )1T  bundle over the edges of the 
exceptional divisor, restricts to the trivial bundle over the edges 1

,Pγ γ ′  and 
whose T-equivariant Euler class restricts to ( )( ) ( )

* 1 *
1 , , ,
T

j jc T P Uα β α βπ
+ −

+   over 
the edges ( )

1
, ,jPα β+

 . 
Proposition. The P  pairings on elements of ( )( )2 ,H E Aα 

 take values 
in  . 

Proof. The restriction of P  to the union of torus invariant edges coincides 
with the class ( )1

Tc l . Apply the Atiyah-Bott fixed-point localization Theorem 
to the restriction of P  to the union of torus-invariant edges of ( )E Aα ,  

( )( ) ( )
( )

*

, ,
, ,

, 0
1,j

j

j P
P d α β

α β

α
χ+

+

+ −
= = −



  

and ( ), 0P dα β =  for all ~β α . Thus, P  induces an element of  
( )( )2 ,H E Aα 

. 

3. The htA Function 

Let 0τ  be the coordinate along ( )01 H B∈ . Let 1, , rP P  be a basis of 
( )1,1 ,H B  , and 1 2, ,r r sP P+ +  a basis of ( ) ( )0,2 2,0, ,H B H B⊕  , with dual 

bases 1, , rτ τ  and 1 2, ,r r sτ τ+ + . Let 1, , vϑ ϑ  be coordinates on  
( ) ( ) ( )* 2 0 ,H B H B H B⊕ + . Define  

( ) ( ){ } ( )
( )

( )
( )( )

( )( )
1

1,
1 1

, : , .
a

a

c L Dl
D D

B ae L
D MC B a m

z Q z c L mzϑ τ ϑ τ⋅
∈ = =

 
− + = × − + −  

 
∑ ∏ ∏F F  

Quantum Lefschetz Theorem [1] [16] [17]. Suppose  
( )( ) ( )1 0c L D D MC B≥ ∀ ∈ , or more generally that L is convex. Then for each 

( )*H Bϑ τ+ ∈  and for each smooth family ( ),B Bz τ− ⊂ F , the series 
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modification  

( ) ( )
( ) ( )

( )
( )( )

( )( )
1

*

* *
1,

1
, : ,

A

c L D
D D

A A Be L
D Im i MC B m

i z Q i z c L mzϑ τ ϑ τ⋅
∈ ⊂ =

 
− + = × − + −  

 
∑ ∏F F  

lies in the image by π ⊥  of the Lagrangian cone associated to the genus-0 
Gromov-Witten theory of A with domain inputs { } 0k k

t
≥

 encoded by coefficients 
of ( ) ( ) ( ) [ ]* *

,: ,A A Be Lq z i z i H zϑ τ⋅ +
 = − + ∈ 
F  by the dilaton shift. 

Let us assume that ( ),B z ϑ τ+F  has the property (Div + Str primary) that its 
dependence on 0 1 2, , , r sτ τ τ +  is of the form  

( )
( ) ( ), e e ,Dz D

D
D MC B

a z z Q ττϑ
∈
∑  

where ( ),Da z ϑ  do not depend on 0 1 2, , , r sτ τ τ + , are Laurent polynomials in 
z valued in ( )*H B , and ( )0 , e za z ϑϑ = . Then, both series  

( ) ( ) ( ) ( )**
, \0, : e 1Ai z D

A De L D MCi z z B Qϑ τϑ τ +
⋅ ∈

+ = +∑F  and  

( ) ( ) ( ) ( )**
, \0, : e 1Ai z D

A De L D MCi z z A Qϑ τϑ τ +
⋅ ∈

+ = +∑F  have the property Div+Str 
primary. 

In the case that ( ) ( ) ( )*Ai MC A MC B=  define ( ):Aht MC B →   by 
( ) ( )0Aht D D MC B= ∀ ∈ . Let us define a partial order on ( )MC B  by D D′≤  

if ( )D D MC B′ − ∈ . In the case that the inclusion ( ) ( ) ( )*Ai MC A MC B⊂  is 
only proper, our goal is to prove well-definedness of the least positive integer 
function ( ):Aht MC B →   such that, for each ( )D MC B∈ , the truncation of 
( ) ( )

( ) ( )*
, ,Aht D

A e Lz i z ϑ τ⋅− − +F  to order D≤  on both of +  and −  in the 
Novikov’s variables of the base is a formal linear combination of vectors in the 
linear space 

( ) ( )A AzzT π π⊥ ⊥
− ⊂ f  

(both sides truncated to order ≤ D on both of +  and − ), 
where ( ) ( ) ( )*

,: ,A e Lz i z ϑ τ⋅= +f F . 
The need for this is as follows. Condition 1.a of Theorem 2 refers to twisted 

Lagrangian cones of the Gromov-Witten theory of A. The Quantum Lefschetz 
Theorem also refers to the (image by π ⊥  of the) Lagrangian cone of A, but 
does so in terms of a family of points of the (image by *

Ai  of the) Lagrangian 
cone of the Gromov-Witten theory of B. The difficulty is that the Quantum 
Lefschetz Theorem only uses certain terms of the series-those that lie in the 
Novikov ring associated with ( ) ( )*Ai MC B . The input for the Main Theorem is 
a family of points on the Lagrangian cone of B, which uses the Novikov ring of 
B. 

The difficulty with this is that the Mori cone (resp Novikov ring) of A is only a 
subcone (resp. subring) of the Mori cone (resp. Novikov ring) of B. The natural 
algebraic tool for working with Langragian cones in genus-0 Gromov-Witten 
theory is the Birkhoff factorization technique. We will do this using the divisor 
equations. Thus, assume ( )*H B  is generated by ( )2H B , in which case 

( )*
AIm i  is generated multiplicatively by ( )* 2

Ai H B . 
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We now prove well-definedness of Aht  by giving a combinatorial algorithm 
for computing it. We observe the following (Divisor-, String-) differential 
equations  

( ) ( )

( )( ) ( ) ( )

( ) ( )

( ) ( ) ( )

*

*

*

*

e e

e e 1, ,

e e 1, , 2

: e e , 1, , 2 .

i

i

z DD
A i

z DD
i A

z DD
A

z DD
i AD

i P Q

z zP D i Q i r

z i Q i r r s

P i Q i r s

ϑ τ τ

ϑ τ τ
τ

ϑ τ τ
τ

ϑ τ τ

+

+

+

+

 ∂ − == 
∂ = + +

= = +









 

For any polynomial φ  in variables 1 2, , ,r sP P z+  with coefficients in  , it 
follows that 

( ) ( ) ( )

( ) ( )( ) ( ) ( )

*
1 2

*
1 2

, , ; e e

, , ; e e .

z DD
A r s

z DD
r s AD D

i P P z Q

P P z i Q

ϑ τ τ

ϑ τ τ

φ

φ

+
+

+
+=



 



 

Define { }DC  recursively:  

\0 \0 \0
1 1 1 .D D D

D D D
D MC D MC D MC

B Q C Q A Q
∈ ∈ ∈

    + = + +    
    

∑ ∑ ∑  

Now replace the series ( )\01 D
DD MC C Q

∈
+∑  by a differential operator series. 

Let Dd  be the (maximal) pole order of DC  at 0z = . Then define Dφ  
through the formula 

( ) ( )
( ) ( )( ) ( )

( ) ( )
1 2* *

, ,

, , ;
, e ,

D

D r s DD DD
A Ae L e Ld

D MC

P P z
i z Q i z

z
τ

φ
ϑ τ ϑ τ

+

⋅ ⋅
∈

+ = +∑
 



F F  

Namely, expand the RHS (right-hand side) at order D, 

( ) ( )
( )

( )( )* *
1 1,

e, , ;
D

D
D D

A D Ae L d
D D

i z i P zP D D z
z

τ

ϑ τ φ
′

′
′−

′⋅
′≤

′+ + −∑ 

F  

to get the formula for Dφ  in terms of DC , inductively. Define  

( ) { }{ }: max ,0 ,A D D Dht D d ′ ′≤
=  

and  

{ } ( ) ( ){ }: max .
aa a AAht D ht D=  

Let ( ),
aA z ϑ τ− +F  be the unique5 family of points of 

aA  whose truncation 
to order D′≤  on both of +  and −  in the Novikov’s variables of the base 
satisfies 

( ) ( ) { } ( )
( ) ( ) ( )*

,, ,Aa
a a a

ht D
A A e Lz z i zπ ϑ τ ϑ τ′⊥

⋅− + = − − +F F . 

( ) ( ) ( ), : , , .
a a aA A Az z zϑ τ ϑ τ π ϑ τ⊥− + = − + − − +G F F  

{ } ( ) ( )
( )( )

( )( )
1

1 1
1, 1

, : , .
a

aa

c L Dl
D l D

a A aA
a a m

z z c L mzϑ τ ϑ τ
′

′=
′= ≠ =

− + = ⊕ − + −∏ ∏G G  

Example. Let ( )4 4, 5B P L O P= = →  , and 4A P⊂   a smooth quintic 

 

 

5As a section of the graph of the differential of the twisted version of  . 
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3-fold. 
Let BP  be the Kähler generator of ( )2 ,H B  , and take ( ),B z τ−F  to be the 

J-function of 4P  at the point BP tτ = ,  

( ) ( )
( )5

=0
1

1, e e ,B
dP t z t

B d
d Bm

z z q
P mz

τ
=

=
+

∑
∏

F  

( ) ( ) ( ) ( )
( )

( )*

5
* * 1

, 5
0

1

2
1 2

5
, e e

: e 1 ,

B

A B

d
d BP t z t m

A Ae L d
d Bm

i P t z

P mz
i z i z q

P mz

z B q B q

τ =
⋅

=
=

+
=

+

= + + +

∏∑
∏



F
 

( ) ( ) ( ) ( )
( )

( )*

25
5* * 1

, 5 5
0

1

5 10
1 2

5
, e e

: e 1 .

B

A B

d
d BP t z t m

A Ae L d
d Bm

i P t z

P mz
i z i z q

P mz

z A q A q

τ =
⋅

=
=

+
=

+

= + + +

∏∑
∏





F
 

Thus, we deduce the relation 5 , 1n nA B n= ∀ ≥ . The A series has been 
reindexed relative to the original A series. 

The coefficient of ( )* e eBP t z t
Azi q  in ( ) ( ), ,e L z τ⋅F  is  

( ) ( ) ( )
5 4 2 3* * 1 1 1

1 1

5
5 5 1 .B

A A B B B
m jB

P mzi i j P z P z P z
P z

− − −

= =

+   = − − + −   +  ∏ ∏  

This is a polynomial in powers of the nilpotent of maximal non-vanishing 
degree 3 variable * 1

A Bi P z− , with coefficients in  . 
Then,  

( )( ) ( )2 5 10 2
1 2 1 2 1 21 1 1C q C q A q A q B q B q+ + + + + + = + + +  

 

determines { }nC  recursively:  

5 1 10 2n n n nC B C A C A− −= − − −  

A quick check by induction shows that 0nC =  when n is a positive multiple 
of 5, in which case 0nd = . Also by induction, for each 1n ≥  for which n is not 
a multiple of 5, nd  is the maximal power of *

A Bi P  in the nB  series; i.e., 
3nd = . The preceding discussion allows us to deduce the following. 

Proposition. Suppose that ( ) ( ) ( )* :Ai MC A MC B→  is not surjective, so that 
( ):Aht MC B →   is not identically zero. If B is nP , if A is the zero locus of a 

generic section of a convex line bundle L over B, if BF  is the J-function of B, 
and if the class ( ) ( )( )1 1c TB c L−  of the base is nonnegative as a functional on 

( )MC B , then ( ) ( ) ( )( ) ( )1 1 1Aht D c TB c L D dim B= − + −   ( ) \ 0D MC B∀ ∈ . 
Proof. Group each numerator factor with a denominator factor and expand 

analogously to the above. Each factor in the denominator that is not grouped 
with a factor in the numerator gives a power of 1z−  beyond those that come 
with powers of *

A Bi P . 

4. Main Results 
4.1. The I-Function 

Upon extension of scalars ⊂   of homology groups, the Mori cone of 
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( )E Aα  includes into ( )( )2 ,H E Aα 
. Given ( )( )2 ,H E Aα∈  

 or 
( )( )MC E Aα∈ 

, define ( )*: π= 

  , ( )*:D π=  , ( ):i id P=  ,  

( ):a ad P=   , and these values uniquely determine  . 
Henceforth we use the gamma function convention:  

( ) ( ) ( )
0

1
: .

n n

m m m
U mz U mz U mz

= =−∞ =−∞

+ = + +∏ ∏ ∏  

Let us assume the conditions in Section 3 hold true. Our main theorem assumes 
the hypotheses of Section 2.1; however, the latter hypotheses may not be necessary 
(as noted in Section 5.3). Then, 

Main Theorem. Let E be a toric fibration over base B, whose fibers are not 
copies of the point, and let : B Eα →  be a T-fixed section. Let aL  be convex 
line bundles over B, and aA  smooth divisors of B arising as the zero loci of 
generic sections of aL . Further assume the { }aA  to be mutually disjoint. In the 
Case 1 below, assume ( )*H B  is generated by ( )2H B , so that each ( )*

aAIm i  
is generated multiplicatively by ( )* 2

aAi H B . 
Case 1: If the push-forwards ( ) ( )* 2 2: , ,

aA ai H A H B→   do not identify the 
Mori cone of aA  with that of B, then for each ( )D MC B′∈ , for each ( ),t t , for 
each ( )*H Bτ ∈  and for each smooth family ( ),B Bz τ− ⊂ F  with the 
property Div + Str primary, the z z→ −  version of the series  

( ), , , , , ,
aaE AI z t t q q Qτ ⊂









 (a completion6 of)   defined by 

( )

( )

( ) ( ) { } ( )
( ) ( ){ } ( ) { } ( )( )

( )( )
( ){ }

( )( )
( ){ }

( )( )( )( )

1

1

,

; ; , , | 1

1, | 1

11 1

, , , , , , e e

e e , ,

1

1 1

aa

Aa
aa

jK l

l
j aa

a a

Pt z Pt z
E A

dd ht Dt t D D D
Ae L

U
d d D D D MC B jj j m

U d l
j aaj j m

l c L D d
a a aa m

I z t t q q Q

q q Q z z z

U mz

U P mz

c L P mz P

α β α β

α β α β

τ

τ τ

+

=

+

′

⋅

′∈ ∈ ≤ ∈ ∉ =

+

=∈ =

+

= =

∑

=

+
×

+

×
+ +

× ×
+ + − +

∑
∏ ∏

∑∏ ∏

∏ ∏

























 

 




F G







( )1 1
al d

a m mz−

= =∏ ∏


 

lies in the truncation to order D′≤  on both of +  and −  (in the 
Novikov’s variables of the base) of the Lagrangian cone associated to the genus-0 
Gromov-Witten theory of ( )aa

E Aα



. Case 2: If the push-forwards 

( ) ( )* 2 2: , ,
aA ai H A H B→   identify the Mori cone of aA  with that of B, then 

{ } ( ) ( )0
aAht D D MC B= ∀ ∈ , and the preceding series lies in the preceding cone 

without any truncation condition on either, while still assuming the property 
Div + Str primary for the smooth family ( ),B Bz τ− ⊂F  . 

Since the genus-0 generating functions of Gromov-Witten theory of E and 

 

 

6By an extension of the Novikov ring of ( )E Aα . See the first example of the Main theorem, and 

the second Remark in Section 6. The completion arises from the + -truncation of the above series. 
Then, the graph of the genus-0 generating function, with dilaton-shifted domain variables encoded 

by ( ) ( )0
1

aa

k

kE A k
I z z t z∞

=+
  = + −  ∑





 from + , necessitates an associated completion of − . 
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( ) ( ) ( )( )1 * * *
A A AA i L i N E N Eα απ − ⊕     are described in [8], we may think of 

the main result as a gluing result or a gluing formula. Similarly, the α  
integral (Section 7.3) is defined in terms of the integrals for ( )( )1Ker c L ⋅  and 

( )( ) ( )1 1Im c L c L⋅ . 
Remark. When the fibers are copies of the point then we omit the sum over 

d  and we set P  to zero, since the projective fibers are also copies of the point. 
Keeping these interpretations in mind, the theorem remains true when the fiber 
of the toric fibration is the point. The theorem reduces to the statement 

B B⊂F  . 
Remark. The natural generalization of the Main Theorem to the case of 

several T-fixed sections of E coincides, at the first level of analysis, with the 
natural generalization of the mirror theory of Section 7. 

Remark. The analogue of the proof of Theorem 2 in [8] indicates the dependence 
of points of ( )E Aα



 upon domain variables from ( )( ) ( )* *
AIm i H A

⊥
⊂ . 

Conjecture. The dependence on domain variables  

( ) ( )( )( ) ( )* *
,, , /jj jj Au u Im i H Aα+ +

⊥ ∈ ⊕ 
 

  

may be incorporated into the Main Theorem by replacing ( ),uτ τ ε τ→ + F  in 
the argument of ( ),B zτF  and ( )( )* * ,A Ai i u uτ τ ε τ→ + +F  in the argument of 

( ),A zτG , for some function ( ) ( )( ) ( )* * *: AH B Im i H Bε
⊥

⊕ →F , ( ),0 0ε τ =F . 
The latter shift of the argument of AG  by u is free, and then the shift of τ  is 
determined. 

Some examples of the main Theorem. 
1) Let B be a smooth toric variety obtained by kT -symplectic reduction of 
n  and A a (nef) coordinate hyperplane divisor of B. An instance of ( )E Aα  

in this case is the example in Section 1.6. The series ( )E AI α , constructed from 
( )( )3

*

FiberT
H E Aα , is not supported in the Mori cone of ( )E Aα . See the 
inequality conditions on the support of the series, in the Remark in (2.bb) of 
Section 6. However, if we construct the series ( )E AI α  from ( )( )*

7T
H E Aα  

then the latter conditions at the fixed point [ ]( ) ( )1,0,0 \B Aα α∈   are updated 
by the additional condition ( )1 0U ≥ . The class 1 1 3U P P= +  is, apriori, an 
element of ( )( )7

2
T

H E Aα . If the bundle L is considered as 3T -equivariant, 
then P  is 6T -equivariant. The class ( )( )7

2
3 T

P H E Aα∈ 
 is not the same 

equivariantly as ( )( )6
2
T

P H E Aα∈ 
, but they define the same functionals on 

the Mori cone of ( )E Aα . The above inequality reads 0D d+ ≥ . This 
inequality rules out − ⋅  “the class of a 1P  in a fiber of the exceptional 
divisor”, as well as the curve classes ( ) ( ), , , , 4,5j jd jα β α+ + +⋅ = , from the solutions 
to the original set of inequalities in the Remark. 

Thus, the series of the Main Theorem is an extension outside the Novikov ring 
of the series of the toric mirror theorems, in example 1.5 and more generally for 
symplectic toric manifolds [6] [7] [8]. 

2) Let B be ( )*2 2×  , ( )
( )

( )2 *2
1 1L = ⊗ 

 
 and A the manifold of 
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complete flags in 3 . 
Corollary. Let E be a toric fibration over base B, whose fibers are not copies of 

the point, and let : B Eα →  be a T-fixed section. Then for each ( ),t t , for 
each ( )*H Bτ ∈  and for each smooth family ( ),B Bz τ− ⊂F   with the 
property Div + Str primary, the z z→ −  version of the series  

( )

( )

( ) ( ) ( )
( )( )

( ){ }

( )( )
( ){ } ( )

; ; , | 1

, | 1 1

, , , , , ,

e e ,
e e

1 1

jK

j

E

ddt t D D
BPt z Pt z

U
d d D MC B jj j m

U d d
jj j m m

I z t t q q Q

q q Q z

U mz

U P mz P mz

α

α β α β

α β α β

τ

τ

+

+

∈ ∈ ∈ ∉ =

+ −

∈ = =

=
+

× ×
+ + − +

∑
∏ ∏

∏ ∏ ∏











 







 

F




 







 

lies in the Lagrangian cone associated to the genus-0 Gromov-Witten theory of 
( )E Bα . 

Application to codimension > 1 subvarieties A B⊂ . Let E B→  be a 
symplectic reduction of a direct sum of line bundles pulled back from A, and 
B A→  a symplectic reduction of a direct sum of line bundles also pulled back 
from A. T-fixed sections 1 : A Bα →  and 2 : B Eα →  may be considered as 
index subsets, respectively. The disjoint union of index subsets defines a T-fixed 
section 1 2 : A Eα α →



. Then Corollary applies to ( )1 2E Aα α


 , where the 
matrix used for the symplectic reduction is block diagonal with a block for each 
of the fibers. 

4.2. Graded Homogeneity 

Let { }lρ  be a basis of ( )( )2H E Aα  extending a basis of ( )( )1,1H E Aα . 
Define ( ) ( )( )( )( )1deg Q c T E Aα=   for all Novikov’s variables Q . This 
determines the degrees of Novikov’s variables lQ  as follows:  

( )( )2 ,a H E Aα∀ ∈ 
, let , la ρ  denote the coefficent of a along the basis 

vector lρ . Thus, ( ) ( )( )( ) ( )1 ,ddeg q c T E A P Pα=   and  

( ) ( )( )( ) ( )1 ,ddeg q c T E A P Pα=


 

  . Let us refer to Sections 1.8, 2.1 and 2.2 
for the definition of classes , ,A jjU P

+
  and for the projection maps ( )( )1Ker c Lπ ⋅  

and ( )( ) ( )1 1Im c L c Lπ ⋅  onto subspaces of ( )*H B . The first Chern class of 
( )( )T E Aα  away from the exceptional divisor is the restriction of the first 

Chern class of TE. The first Chern class of TE is ( )*
1 1

N
jjc TB Uπ

=
+∑ . 

Let γ  be any T-fixed stratum in the complement of the exceptional divisor. 
The tangent space to the fibers of E at γ  decomposes as the direct sum of the 
line bundles with the equivariant first Chern classes * ,jU jγ γ∉ . Since the 
classes * ,jU jγ γ∈  all vanish, the above formula for the first Chern class 
accounts correctly for the normal bundle to γ  in E (Section 1.2). On the 
exceptional divisor, the tangent bundle of ( )E Aα  restricts to 

( )( )* */TA T E A TAπ α π⊕ 
. The ( )1−  fiber line summand, along with the 

( )( )1Ker c Lπ ⋅  and ( )( ) ( )1 1Im c L c Lπ ⋅  maps, will give the difference between the tangent 
bundle to the projective bundle itself, and the pullback of ( )TE Aα  from the 
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ambient space. 
At each T-fixed section ( ), jjα +  on the projective space bundle over A, refer 

to Section 2.1 for the first Chern classes of the normal line bundle summands. 
Then, the first Chern class of the preceding is ( ) ( )*

1 ,A jjjjc TA U Pπ
++

+ −∑  , as 
follows. The dimension of the fiber of E is N K− , and there are 1N K− +  
T-fixed point sections of the projective bundle fibers of the exceptional fibers. At 
each ( ), jjα + , the first Chern class of one of the 1N K− +  line bundle 
summands, ,A jjU

+
, vanishes. Thus, we get N K−  contributions to the first 

Chern class of the tangent bundle to the projective space fibers at each such 
T-fixed section. Thus, we arrive at ( )N K P−   for measuring the degree of q , 

( )deg q N K= − . The restriction of the class P  to fibers of ( )1 Aπ −  is the 
dual vector to the 1  fiber curve classes. 

The class P  vanishes away from the exceptional divisor. Now compare the 
preceding formulae for ( )( )( )1c T E Aα  to the universal formula  

( ) ( )( ) ( ) ( ) ( )
1 1

*
1 1 1 .jIm c L c L

j
c TB c L U N K P Pπ π ⋅− + + − + −∑    

The latter restricts correctly to the exceptional divisor and to the standard 
locus. 

Let us now check the degree of the total series ( )E AI α  is ( )1 Aht D′+ . The 
degree of ( ),D D

B z QτF  is 1. Then, for each ( )D MC B∈ , the term 

( ){ } ( ), ,D D
e LQ z τ⋅F  is of degree ( )( )11 c L D+ . Thus, if we simply define 

( )( ) ( )( )1 1
DdegQ c TB D c L D= − , then the degree of the latter becomes 1. When 

the factor ( )Aht Dz ′  is included we thus arrive at degree ( )1 Aht D′+ , which is 
independent of ( )D MC B∈ . Let us note geometry of the latter definition of 

DQ , as follows. The summand ( )( )1 1c −  from 

( ) ( ) ( )( )*
1 1 1 1Ai c TB c TA c= + −  

contributes to the pairings ,d D . The data beyond ,d d  to determine a class 
( )D MC B∈  is the pairing ( )( )1c TA  , realized as  

( ) ( ) ( )* *
1 1 * .A Ai c TB i c L π −    

This is the latter degree of DQ , for all ( ) ( )D MC B MC A∈ ⊃ . 
Then compare the degrees of the terms d dq q 

 , where   is defined by ,d d  
and ( )* 0π = , with the degrees of the hypergeometric factors. Then, the 
remaining terms of the main series are of total degree 0, as follows. If 

( ) 0, 0jU d≥ − ≥  and ( ) 0jjU d
+

+ ≥ , all factors are denominator series 
with the total degree 

( ) ( ) ( ).j jj
j jj

U U d
α

+
+∈

 
− − − − 

 
∑ ∑    

In the case 0d > , the “denominator” series with upper limit d−   is actually 
a numerator series. The index goes from 0 to 1d− + , giving d  factors in the 
numerator rather than the denominator; thus the preceding counting of d+   is 
correct in this case too. Let us simply note that the degree counting is the same 
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in all cases. Thus, the mechanism that establishes the degree formula is the ratio 
of infinite products, from Section 4. 

The degree of d dq q 

  Novikov variables is ( ) ( )( )j jjj jjU U dα ++∈
+ −∑ ∑   . 

Thus, this need only be compared to the hypergeometric factors of the series. In 
view of the above remarks, we compare the Novikov variables degrees to the 
upper limit indices on the product series. The Novikov variable degrees and the 
product series degrees should be equal, so that they cancel out to 0. The 
comparison is immediately verified. 

5. The T-Equivariant Cone ( )E A α  

5.1. Localization of Stable Maps 

The work of Graber-Pandharipande [18] justifies the fixed-point localization 
technique for computing integrals of T-equivariant cohomology classes over 
virtual fundamental cycles in the moduli spaces of stable maps to ( )E Aα . 
Here the T-equivariant normal “bundle” to a T-fixed stable map is actually a 
virtual (orbi-) virtual bundle in T-equivariant K-theory. The description of 
T-fixed stable maps is then analogous to the description in [8]. Namely, the 
connected components of the T-fixed loci in the moduli spaces of genus-0 stable 
maps are fiber products of moduli spaces of genus-0 stable maps into the T-fixed 
strata of ( )E Aα . Let C be a leg of Σ ; i.e., an irreducible component of Σ  
that maps surjectively to a T-invariant edge of (a fiber of π  of) ( )E Aα . The 
fiber product is defined by reference to the curves from 0, ,n Dε , from 0, ,n Dε ′ ′′  and 
toric edges ( )f C . The image points ( )0f  and ( )f ∞  coincide with the 
images of marked points of stable maps from 0, ,n Dε  and from 0, ,n Dε ′ ′′  in their 
roles as nodal points of Σ . There is also the case that either 0 C∈  or C∞∈  
may be a marked or unmarked point of Σ , not connecting C to any other curve 
component of Σ . 

There are three disjoint cases to consider, depending upon how the 
1-dimensional T  -orbit ( )f C  (i.e., edge) intersects the exceptional divisor. 
Equivalently, these cases are distinguished by the projection π  image of the 
point set ( )f C . Firstly (2.bb), the projection of the toric edge along the 
projection π  map is again a toric edge at each point of the given fiber product. 
Suppose that the two strata connecting a toric edge map via the projection π  
to the T-fixed sections α  and β . The fibre products involving factors of 
genus-0 stable maps into ( ) ( ) ( )B A Bα α α α= 

 can be non-compact, as 
follows. Given a toric edge connecting ( ) ( ) ( )( )* *\ 0AB A i Lα α ⊕    to 
( )\B Aβ , the nodal point in ( )\B Aα  is unable to enter the exceptional 

divisor. The Atiyah-Bott formula7 implies that the correct cohomology group to 
use for the non-compact space ( ) ( ) ( ) ( )( )\ \AB A N B B Aαα α α   is the 
subset ( )( ) ( )( )*

1Ker c L H Bα⋅ ⊂  . A similar case to consider is when the toric 
edge connects to , Bγ γ ′ , where γ γ ′≠ . 

 

 

7See also the decomposition of *α  in section 2.1, and at the end of 5.2. 
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Secondly (2.ab), the T-fixed points of the toric edge connect to the rest of the 
T-fixed stable map at ( )Aβ  and at ( )( ), j Aα + ; ( ), jβ β α += . In this case too, 
the projection π  image of the toric edge is also a toric edge. 

Third (2.aa), the toric edge is contracted by the projection π  map at each 
point of the given fiber product. The T-fixed points of the toric edge connect to 
the rest of the T-fixed stable map at ( )( ), jj Aα +  and at ( )( ), jj Aα +′ , 
jj jj+ +′≠ . 

There are three types of terms that contribute to the series ( )* ,z tε −F . 
Namely, the polynomial term ( )*t z zε − , and then two types of contributions to 
the −  projection of the series ( )* ,z tε −F . Given a T-fixed stable map to 

( )E Aα , which we denote by ( )( ); ,f pΣ Σ , now let C be the smooth 
irreducible component of Σ  that contains the first marked point of the source 
of the stable map. In order for the stable map ( ); ,f pΣ Σ    to contribute to 

( )* ,z tε −F , f must map the first marked point into the stratum ε . The latter 
two types of contributions are determined by whether 

i) All points of C are mapped by f into the T-fixed stratum ε . In this case, let 
C′  be the maximal connected subset of Σ  containing C that maps to ε , and 
let [ ] ( )* 2 ,D f C H ε′ ′= ∈  . 

ii) C maps to a T-invariant 1P  in ( )E Aα  connecting T-fixed strata ε  
and ε ′ . Let us assume that, in the normalization of Σ , C is a 1P  with two 
marked points—which we may take to be 0 and ∞  via the action of ( )2PSL   
on 1P —, that there is a marked point of Σ  at 0 C∈ , and that the marked 
point at ∞  corresponds to a node of Σ . Thus the stable map takes C to a 

1
,Pε ε ′ , maps the first marked point of Σ  at 0 C∈  to ε  and maps ∞  to a 

nodal point of the stable map at ε ′ , and as it follows from the work of 
Kontsevich [19], is given by [ ]( ) 1

,, ,k kf z w z w Pε ε ′ = ∈   . 
Each point of ( )E Aα  lies in either the (normal bundle to the) exceptional 

divisor, or its complement—this is close enough to the toric bundles case for the 
following decomposition in [8] to hold, since the details are local. 

Let us recall (Section 1.8) the definition of ε . The fiber of the virtual 
normal bundle to the T-fixed strata of stable maps to the T-fixed strata ε  at the 
T-fixed stable map ( )( ); ,f C p C   , as in case i) above, is given by 

( ) ( ) ( )( ) ( )( )0 * 1 * 0 *, , Lie Aut ; , .H C f H C f C p C H C fε ε ε
      

The virtual normal bundle  

( ) ( ) ( )( ) ( )( )0 * , 1 * , 0 * ,, , Lie Aut ; ,f f fH f H f p H fΣ Σ ΣΣ Σ Σ Σ Σ      

to the T-fixed stable map with source Σ , deforming the map to a non T-fixed 
stable map, decomposes into the direct sum of: 

i) The virtual normal bundle over the stable map with source : \ C′Σ = Σ , and 
ii) A virtual vector space 

( ) ( ) ( ) ( )0 * , 1 * , , ,
, , , , Lie Aut ;0,f C f C f C

f C k H C f H C f C ′Σ
′Σ ∞     

 

over the point [ ]; ,0,f C ∞ . This virtual vector space is the fiber of a virtual 
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bundle. Let us use the same notation for the bundle and for the fiber. 
This is along the same lines as in [8], with the only new subtlety coming from 

the case when ( ), 1,0ε α  =  


. Namely, the deformation of a stable map to 

( ), 1,0α   


 along a section of the bundle *
Ai L  is a stable map into ε α=   and 

is still T-fixed. If there are no componenents of Σ  of type ii) connecting to the 
domain curves of the latter maps of type i) then, the line bundle *

Ai L  does not 
contribute to the virtual normal bundle to the fiber product factors of stable 
maps to ( ), 1,0α   



 (or α ) in the T-fixed loci in the moduli spaces of stable 
maps to ( )E Aα . For more details of this subtlety, see the decomposition of 
the map *α  near the end of 5.2 (with slightly expanded definition of C.). 

A second technical issue regarding the T-equivariant deformation theory of f, 
comes from the case that the ( )1−  bundle contributes to the T-equivariant 
normal deformation theory of Cf , but not to the restriction of f to the 
component C′′  (of ′Σ ) of Σ  that connects to C in Σ . This mismatch can 
occur at ( ), 1,0ε α  ′ =  



 (or α ), but does not occur in the toric bundles case. 
This case requires modifying the 1H -term of the deformation bundle from i) to 

( ) ( )
1 * , * *, f C

Af CH C f i i L′′
′′′′ ⊕ , where ( )f Ci ′′  maps all points of ( )f C′′  to the 

image of the nodal point ( )f C C′′ . 
This bundle is not quite what is needed for geometrical deformation theory. 

For that, we might take the bundle of sections of 
*

Cf TB′′  that restrict to 

( )
*
f Ci L′′  over A. However, that will not suffice for reasons that follow. In any 

case, we need some bundle that contains ( )
*
f Ci L′′  to use in the role of the third 

non-zero term in the short exact sequences defining the gluing maps of the 
deformation theory. 

There is the complication here that we don’t want the 
*

Cf TB′′  bundle to 
contribute, via the Quantum Riemann Roch theorem, to the twisted cone α . 
Thus, the present solution to the deformation problem would not be consistent 
with the twisted cones conditions. 

Let   be an index value for local cooordinates with non-trivial T-action, as 
in Section 6. Let X be either the fiber of the toric bundle E or of the total space of 
the normal line bundle to the projective space bundle  

( ) ( )1 * * *
A AA i L i N Eαπ − ⊕  

 of the exceptional divisor. 
In Appendix 1 of [8], we described T-equivariant line bundles l  defined as 

the normal line bundles to the th  local coordinate hyperplane divisors on the 
fibers of X; ( )1 J Jc l U= . For th  = “else” (Section 6), the associated 
T-equivariant line bundle is ( )1− ; the corresponding divisor is ( )1 Aπ − , by 
definition. Let us recall that T acts trivially on the pullback  

( ) ( )
*

*, 1,0 1 .Ai Lα   − 


 
 

The normal line bundle ( )1−  along the exceptional divisor extends to the 
T-invariant edges of ( )E Aα  as l  (see Section 2.2). The line bundle l  is 
in the role of l , for the index value   = “else”. 

Let , 0TX ε ≥  be an equivalent notation for , ; , 0f C ε ≥ , etc. There is an ambient 
set on which the ingredients  
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, 0 , 0 , 0 , 0, , ,C CT X T X T X T Xε ε ε ε′ ′ ′ ′≥ < ≥ <
′ ′Σ Σ  

are defined by subsets, as the direct sum over l  ∀  in such subsets. In the 
case of toric bundles, the ambient set is { }1, , N . In the present geometry, in 
the case that ( ), jjε α +′ = , the ambient set is { } { }Elsejj α+ ∉  . 

Define , 0
CT Xε ′ <  (resp., , 0

CT Xε ′ ≥ ) to be the direct sum over T-equivariant line 
bundles with non-trivial torus action *lε ′   for which 

( ) ( )[ ]*
, 1U d c f l Cε ε ′ =   is negative (resp., non-negative). Similarly, define 

, 0T Xε ′ <
′Σ  (resp., , 0T Xε ′ ≥

′Σ ) by replacing C by ′Σ  in the above definitions. 
Let us consider the identity 

( ) ( ), 0 , 0 , 0 , 0 , 0 , 0 .C C CT X T X T X T X T X T X T Xε ε ε ε ε ε
ε

′ ′ ′ ′ ′ ′≥ ≥ < < < <
′ ′ ′ ′Σ Σ Σ+ ⊕ +    

In the toric bundles case, the equation holds only in (T-equivariant) K-theory. 
Namely, the LHS is missing the direct summands *

jlε ′  for all values of j ε ′∈  
(which are T-equivariantly trivial), when Bε ′ . 

The first set in parentheses on the RHS is interpreted as “an element of the 
ambient set is considered as 0≥ ; i.e., as an element of one of , 0

CT Xε ′ ≥ , 
, 0T Xε ′ ≥

′Σ ”. The remaining three direct summands (counting   as well) are 
interpreted similarly by a Ven diagram. 

The LHS in the present case, in analogy with the Appendix in [8], is 
dependent upon , ,f C ′Σ , so we need to update the LHS by , ,f C ′Σ , which we 
define as follows. 

Let us now refer to Appendix A. 7-9 to elaborate.  
In the first case, the summand with index 1,0jj+  =  



 contributes to the 
T-equivariant 1H  deformation theory, since the pairing of the ( )* 1f −  
bundle on C is k− . 

Let C′′  be the connected component of ′Σ , connecting to C, that maps to 

( ), 1,0α   


 (or α ). The direct summand L of the coefficient sheaf of 

( ) ( )
1 * , * *, f C

Af CH C f i i L′′
′′′′ ⊕  is for the gluing construction defined by short 

exact sequences that glue the separate deformation bundles from the fiber 
product of stable map moduli spaces. Namely, the direct summand L provides 
constant deformations (within the T-fixed stratum α ) of Cf ′′  i), to coincide 
with the given deformation of Cf  at ( ) ( )Cf f C∞ ∈  ii). The direct 
summand , ,f C ′Σ  from ii) is deduced as a result in [8]; it is not a definition. By 
analogy with the derivation there, in the case that ( ), 1,0ε α  ′ =  



, define 

( ), , *: 1 .f C
Ai

ε′ ′Σ = ⊕ −    

In the case that ( ), jε α +′ = , 

( ) ( ), , * 1: 1 .f C T Aε
εε π′ ′Σ −
′′= = − ⊕    

In the case that ε α′ =  ,  

( ) ( )*
1 ,j

j
c U Pα

α
α

∉

= +∑

  
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which can be understood (from eigenspaces, though not established further 
here), in terms of ( )jj l lα

α∉= +∑

 . In the formula for the recursion 
coefficient in terms of eε  and the deformation bundles, the eε  term contributes 
the factor of ( )1c L . 

Define 

( ) ( ) ( )
( ) ( ) ( )

*

*

,1,0

*
,

e : , 1,0 , 1,0

, , .

jj

A jjjj

A jjjj j

U

P U

j P U j

γ

ε

γ ε γ

α ε α

α ε α

++

++ +

∉

 ≠ 

+ +≠

 =


   = − =    

 − =


∏

∏

∏



 





 

In the case ( ), 1,0ε α  =  


, ( )e TEulerε ε≠  ; else ( )e TEulerε ε=  . See 
Section 5.3. 

The formula for ( ),Coeff kε ε ′  is given in terms of ( )0 * ,, f CH C f  , 

( )1 * ,, f CH C f  , ( )Lie Aut ;0,C ∞ , eε , and thus can be expressed 
independently of , ,f C ′Σ , as in Corollary A.4 in [8]; i.e.,  

( )( ) ( )( )
( )( )

1 * ,

0 * ,

, Lie Aut ;0,
e .

,

f C
T T

f C
T

Euler H C f Euler C

Euler H C f
ε

∞


 

In particular, ( ),Coeff kε ε ′  depends only on Cf , and not on ′Σ . 
The numerator factor ( )1

TEuler H  does not contain the 0m =  terms in the 
product formula, while the denominator ( )0

TEuler H  includes the 0m =  
terms. The numerator eε  term then contributes the 0m =  terms to the 

( )1
TEuler H  class, and cancels the 0m =  terms from the ( )0

TEuler H  class. 
This gives the product formulae in Section 5.4, defined by the analytic continuation 
in Section 4.1. 

The factor of eε  must also be verified by the fixed-point localization formula 
for gluing nodal curves, in the moduli spaces of stable maps. This gluing was 
worked out for the toric bundles case in Appendix 3 in [8]. The factor of ( )1c L , 
from one of the numerator8 0m =  factors, in the formulae for ( ) ( ), , jCoeff kα α +

 
(Section 5.4) from fixed-point localization, is used as the Poincaré-dual of A as a 
submanifold of B, as follows. Consider the ( )1 *ev  terms in the formula for 

( )( ) ( )1 1Im c L c L
απ ⋅
F . The leg with the first marked point is mapped to the toric edge 

in the recursion relation, and the cohomology class representing the toric edge is 
restricted to A by Poincaré-duality by the factor of ( )1c L  as follows 

( )2dim Bb H B−∀ ∈  , 

( ) ( )( ) ( ) [ ]1 *
1 1 * .A AB A

bc L b PD c L b i A i b−= = =∫ ∫   

The description here counts deformations along *
Ai L  on C at ε ′ , and along 

( )
*
Af Ci i L′′  on Σ  at ε ′  respectively, glueing them at ε ′  for a global 

deformation, when they can be identified for glueing. The overcounting is then 
removed by subtracting *

Ai L  at ε ′ , by including it in the overall subtraction of 
, ,f C ′Σ  in the formula for , ,f C ′Σ . This is along the same lines as for toric 

 

 

8See the analytic continuation convention in Section 4.1. 
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bundles themselves. 
An equivalent description for the deformation theory, would be to keep the 

deformation on C, remove it on ′Σ  and remove it on , ,f C ′Σ . Keeping it on C 
has the affect in geometry of restricting ( )( )f Cπ  to ( ), 1,0α α  ⊂ 



 . This 
description gives the correct twisted cones condition for α . Thus, we update 
the preceding deformation theory description accordingly, which only modifies 

, ,f C ′Σ  and omits the summand ( )
*
Af Ci i L′′ . 

5.2. A Key Ingredient of Theorem 2 

Let C′  have the same meaning as in Section 5.1 case i), and reserve the 
notation C for case ii) except that the first marked point will also be allowed the 
role of nodal point of Σ  attaching C to C′ . As in 5.1 the connected 
component of ( ); ,f pΣ Σ    in the space of T-fixed stable maps into ( )E Aα  
is a fiber product of stable maps into the T-fixed strata of ( )E Aα . A tree with 
root C may be attached, via a nodal point, to stable maps C ε′ →  carrying the 
first marked point of Σ . The smoothing of such a node deforms ( ); ,f pΣ Σ    
away from the locus of T-fixed stable maps into ( )E Aα . The inverse 
T-equivariant Euler class of the latter smoothing mode is given by  

( ),1 kε εψ χ ′•− +  where •  is the smooth point of C′  in the normalization of 
Σ  that corresponds to the latter nodal point of ( )( ); ,f pΣ Σ . Its presence is 
required by the fixed-point localization technique. The tree with root C yields a 
cohomology class of B that is proportional to ( ),1 z kε εχ ′− +  in contribution 
to the terms of type ii) in ( )* zε −F . Let us observe that if we substitute z ψ•→ , 
then we get the inverse T-equivariant Euler class ( ),1 kε εψ χ ′•− +  of the latter 
smoothing mode. Let us integrate last over the moduli of ( )| , ,Cf C p C′ ′ ′    
where C′  is defined as in i). The precedingly described nodal attachments to 
C′ , with z ψ•→  effectively yield new descendant input terms to the integrals 
over moduli of type i) in ( )* zε −F . 

If the tree with root C is rooted at α  there are two possible ways ( )f C  can 
intersect with the stratum α  at ( )0f , according to the decomposition 

( )( ) ( )( ) ( )1 1 1

*
Ker c L Im c L c Lα π π⋅ ⋅= + . Namely, the image by ( )( ) ( )1 1Im c L c Lπ ⋅  constrains 

( )0f  to lie in ( )1,0 A  


, while ( )( )1Ker c Lπ ⋅  may be interpreted as constraining 
( )0f  to lie in ( ) ( )( )\ 1,0 \ AA N Bαα α α  



   . 
Define ( ) ( )*:q z t z zε ε= − +  “the sum of all contributions to ii) where the 

first marked point of Σ  is contained in C ”.  
Let ε

+  be the completion of ( )( )1 ,TEuler ε− ⋅

+


  (Example 1.8) by allowing 

additional additive terms that are infinite z series at each order in Novikov’s 
variables, of the form ( )0

nb n
na k zχ −∞

=∑  where 1nb n≥ +  and ( )* ,a H B∈  . 
Denote by εF  restrictions *ε F  of F  where ( ) ( ):t z q z zε ε= +  is expanded 
in non-negative powers of z. 

When the image of the first marked point ( ) ( )0f f C∈  lies in 

( )\ , 1,0α α   


  (resp., ( ), 1,0α   


), the series ( )q zε  is constructed as a power 
series in z, from the cohomology ( )( ) *

1Ker c L α⋅ ⊂   (resp.,  
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( )( ) ( ) *
1 1Im c L c L α⋅ ⊂  ) with coefficients in  . The source component C from 

ii) maps to different cases of T-invariant edge curves, depending on the image of 
the marked point 0 C∈ . The trees ( )q zε  can be described by the data of 
Theorem 2, in Section 5.4. The series of our main theorem, which is verified by 
the techniques of Section 5.4, thus gives a special case of the trees ( )q zε  (by 
Section 5.4). Intuitively, the trees ( )q zε  should be described by formulas with 
some degree of similarity, by reference to the main series. 

In the following let us simply note how the numerator twisting factors in the 
Quantum Lefschetz theorem cancel with some of the factors from the 
denominator series. This is interpreted in terms of twisted lagrangian cones (an 
ingredient in Section 5.4) by the Lemmas in Section 7.3. 

Begin by writing the main Theorem in terms of ( ),B z τF , rather than in 
terms of ( ),A z τF , using the quantum Lefschetz Theorem. The twisting factors 
cancel with a denominator series. The particular denominator series depends 
upon the direct summand  

( )( ) ( )( ) ( )*
1 1 1Ker c L Im c L c Lα = ⋅ ⊕ ⋅  

for the restriction of the series ( )E AI α . In the first case, the denominator series  

( )( ) ( ) ( )

( )( ) ( )( )
, 1,0

1

1 1
1

c L D P D d

Ker c L
m

c L mz
α

π
  + +

⋅
=

+∏






 

is partially cancelled by the preceding numerator series. In the second case, the 
denominator series  

( ) ( )

( )( ) ( ) ( )( )
, 1,0

1 1 1
1

P D d

Im c L c L
m

c L mz
α

π
  − −

⋅
=

+∏




  

is partially cancelled by the preceding numerator series. The ( ) ( ), 1,0P Dα   


  is 
from the shift of the summation index for d , in Section 6. 

The preceding observations establish that ( ),z tε ε ε− ⊂F   is the point of the 

( )( )1 ,TEuler ε− ⋅  -twisted Lagrangian cone of ε  with input ( )t zε ε
+∈ . Let us 

denote this Lagrangian cone contained in ε  by ε . 

5.3. Recursion 

Finally, apply the discussion in 2.2 and 5.1 combined with the general computa- 
tional details given in [8] to compute9  

( ) ( )( )1 , ,
, ,e .f C

TCoeff k Euler kε
ε ε ε ε

′− Σ
′ ′= ⊕   

Given two of the T-fixed strata ε  and ε ′  connected by an edge, define 
submanifolds of each where the strata intersect with edges connecting the two 
strata. The two submanifolds are diffeomorphic, call it ,Zε ε ′ , by the connecting 
edges. 

The discussion in 5.1 and in 5.2 gives the recursion relation along the same 
line of argument as in Appendix 2 of [8]:  

 

 

9We outline the new ingredients relative to Appendix 1, 2 of [8]; much of the exposition there is ge-
neric. 
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( ) ( ),
,

,,
, , ,Res ,kdkd

z
k

z dkz q q Coeff k
k

ε ε

ε ε

ε εε ε ε ε
ε ε χ ε ε ε ε

χ
′

′

′′ ′
′ ′ ′

=−

 
′= − 

 



F F   

where  

( )( ) ( )( )
( ) ( )

( )( ) ( )( ) ( )

( )( ) ( ) ( )( ) ( )

1

,

1 1

*
1

,

*

, , ,
,

,

,
,

, ,

Ker c L

Z

Im c L c L

Id j A j A
Id B B

Ker c L B

A B
i A B

j A B
ε ε

ε ε

ε α ε α
ε γ ε γ

π ε α ε γ

π ε ε
ε ε

π ε α ε α
′

+ +

⋅

⊥′

+⋅

′ ′ = =
 ′ ′= =
 ′= ⋅ ⊂ =
=  ′
 ′


′ = =






 

 

 

and 

( )( ) ( )( )
( ) ( )

( )( ) ( )( ) ( )

( )( ) ( )

1

,

*
1

, *

, , ,
,

,

,

,
, ,

Ker c L

Z

Id j A j A
Id B B

Ker c L B

i A B

A B
j A B

ε ε

ε ε

ε α ε α
ε γ ε γ

π ε α ε γ

ε ε

π ε ε
π ε α ε α

′

+ +

⋅

′

⊥

⊥
+

′ ′= =
 ′ ′= =
 ′= ⋅ ⊂ =′ =  ′
 ′
 ′ = =






 

 

 

Let us note the orthogonal10 direct sum decomposition  
( ) ( ) ( )( )* * *

A AH A Im i Im i
⊥

⊕ . Both direct summands are ( )*
AIm i --modules. 

The role of ,ε ε ′ , ,ε ε ′′  is understood by observing that ( ) ( ), ,jCoeff kα β+
 are 

valued in ( )*
AIm i . Recall from Section 2.1 (up to isomorphisms) the inclusion 

( )( ) ( ) ( )*
1 1 AIm c L c L Im i⋅ ⊂ . This gives a way to interpret the ( )*

AIm i -module 
structure. The map ( )( ) ( )1 1Im c L c Lπ ⋅  in the recursion relation ( )2. aα  is applied 
to a multiple of ( )1c L  from the recursion coefficient ( ) ( ), , ,jCoeff k jα α α

+ +∀ ∉


. 
Perhaps the , ′   operators in the recursion relation ( )2. aα  can be 

composed with suitable projection maps, defined w.r.t. the Lefschetz decomposition 
so that both sides of the recursion refer to the same ambient vector space, while 
still sufficing for Theorem 2 (Section 5.4). The author has not worked in this 
generality. 

5.4. Theorem 2 

Theorem 2. Points ( )zF  of the overruled Lagrangian cone of the T-equivariant 
genus-0 Gromov-Witten theory of ( )E Aα  are characterized by the conditions: 

(1.a): ( ) ( ) ( ), ,j j
Azα α+ +− ∈F   

(1.b): ( ) Bzγ γ− ∈F   
(2.bb):  

( ) ( ),
*

*

,
=

Res
j

kd j

U
z

k

U
z dkz q Coeff k

k
γ γγ γ

γ γγ

γ
′ +

+

′
′

−

 
= −  

 
F F  

 

 

10With respect to ( ),
A

⋅ ⋅ . 
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( )
( ),1

, , ,*

1 1 1,

1 .
jkU dk k

j
m m j m

m m U m
Coeff k k k k

γ γ
γ γ γ γ γ γ

γ γγ γ

χ χ χ
γ

′−
′ ′ ′

′= = ∉ =′

     
= − −     

     
∏ ∏ ∏ ∏



 

(2.ab): 

( )
( ) ( ) ( ) ( ) ( ),

*

*
, *

, ,,

,
Res kdj k

A jj P
z

k

j P
z dkz i q q Coeff k

k
α βα β

α βα

α
π +

++

+⊥ −

=

 
 =
 
 





F F  

( ) ( ) ( ) ( ),
*

*
,*

, ,Res
j

kd jjk
A jU

z
k

U
i z dkz q q Coeff k

k
α β αβ

β αβ

β
π −+

+−

⊥ −

=−

 
= −  

 
F F  

( ) ( )
( )

( )

( ) ( )

,

, ,

1
, , ,,* *

1 1 1

,,
1

1

1

.

j

j

kU d kk k
j

A j
m m j m

k
j

m

Coeff k

i m m P U m
k k k

c L P m
k

α β

α β

α β α β α βα

α

α βα

χ χ χ
α

χ

+

+

+

−−

= = ∉ =

−

=

     
= − + −     

     
 

× + − 
 

∏ ∏ ∏ ∏

∏





 

(2.aa): 

( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

*
,

*
,, ,

, , ,,

,
Res

A j

A jj jk
j jj U

z
k

j U
z dkz q Coeff k

k
α α

α αα

α
++ +

+ ++ ′+

′+′
′

=−

 
 = −
 
 

F F  

( ) ( ) ( )
( ) ( )

( )
( )

( ) ( )

* *
1

, ,*

1 1, , ,

*
* ,

,
, 1

*
,,

1

, ,1

,
,

,

k k
A j A j

A
m mj j

k
A j

A jj
jj j j m

k
A jj

m

j U j U
i m m

Coeff k k k

j U
j U m

k

jj U
P m

k

α α

α

α α

α
α

α

+ +

+ +

+

′+ +

++

−
′ ′+ +

= =′

′+
+

≠ =

−
′+

=

   
   = −
   
   

 
 × −
 
 

 
 × − −
 
 

∏ ∏

∏ ∏

∏ 

 

( )2. aα : 

( ) ( )( ) ( ) ( )

( ) ( ) ( )

* 1 1,, 1,0

*
,,

, ,

Res
A j

Im c L c LU
z

k

A jjk
j

z dkz

U
q Coeff k

k

α

α

α
α α

π

α
π

′+

++

+

⋅  =−

′′⊥
′

 
= −  

 











F

F
 

( ) ( )

* *1
, ,*

1 1, ,

*
,*

,
, 1

*
,

1

1 k k
A j A j

A
m mj

k
A j

A jj
jj j j m

k
A j

m

U U
i m m

Coeff k k k

U
U m

k

U
P m

k

α α

α

α α

α
α

α

+ +

+

+

+ +

+

−
′ ′

= =′

′

′≠ =

−
′

=

   
= −      

   
 

× −  
 

 
× − −  

 

∏ ∏

∏ ∏

∏





 









 

In the case ( )2. aα , we are nearly in the case (2.aa) as far as considering the 
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LHS of the recursion relation as nearly a point of A , as follows. The normal 
bundle to A in B doesn’t deform curves into A out of the T-fixed loci in the 
moduli spaces of stable maps to ( )E Aα . Recall that the line bundle *

Ai L  is 
the restriction of the tautological line bundle ( )1T −  to the T-fixed section 

( ), 1,0α   


. The normal bundle to A in B thus extends over the T-fixed curves 

( ) ( )
1

, 1,0 , , jj
P
α α +  ′ 

 . Then, local sections of the extended normal bundle do deform 
multiple covers of the latter curve out of the T-fixed stratum in the moduli 
spaces of stable maps to ( )E Aα . Hence, the inverse T-equivariant Euler class 
of the associated deformation bundle contributes to the fixed-point localization 
formula in the moduli spaces of stable maps. 

Aside from the many cases to consider, the proof is identical to the proof of 
the corresponding Theorem 2 in [8]. 

6. Recursion 

To prove the equivariant version of the Main Theorem, it suffices to show that 

( )E AI α=F


 satisfies conditions (1.a), (1.b) and (2) of Theorem 2. 
Define  

( ) ( )( )2
,

,
, , .

, else

j

J A jj T

U J j
U J jj H E A

P J
α α

=
= = ∈
− = 

 

“ ”
 

The hypergeometric modifications ( ) ( )*
E AI zαε


 are ( ), ,q q Q -series whose 
coefficients have simple poles at *

Jz kε= −   when such values are non-zero, 
finite order poles at z = ∞ , and essential singularities at 0z = . 

Thus, we need to show that: (1.a) ( ) ( )
( )* ,, jj

E Ajj I α
αα +

+ ∈


, (1.b)  

( )
*

E AI γ
αγ ∈


, and (2) residues at the simple poles satisfy the recursion relations 
of Theorem 2. We check conditions (2) here by direct calculation of the residues. 
We check conditions (1.a), (1.b) in Section 7. 

Our first goal is to argue that the series ( ) ( )*
E AI zαε


 is supported in the 
Mori cone of ( )E Aα , ( )( ) *

1Ker c Lε α∀ ≠ ⋅ ⊂  . The mechanism that insures  

this is to look at the support of the factors ( ) ( )
*

1

1
D

m mz
ε

=
+∏






 of  

( ) ( )*
E AI zαε


 for which * 0ε = . 
Proposition. Any element of ( )( )MC E Aα  may be represented as the sum 

of a curve whose irreducible components are preserved by the action of T on 
( )E Aα , and an integer multiple of “the class of a T-invariant 1P  in a fiber 

of the exceptional divisor”. 
Proof. Let D  be a curve class in MC. The action of T on ( )E Aα  is 

induced by that on E. We would like to take a lift of the projection π , *Dπ 

 , 
which we may assume [8] to be preserved by the action of T on E; i.e., that *Dπ 

  
is represented by such a curve. Apriori, there may be any number of toric edge 
component curves among the curves representing *Dπ 

 . These may intersect 
with a curve component of *Dπ 

  in ( )Aα . These toric edges each lift to the 
( )E Aα  in such a way that one of their T-fixed points intersects the 
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exceptional divisor at a T-fixed point of a projective space fiber. The preceding 
irreducible component curves in ( )Aα  may be lifted to arbitrary T-fixed 
sections of the exceptional divisor. This may result in a disconnected lifted 
curve. 

The curve classes are determined by their pairings with elements of  
( )( ) ( )2 * 2,H E A H E Pα π ⊕ 

  

. Thus, add the multiple  

( )*lift ofP π− 

 “ ”  of “the class of a T-invariant 1P  in a fiber of the 
exceptional divisor” to the lift of *π 

  . 
With the Proposition in place, let us now compare ( )( )MC E Aα  and 

( )( )MC E Bα . This will allow us to interpret the support conditions along 
( )( )2 ,H E Aα 

 of the series ( )E AI α , in terms of ( )( )2 ,H E Bα 
. 

A first source of difference between the two comes from the inclusion 
( ) ( ) ( ) ( )** *, ,Ajj i MC A jj MC Bα α+ +⊂ . Another difference is that the 
T-invariant ( ) ( )

1
\ , \B A B APα β  curves in ( )E Aα  do not have any geometric 

analogues in ( )E Bα . However, the latter curve may be represented as the 
sum of the class of a ( )

1
, ,jPα β+

  and the class of a 1P  in a fiber of the 
exceptional divisor. Thus all elements of ( )( )* 2 ,Ker H E Aπ α 

 have 
geometric analogues in ( )( )2 fiber ofH E Bα . 

Remark. Any curve from a fiber of ( )E Bα  has a geometric analogue in 
( )1 Aπ − . The jU ’s are determined by the geometry of E, and thus have the same 

meaning whether pulled back to ( )( )2 1fiber ofTH Aπ −  or to  
( )( )2 fiber ofTH E Bα . The class P  is determined11 by the local geometry of 

the exceptional divisor and thus has the same meaning whether referred to 
( )( )2 1fiber ofTH Aπ −  or to ( )( )2 fiber ofTH E Bα . 

(2.aa) Residue of ( ) ( ), jj zα +F  at ( ) ( ), , , , 1jj jjz k
k

α αχ
+ +′= − ≥ . Given  

( )D MC B∈ , rename i id d ′→  and d d ′→  , and then redefine id ′  and d ′ , 
( ) ( ), ,jjd P D dα +′ = + 
  

( ) .d P D dα′ = +  

Then, the pairings ( ) ( ) ( )j j jU U d D= −Λ  translate into  
( ) ( )*

j jU d U Dα+ .  

( ) ( )
( )

( )

( ) ( ) ( )( ) ( ) ( ) ( )

( )( ) ( )
( ){ }

( )
( ) ( ) ( )( )

( )( )( ) ( ) ( ) ( )

,

, ,

*

,*

* *

*, ;
, | 1

,

,*
, 1

, e e

e e e e

, ,

jj

jj jj

j jK

A

jj
j j

P t z P t z
AE A

P D P D P D t P D tD d d dt dt

U d U DD D D MC B d d jj j m

ht D D D
Ae L

U d U D P D d jj
jj j m

jj I i

Q q q q q

U mz

z z z

U P mz

α α

α αα α

α

α

α

α β α β

α α
α

α

α

τ τ

α

+

+ +

+

+
+

+

+

+′≤ ∈ ∈ ∈
∉ =

′
⋅

+ + +

∈ =

=

×
+

+
×

+ +

∑ ∑
∏ ∏

∏





 
 










 



 

F G





( ){ }

( )( )( ) ( ) ( ) ( )( )( )( ) ( ) ( ), ,
1

|

, ,
11 1

1 1 .jj jjd P D c L D P D djj jj
m mP mz c L P mz

α α

β α β

α α+ +
+ +− − + +

= =

× ×
− + + +

∏

∏ ∏
 
 

 



 

 

 

11As a functional on the classes of T-invariant curves. 
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The classes ( ) ( )* ,D D MC Bε ∀ ∈ , contribute in terms of ( )Pε   (resp. 
( )P Dε

 ) to d (resp. d ) from the definition in Section 4. Such contributions 
from ( )MC B  are accounted for already, by redefining the summation indices 
d and d  as above. Then, the remaining contributions to d (resp. d ) are from 
the Mori cones of the fibers. 

Proposition. The series ( ) ( )
*, E Ajj I αα +



 is supported in the Mori cone of 
( )E Aα . 

Proof. For : 1,0j jj+ +  = ≠  


, the support of the series 
( )

1

1
jU d d

m mz+ +

=∏


 is  

characterised by the inequality ( ) 0jU d d
+

+ ≥ . For each j α∈ , the support of  

the series ( )
1

1
jU d

m mz
=∏

 is characterised by the inequality ( ) 0jU d ≥ . Let us now  

argue that the set of solutions ( ),d d  to the same inequalities is contained in 

( )( )*Ker MC E Aπ α∩ 
. By the comparison of ( )( )* 2 ,Ker H E Aπ α 

 
with ( )( )2 fiber ofH E Bα , and by the Remark, it suffices to establish the 
analogous result for ( )( )2 fiber ofH E Bα . This follows from the Corollary 
and the same (strictly speaking, analogous) inequalities that arise there, as a 
special case of a general result in toric geometry describing the Mori cone in 
terms of inequalities. 

In the following recursion verification, let 1,0 ,jj jj jj+ + +  ′= ≠ 


. 
For the ( )2. aα  recursion relation, the *ε ′  series takes values in the image 

of *
Ai . We noted the role of ( )1c L  in the recursion coefficient for this purpose, 

at the end of Section 5.3. 

( )2. aα  Residue of ( )( ) ( ) ( )
1 1Im c L c L zαπ ⋅

F  at ( ) ( ), , , , 1jj jjz k
k

α αχ
+ +′= − ≥ . Given  

( )D MC B∈ , rename i id d ′→  and d d ′→  , and then redefine id ′  and d ′ , 
( ) ( ), ,jjd P D dα +′ = + 
  

( ) .d P D dα′ = +  

Then, the pairings ( ) ( ) ( )j j jU U d D= −Λ  translate into  
( ) ( )*

j jU d U Dα+ .  

( ) ( ) ( )( ) ( )
( )

( )

( ) ( ) ( )( ) ( ) ( ) ( )

( )( ) ( )
( ){ }

( )
( ) ( )( )

( )( )( ) ( ) ( ) ( )

,

1 1

, ,

*

,*

*

*, ;
, | 1

,

,*
1

, e e

e e e e

, 0

jj

jj jj

j jK

A

jj
j j

P t z P t z
E A Im c L c L

P D P D P D t P D tD d d dt dt

U d U DD D D MC B d d jj j m

ht D D
e L

U d U D P D d jj
jj j m

jj I

Q q q q q

U mz

z z

U P mz

α α

α αα α

α

α

α

α β α β

α α

α π

α

τ

α

+

+ +

+

+
+

+

+ ⋅

+′≤ ∈ ∈ ∈
∉ =

′
⋅

+ + +

∈ =

=

×
+

+
×

+ +

∑ ∑
∏ ∏

∏





 
 










 



 

F





( ){ }

( )( )( ) ( ) ( ) ( )( )( )( ) ( ) ( ), ,
1

, |

, ,
11 1

1 1 .jj jjd P D c L D P D djj jj
m mP mz c L P mz

α α

α β α β

α α+ +
+ +− − + +

= =

× ×
− + + +

∏

∏ ∏
 
 

 



 

Proposition. The series ( ) ( )
*, E Ajj I αα +



 is supported in the Mori cone of 
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( )E Aα . 
Proof. For 1,0jj+  =  



, the inequalities describing the support of the series are 
( ) 0jU d j α≥ ∀ ∈  and 0d ≥ , whose solution set is “a subset of 
( ) ( )( )fiber ofMC E MC E Aα⊂ 

” ⊕ ⋅  “the class of a 1P  in a fiber of the 
exceptional divisor”. 

(2.bb) Residue of ( )zγF  at , , 1z k
k
γ γχ ′= − ≥ . Let δ  be the delta-function  

( )( )1,Ker c Lγδ ⋅ . Given ( )D MC B∈ , rename i id d ′→  and d d ′→  , and then 
redefine id ′  and d ′ , 

( ) ( ) ( ), 1,0
,d d P D P Dαγ δ

  ′ = + +


 
   

( ) .d P D dγ′ = +  

The pullbacks *Pγ   vanish. In particular ( ) 1P Dq
γ

=


 , and 

( ) ( ), 1,0
,d d P Dα

δ
  ′ = +


 
  

( ) .d P D dγ′ = +  

Then, the pairings ( ) ( ) ( )j j jU U d D= −Λ  translate into  
( ) ( )*

j jU d U Dγ+ .  

( )
( )

( )

( ) ( )( ) ( ) ( )
( ) ( )

( )

( )( ) ( ) ( ) ( )
( ){ }

( )( ) ( )
( ){ }

( )

, 1,0
, 1,0

, 1,0*

*

*

, ;

*
, | 1

*
, | 1

e

, e e e

1

1

A

K

j j

j j

ht DP t z
E A

D D D MC B d d

d P D t
P D d P D P D tD D d dt

B

U d U D d P D
jj j m

U d U D
jj j m

m

I z

z Q q q q

U mz

U mz

mz

γ

α
αγ γ

α

α

δ
δ

γ δ

α β α β

γ

α β α β

γ

τ

γ

γ

    

  

+

+

′

′≤ ∈ ∈ ∈

 
+  +  

+ + +

∈ =

+

∉ =

=

=

×
+

×
+

×

∑ ∑

∏ ∏

∏ ∏




















F







 

( ) ( ) ( ) ( )( )( )
( ) ( ), 1,0 , 1,0

1 11 1

.
d P D d P D

m c L c L D z mz
α α

δ δ
      − − +

=
+ +∏ ∏

 

 
 

 

Proposition. If ( )\B Aγ α≠   then the series ( )
*

E AI αγ


 is supported in the 
Mori cone of ( )E Aα . 

Proof. The support of the series ( ) ( ), 1,0

1

1
d P D

m mz
α

δ
  − −

=∏





 is characterised by the  

inequality ( ) ( ), 1,0
0d P Dα

δ
  − − ≥



 . The terms of the series that determine the 

remaining support conditions are those with * 0jUγ = ; i.e., j γ∈ . The set 
( ){ }, |j α β β α+ 

 coincides with the set { }j α∉ . For each cj α γ∈  , the  

support of the series 
( ) ( ) ( ), 1,0

1

1

jU d d P D
m mz

α
δ

  + +

=∏





 is characterised by the inequality  

( ) ( ) ( ), 1,0
0jU d d P Dα

δ
  + + ≥



 . For each j α γ∈  , the support of the series  

( )
1

1
jU d

m mz
=∏

 is characterised by the inequality ( ) 0jU d ≥ . The proof proceeds as  
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in the case of 2.aa ( )1,0jj+  ≠  


. 
Remark. For ( )\B Aγ α=  , the inequalities describing the support of the 

series are ( ) 0jU d j α≥ ∀ ∈  and ( ) ( ), 1,0
0d P Dα

δ
  + ≤



 , whose solution set is “a  

subset of ( ) ( )( )fiber ofMC E MC E Aα⊂ 
” ( ) ( ), 1,0P Dα

δ
   ⊕ − − ⋅ 

 



   “the  

class of a 1P  in a fiber of the exceptional divisor” at each order DQ . 
Since 0Pγ =  for all TEγ ∈  it follows that ( ), 0P dγ γ ′ = . Hence the “index” 

d  does not transform presently. Thus, the asymmetry between the factors 
indexed by ( ){ }, |j j α β β α+∉ 

 and ( ){ }, |j j α β β α+∈ 

 is removed for 
the purposes of the present recursion process. It follows that the present 
recursion process is identical to the toric bundles case [8], 

( ) ( ),
,

,
,Res ,kd

z
k

z dkz q Coeff k
k

γ γ

γ γ

γ γγ γ
χ γ γ

χ
′

′

′′
′

=−

 
= − 

 
F F  

as required. 
In the case ( )( ) *

1Ker c Lγ α= ⋅ ⊂   then d  is replaced by  
( ) ( ) ( ) ( ) ( ), 1,0 , 1,0

0d P D P D d P Dα αγ      + − = + −
 

 
   . Then reverse the change in the 

summation index. This gives the recursion relation, as in all other cases. For 

( )( )1Ker c Lγ = ⋅  use “ 0k = ” in the transformation of the d  summation index, 
following the ( ), jε α +=  case. 

(2.ab) Residue of ( )( ) ( ), ,j zα α γ+F  at ( )( ), , , , 1jz k
k

α α γ γχ
+= − ≥ . Given  

( )D MC B∈ , rename i id d ′→  and d d ′→  , and then redefine id ′  and d ′ ,  

( ) ( ), ,jd P D dα +′ = + 
  

( ) .d P D dα′ = +  

Then, the pairings ( ) ( ) ( )j j jU U d D= −Λ  translate into  
( ) ( )*

j jU d U Dα+ . 

( )( ) ( )
( )( )

( )

( )( ) ( ) ( ) ( )( ) ( ) ( )

( )( ) ( )
( ){ }

( )
( ) ( ) ( )( )

( )( )( )( ) ( )

, ,

, , , ,

*

*

* *

*, ;
, | 1

,

, ,*
1

, , e e

e e e e

, ,

j

j j

j jK

A

j j

P t z P t z
AE A

P D P D P D t P D tD d d dt dt

U d U DD D D MC B d d jj j m

ht D D D
Ae L

U d U D P j
jm

j I i

Q q q q q

U mz

z z z

U P mz

α α γ α

α α γ α α γα α

α

α

α β α β

α α α γ

α α γ

α

τ τ

α

+

+ +

+

+

+

+′≤ ∈ ∈ ∈
∉ =

′
⋅

+ +

=

=

 
 
 ×

+

+
×

+ +

∑ ∑
∏ ∏





 
 









 



F G





 

( )( ) ( )
( ){ }

( )( )( )( )( ) ( )

( ) ( )( )( )( )( ) ( )( ) ( )

, ,

, ,

, ,
1

, |

, ,
1

, ,
11

1

1 .

j

j

j

D d
j j

d P D j
m

c L D P D d j
m

P mz

c L P mz

α α γ

α α γ

α α γ

α β α β

α α γ

α α γ

+

+

+
+

+
+

+

∈

− −

=

+ +

=

×
− +

×
+ +

∏ ∏

∏

∏














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Here we have used  

( )

( )
( )( )( )

( )

( )

( )

( )( )( )

( )( )( )

( )

1

1

1

*; ,
11

*
,

11
*

; ,
11

*

e

, ,

e

A

A

dt D

c L D dd D D D MC B
A m

ht D
D D

A Ae L

c L D
m

A
c L Dd D D D MC B
m

ht
dt D

A

q Q

i c L m
k

i
k k k

c L m
ki

c L m
k

q Q
ki

π
χ

χ χ χτ τ

χ

χ

χ

⊥

+′∈ ≤ ∈
=

′

⋅

=

′∈ ≤ ∈
=

′

 − 
 

      × − − + −             
 − 
 =
 − 
 

 − 
 ×

∑
∏

∏
∑

∏























F G

( )

( ) ( )( )1 11

,
.

D
D
B

d
m

k

c L c L D m
k k

χ τ

χ χ
=

 − 
 

 − − 
 

∏


F

 

The Lemma in Section 7.3 explains the factors in the denominator in the RHS, 
as does the preceding formula from (2.bb). This shows that the series 

( ) ( ), j zα + −F  is a set of points of the ( ), jα + -twisted Lagrangian cone of the 
genus-0 Gromov-Witten theory of A. 

7. Mirrors 
7.1. (Quantum) Module Structure 1.3 of Differential Operators,  

Stationary Phase Asymptotics 

Our goal is to verify condition (1.b), (1.a) of Theorem 2. 
Proposition. For each element ( )( )*Ker MC E Aπ α∈  

, let  
( )1, , Nλ λΦ



  be an element of ( )λ . Set  

( ) ( ) ( ) ( )
*1 1, , , , , , : e e , ,

ddt t
N NKer MCq q t t q qπλ λ λ λ

∈
Φ = Φ∑












 
 

. Then, for each 
smooth family ( ), Bz τ− ⊂ F  ( A⊂   respectively)  

( ) ( )1, , , , , ,e ,Nq q t t z z z z τΛ ΛΦ − ∂ − ∂ −
−




 F  

is contained in B  ( A  respectively). 
Proof. The theory of quantum  -modules can be adapted to the case of 
( ),z τF  in such a way that the exponent is processed as ( ) ( )

1 N
zΦ Λ • •Λ∂ +



 , 
where ( )z  is a first-order differential operator that is weighted by a net 
positive-integer power of z. These may be processed as a shift of the τ  variable 
and symmetries of the cone as in [8]. 

Let us now extend the result. For each element ( )( )*Ker MC E Aπ α∈  
, 

let ( )1; , , Nx λ λΦ


  be smooth functions of x valued in ( )λ . Set 
( ) ( ) ( ) ( )1*

; : e e ; , ,
ddt t

NKer MCx q q xπλ λ λ
∈

Φ = Φ∑










 . Suppose that, in a 

neighborhood of a given isolated critical point12 ( ), , , ,crx q q t t λ  of ( );x λΦ , 
the Taylor series of ( );x λΦ  converges, when , , , ,q q t t λ  are valued in certain 

 

 

12With respect to x variables, defined as the complement of the various parameters , , , ,q q t t λ  ab-
breviated as λ  in the function argument of Φ  and A. 
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open sets of complex numbers. Assume the critical point is valued in the subring 
of the Novikov ring corresponding to *Ker MCπ  , with coefficients in ( )λ  
or in a suitable completion of ( )λ . Let ( );A x λ  be an identically defined 
function, but without any assumption on its critical points. 

The stationary phase asymptotics (as 0z → ) of the integral  

( ) ( ) ( )1
1

; , ,e ; , , , dN
N

x z z z A x z z z xτΛ ΛΦ − ∂ − ∂ −
Λ Λ− ∂ − ∂ −∫



 F  

is defined in [8]. This definition includes expanding the integrand in a Taylor 
series about the given critical point of the phase function, fixing an integration 
region to be a ball about the critical point in the domain of convergence of the 
integrand, making the change of variables , 1, ,j jx z y j N= ∀ =   and 
replacing jλ  by 

j
z Λ− ∂ , 1, ,j N∀ = 

. For more details on stationary phase 
asymptotics including operator asymptotics, we refer to [8]. 

Assume that ( ), , , ,crx q q t t λ  has coefficients in the ring ( )λ . Then, when 
we replace jλ  by 

j
z Λ− ∂  1, ,j N∀ = 

, the denominators need to be expanded 
as geometric series in ( )1 jc L

z− ∂  variables, and ( )1c Lz− ∂  variables, respectively. 
This requires working with infinite series with inverse powers of characters of T. 
The completion of ( )λ  thus obtained is related to the completion in Section 
5.2 when the divisor equations play their main role; namely, when 

( )( )1 0jc L D ≠  for some 1, ,j N= 
 or ( )( )1 0c L D ≠ , and ( )D MC B∈ . 

Then, 
Proposition. For each smooth family ( ), Bz τ− ⊂ F  ( A⊂   respectively) the 

stationary phase asymptotics of the integral, expanded about the operator critical 
point is contained in B  ( A  respectively). We will outline a proof (as in [8]) 
in the last check of Section 7.3, for the mirror integrals and their asymptotics. 

The Propositions will be applied in Section 7.3 where a phase function Φ  
will be given. A further role of stationary phase asymptotics appears in 7.2. 
There is the caveat that, when ( )( ) *

1Ker c Lε α= ⋅ ⊂  , the expansion will need to 
be taken over ( )( )* 2 ,Ker H E Aπ α  , given that the asymptotics is 
well-defined. 

7.2. The Quantum Riemann-Roch Theorem 

Let   be the overruled Lagrangian cone of the genus-0 Gromov-Witten theory 
of an (almost-) Kähler manifold M, and ( )( ),:tw ⋅=   c  the theory twisted (in the 
sense of Example 1.8) by a line bundle over M with the equivariant 1st Chern 
class ν . The linear map ( )( )

( )( )( ) ( ),
,, ,⋅

⋅Ω → Ω
 c

c  of symplectic loop spaces, 
where ( ) ( )1

TEuler−⋅ = ⋅c , defined by νf f  is a symplectomorphism. The 
well-known asymptotics of the function 

( ) ( )( ) ( ) ( )ln

0
, e d ln ,

2π 2π
x x z zz x z z

z z
ν νν ν

ν ν
∞ − +Γ = = Γ∫  

where ( )zνΓ  is the Euler gamma function, is given by  
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( ) ( )
( )

2 1
2

1

lnˆ , exp ,
2 2 1

m
m

m

B zz
z m m

ν ν ν
ν

ν

−∞

=

 − +  Γ = +  −    
∑  

where 2mB  are Bernoulli numbers. 
Theorem ([1]). 

( )1 ˆ , .twzν ν−= Γ   

Therefore, in order to reach our goal, it suffices to represent each of  

( ) ( ) ( )( )* 1 * *
1

ˆ , ( ) for ,j j E A
j

U z U I z Ker c Lα
γ
γ γ γ γ−

∉

 
Γ − ≠ ⋅ 

 
∏


 

( ) ( ) ( )( )
( ) ( ) ( )

* ** 1 * 1
, ,

*

ˆ ˆ, , , ,

, ,

j j A jj A jj
jj j

E A

U z U j U z j U

j I z jα

α α α α

α α

+ +
+

− −
+ +

≠

+ +

 
Γ − Γ − 

 

× ∀ ∉

∏



 

and 

( ) ( ) ( ) ( )
1* *ˆ ,j j E A

j
U P z U P I zα

α
α α

−

∉

 
+ Γ − + 

 
∏  

 



 

in the form described by the z z− →  version of the Proposition. More precisely, 
we represent these series as  

( )the form in the version of the Proposition .P z P zq q z z
ε ε− − × − →

  

Given any ( )2H Bρ ∈  and any scalar θ , the multiplication by e zθρ−  is the 
exponential of the operator 

ii i Qi Qρθ ρ− ∂ + ∂∑  which lies tangent to the 
Lagrangian cone of the base, by the Divisor equations. 

7.3. A Source of Phase Functions for 7.1 and 7.2 

This last section reduces to straightforward algebra for a number of equations. 
Firstly, consider when the base is the point, in which case there is no T-fixed 
stratum ( ), 1,0α   



. The generalization to arbitrary base will follow from the 
Lemma. For each ( )2 ,H BTλ ∈  , ( )2 ,H Bρ ∈   and F  satisfying the 

string and divisor equations,  

( ) ( )( ) ( ), , .D D

D
z z t z D Q z tλ ρ λ ρ ρ+∂ = + +∑F F  

Proof. From the point of view of the cohomology of the base, λ  is a scalar. 
The ( )l E Aα−   case. 

Define ( )*:
N l

f
+
→   to be the multivalued function  

( )

( )
1 1

1 1

, , , , ,

ln .

N l

l N

a j j j
a j

f x x y y

y x xλ
= =

= + +∑ ∑

 

 

Introduce the complex submanifold  
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( ) ( )
1 1

1 1
, , , , , | , 1, ,i N aij

N l mm
N l j a i

j a
V x x y y x y v i K l+

= =

 
= = = + 
 

∏ ∏    

of ( )* N l+
 , where 

( )
( ) ( ) 0

,
0 0 1 1

0 0 1 1

ia ib K l

ij

l

m m

m

α α
×

 
 
 
 
 =
 
 

− 
 
 



 

   

 



 

( ):
aia ij

m mα
α=  for all 1, ,a K=  , and  

e 1, ,

e 1, , .

i

i K

t
i

i t
i K

q i K
v

q i K K l−
−

 == 
= + +








 

When the base is the point and 1l = , these are the defining equations of the 
fiber of ( )E Bα  at the fixed-point α . Thus, Corollary can be thought of as a 
bridge between the toric bundles theorem [8] and our Main Theorem. In the 
sequel, consider the ( )1 E Aα−   case for ease of readability. 

For each ( )( )TE Aγ α∈  , in connection with the Proposition, consider the 
oscillating integral 

( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

, 1,0

1

, ; 1

1

1
2π
d ln d ln d ln

e , ,
d ln e d ln e d ln e K

N K
P z P z

f x y z z N
Bt ttU V

K

q q
z

y x x
z

q q q

αγ

γ

δ

τ

  

Λ

−
− −

∂

⊂

 
 

− 
∧ ∧ ∧

×
∧ ∧ ∧∫














F
 

where U Vγ ⊂  is the non-compact cycle ( )1 1N K+ − +  parametrized by { }j j
x

γ∉
. 

The differential operators may be processed at each order of the series 
( ) ( )D D

Dz Q z= ∑F F . Thus, we need not put the truncation condition D D′≤  
on the series summation index from the start in our computations. Let 
( )x Uγγ ∈  be the critical point of ( ), ;Uf x y

γ
Λ  defined by the condition that 

its truncation modulo Novikov’s variables is given by *
j jx U jγ γ= ∀ ∉ . More 

precisely, for each j γ∉ , ( )jx γ  admits a series expansion of the form  

{ }
*

* d d
j Ker MC

U q q
π

γ
∈

 +  
 










  which solves the critical point equations, with the  

caveat that in the case ( )( ) *
1Ker c Lγ α= ⋅ ⊂   an extension of the Novikov ring 

of ( )E Aα  is needed for the expansion. In this latter case ( )( )*
1Ker c Lγ = ⋅ , 

denote also Uf
γ

 by Kerf . This requires a check that the expansion of the 
exponential of ( )Ker crf x z  is well-defined, where crx  is the critical point 
considered above. The well-definedness is needed (later in Section 7.3) for the 
pullback series for ( )( )1Ker c Lγ = ⋅  combined with the pullback series for 

( )( ) ( )1 1Im c L c Lε = ⋅ , to arrive at the pullback series for α . 
For ( )( )1Ker c Lγ = ⋅ , include the additional terms ( ) ( ), 1,0

ln et

P
z q

α
δ

  
∂ 





  in the 
phase function. This is required later in Section 7.3. 
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Next, we rewrite the integral in terms of ,jx j α∀ ∉ ; the details are not 
included here. Section 6.1 allows us to write the integral, given in terms of the 
Taylor series of the exponential etc., in terms of the Mori cone of ( )E Aα . 

The phase function ( )( ) ( )1 1Im c L c Lf ⋅  is introduced later in this section. Then 
there is a gluing construction for the asymptotics of Kerf  and Imf . Since the 
summands ( )( ) ( )( )*ln e ln

j

t
jj U

q z x z zλ λα α′ ′∉
∂ − ∂ + ∂∑

  appear in the formulas 
for Imf , the same terms are needed in the formula for Kerf . Then, replace 

( ), 1,0
P

z z
αλ   

′∂ → ∂ 



. When the base is the point, the Mori cone is { }0D =  and the 
pairings of degree 2 cohomology classes on the Mori cone of the base are all zero. 
These are included in the formula for Kerf , to help write down the integral 
asymptotics for ( )( ) *

1Ker c Lε α= ⋅ ⊂  , using the divisor equations. 
Combining the ingredients of  

( ) ( )( ) ( )( ), ; ln ln ,
a a a

a
j j j j j jU

j j
f x y y x x x x

γ γ γ
λ λ λ

∈ ∉

= + + + +∑ ∑  

we obtain  

( ) ( )
( )

( )

( )

( ) ( )
( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

, 1,0

, 1,0

, 1,0 , 1,0

, 1,0*

, ;

1

,
1 1 1

e e e

e e

e .

iU i

j j
c

j j j

Kf x y z P z P ztt
i

i

d P Ddt t

d P D U d U d d P Dd d
m j m j m

x z U z U d d P D
j j

j j

q q

q q

mz mz mz

x x

α γ
γ

α

α α

α

λ δ

δ δ

γ α α γ

γ δ

γ α γ

  

  

      

  

=

+

− − + +∈
= ∈ = ∈ =

− − − −

∉ ∉

=

×

×

∏

∑
∏ ∏ ∏ ∏ ∏

∏ ∏





 












 
 



 











 

By applying the Lemma, we deduce the differential operator version 

( )
( )

( )
( )

( )
( ) ( )

( )

( ) ( )
( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

, 1,0

, 1,0

, 1,0 , 1,0

* *

, ;

1

,
1 1 1

e , e e

e e

e

i iU i

j j
c

j j j j

Kf x y z z P z P z P Dtt
B i

D MC B i

d P DdD t t

d P D U d U d d P Dd d
m j m j m

x z U z U D U d
j

j j

z q q

Q q q

mz mz mz

x

α γ γ
γ

α

α α

δ

δ

δ δ

γ α α γ

γ γ

γ

τ
  

Λ

  

      

∂ +

∈ =

+

− − + +∈
= ∈ = ∈ =

− − −

∉ ∉

=

×

×

∑ ∏

∑
∏ ∏ ∏ ∏ ∏

∏





 










 
 



 





F



( ) ( ) ( )
, 1,0

, .d P D D
j Bx z

α
δ

α γ
τ

  − −∏







F

 

As described above, the additional shift of the phase function produces the  

multiplicative factor ( )
( ) ( ), 1,0

e
P Dtq
α

δ
  






 . 

Multiply the latter by ( )ln jj d x
γ∉∏  from the integrand and by the 

prefactors on the starting integral, integrate by parts using the gamma function 
identities, and take stationary phase asymptotics about the given critical point to 
obtain  

( ) ( ) ( )* 1 * *ˆ , ,pre
j j E A

j
U z U I zα

γ
γ γ γ−

∉

 
Γ − 

 
∏



 

where the series ( )
*

E AI αγ


 of the Main Theorem is related to ( )
* pre

E AI αγ


 by 
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( ) ( )

( ) ( )( ) ( )

( ) ( )( )( )
( ) ( ), 1,0

* , ,

, ,*

1 11

, , , , , ,

, , , , , ,
,A

D d d
E A

D d dpre
E Aht D

d P D
m

I z t t q q Q

I z t t q q Q
z

c L c L D z mz
α

α

α

δ

γ τ

γ τ
  

′

+

=

= ×
+ +∏






















 

D D′∀ ≤ . 

The following lemma (and its modifications for each of ( )( )1Ker c Lγ = ⋅ , and 
( )( ) ( )1 1Im c L c L⋅  as we check later in this section) is needed for the series 

( ) ( )
* * ,

,:pre D d
E A E AD dI Iα αγ γ= ∑ 



 

 Bγ∀ 
. 

Lemma. Given any complex line bundle L B→  and any series  
( ) ( ) ( ),

,, : e ,
dD t d D

B B BD dz Q q zτ τ− = − ∈∑








 f f  satisfying the divisor equations 
w.r.t. ( )*H B , the hypergeometric modification series 

( )

( ) ( )
( ) ( )( )( )

,

, 1 11

e ,
dt D d D

B

d
d D MC B

m

q Q z

c L c L D z mz

τ

∈ ∈
=

+ +
∑

∏















f
 

is contained in the ( z z→ − ) version of B  for all formal values of , , , ,z t q Qτ  . 
The terms of the ansatz of ( ),B z τf  are those most relevant for the Lemma. The 
Lemma is readily adapted to the restrictions of the main series. 

Proof. The cone B  is preserved by both numerator and denominator in the 
ratio of operators on the LHS of  

( )

( )
( )

( )

( )

( ) ( )
( )( )( )( )

( )( )

( )

( ) ( )
( ) ( )( )( )

1

1
ln

1

1

,

, 11

,

, 1 11

e d

,

e d

e ,

e ,
,

c L

c L
q

z
x z z

Bz
x z z

dt D d D
B

c L D d
d D MC B

m c L D

dt D d D
B

d
d D MC B

m

x x

z

x x

q Q z

c L mz

q Q z

c L c L D z mz

ν

ν
τ

τ

ν

τ

ν

+

+

∂
−

∂
+∂−

+
∈ ∈

= +

∈ ∈
=

 
 
 
 

 
 
 
 

=
+ +

=
+ + +

∫

∫

∑
∏

∑
∏



































f

f

f

 

where   denotes stationary phase asymptotics. 
Integration by parts is interchangeable with taking stationary phase asymptotics 

(see [8] for example). Thus, simply integrate by parts at each order in Novikov’s 
variables ,d Dq Q

 , and take stationary phase asymptotics last. The formal 
invertible parameter z ν∂  added to ( )1c Lz∂  in the numerator and denominator 
operator integrals makes the stationary phase operator asymptotics in the 
numerator and denominator well-defined. This requires a suitable completion 
on the symplectic loop space B  of the base. However, at 0ν =  the phase 
function of the integrand is ( ) ( )

1
lnc Lx z x− + ∂ , which is undefined at the critical 

value ( )1c Lx z= ∂ . This same phenomenion was dealt with in [1] (for numerator 
only) where it was noted that although the proof fails at 0ν = , finally we may 
set 0ν =  in the results thus obtained. 
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Henceforth, denote  

( ) ( )
( ) ( ) ( )( ), *

,, , , .Aht DD D D D
A A Ae Lz z i z zτ τ τ′′

⋅= +F F G  

For each ( ) ( )( ),
T

j E Aα α+ ∈  , in connection with the Proposition, consider 
the oscillating integral  

( ) ( ) ( )( )
( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

, 1

1,

1

, ; 1

1

ln1 exp d ln
2π

d ln d ln d ln
e , ,

d ln e d ln e d ln e

j

Kj

N K
tc LP z P z

U

f x y z z N
At ttU V

K

x x z z
q q x

zz

y x x
z

q q q

α α

α
τ

+

Λ

+

− +
− −

∂

⊂

 ′ ′− ∂ + ∂    ′   −     

∧ ∧ ∧
×

∧ ∧ ∧

∫

∫














F

 

where , jU U Vα +
× ⊂ ×  is the non-compact cycle ( )1 1N K+ − + ×   

parametrized by { } { } { }
,j j j

y x x
α +∉ ≠

′
  . The differential operators may be 

processed at each order of the series ( ) ( )D D
Dz Q z= ∑F F . Then for each 

( )*a H A∈  and ( )*b H B∈  interpret ab to mean ( )*,a j bα + . Let 
( ) ,, jx j U Uαα

++ ∈ ×  be the critical point of  

( ) ( ) ( )( ) ( )
,

,
1ln , ;

j

j
U Ux x c L P f x y
α

α +

+ ×
′ ′− + + Λ  

defined by the condition that its truncation modulo Novikov’s variables is given 
by ( )* ,,j A jx j Uα +=  ,j jα +∀ ∉ ≠ , by ( )*, jy j Uα

++= , and by  
( )* , 1,0

,
A

x j Uα +   
′ =  . More precisely, for each ,j jα +∉ ≠ , ( ),jx jα +  admits a  

series expansion of the form ( ) { }
*

*
,, d d

A j Ker MC
j U q q

π
α +

∈

 +  
 










  which solves  

the critical point equations. Similarly for x′  and y. 
Combining the ingredients of  

( )

( )( ) ( )( ) ( )( )
,

,

, ;

ln ln ln ,

j

a a a
a

U U

j j j j j j j j j
j j j

f x y

y x x x x x x

α

α α

λ

λ λ λ
+

+ + +
+

×

∈ ∉ ≠

= + + + + + +∑ ∑
 

we obtain  
( ) ( )

( )

( )

( )

( ) ( )
( ) ( )

( )

( ) ( )

,
,

,

,*

, ;

1

,
1 1

,

e e e

e e
e

e .

j
iU Uj i

j

j j

j
j j j

Kf x y z P z P ztt
i

i

ddt t
y z P z d

U d d U d
d d

m j m

x z U z P z U d d
j

j j

q q

q q
y

mz mz

x

α α
α

α

α

λ

α

α

α

+
×+

+

+

+

+

=

+
+

∈
= ∈ =

− − − −

∉ ≠

=

×

×

∏

∑
∏ ∏ ∏

∏

























 

By applying the Lemma, we deduce the differential operator version  
( )

( )

( )
( )

( ) ( ) ( ) ( ) ( )

( )

( ) ( )
( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

,

, ,

, ,

, ,* *

, ;

1

,
1 1

,

,

e ,

e e

e e
e

e , .

U Uj

j j
i ii

j j

j j

j j
j j j j

f x y z z

A

KP z P D P z P Dtt
i

D MC B i

ddD t t
P z P D dy z

U d d U d
d d

m j m

x z U z U D U d P z P D d D D
j A

j j

z

q q

Q q q
y

mz mz

x z

α

α α α α

α α

α α

α

α α

α

τ

τ

Λ×+

+ +

+ +

+

+ +

+

∂

+ +

∈ =

+ +

+
∈

= ∈ =

− − − − − − ′

∉ ≠

=

×

×

∑ ∏

∑
∏ ∏ ∏

∏

 








 






 





F

F



 

Apply the operator  
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( ) ( )( )1
ln

exp
tc Lx x z z

z

 ′ ′− ∂ + ∂
 
  
 



 

to the latter to obtain the additional factor  

( ) ( ) ( )( ) ( ) ( ), ,
1 1e .

j jc L z P z c L D P D dx z x
α α+ +− − − − −′ ′


 

 

Multiply the latter by ( ) ( ) ( ),d ln d ln d ln jj jx y x
α +∉ ≠

′ ∏  from the integrand 
and by the prefactors on the starting integral, integrate by parts using the 
gamma function identities, and take stationary phase asymptotics about the 
given critical point to obtain 

( ) ( ) ( )( )
( ) ( ) ( )

* ** 1 * 1
, ,

*

ˆ ˆ, , , ,

, ,

j j A jj A jj
jj j

E A

U z U j U z j U

j I zα

α α α α

α

+ +
+

− −
+ +

≠

+

 
Γ − Γ − 

 

×

∏



 

where ( ), ,D D
A z τ′F  is set equal to ( )

( ) ( ) ( )( )*
, , , ,Aht D D D

A Ae Lz i z z D Dτ τ′
⋅ ′+ ∀ ≤F G . 

Finally, consider the “substrata” ( )( ) ( ) *
1 1Im c L c L α⋅ ⊂   of α , so that we may 

combine it with the “substrata” ( )( ) *
1Ker c L α⋅ ⊂  . Let ( ), 1,0

; ,Im
P

f x z z
α   Λ

 ∂ ∂ 
 





 
denote the expression  

( ) ( ) ( )

( )( ) ( ) ( )( ) ( )

* , 1,0

11
1

, 1,0

1

1

1

e ln ln

ln e e .

i

j i

K
iji j ii aj ia

K
tt

j j j iU PPj ij

K m mmtt
i j

P a j

q x x x z z q e z

q z q x

αα

αα

α

α
αα

α

  

−−
=

  

−

∉ =∉

−

= ∉

∑

 + − ∂ + ∂ + ∂ 
 

 
+ ∂ +  

 

∑ ∑∏

∑ ∏

















 

Let ( ),d d  index the solution set of degrees in Section 6, in the case 

( ), 1,0ε α  =  


. Then,  

( )
( )

( ) ( )

( )
( )

( ) ( ) ( ) ( ) ( )

( )

( ) ( )
( )

( ) ( ) ( ) ( ) ( )

, 1,0

, 1,0 , 1,0

, 1,0 , 1,0* *

; ,

,

=1

,
1 1

e ,

e e

e e

e

Im
P

A

i ii

j

j j j j

f x z z

ht Dz
e L

KP z P D P z P Dtt
i

D MC B i

ddD t t

d U d
d d

m j m

x z U z U D U d P z P D
j

j

z z

q q

Q q q

mz mz

x

α

α α α α

α α

α

α α

α

τ
Λ   

      

      

 
 ∂ ∂ 
 

′
⋅

+ +

∈

= ∈ =

− − − − −

∉

=

×

×

∑ ∏

∑
∏ ∏ ∏

∏





 

 

 











 





F

( )
( ) ( ), , .Ad ht D D

e Lz z τ− ′
⋅



F

 

Multiply by ( )ln jj d x
α∉∏  from the integrand and by the prefactors on the 

starting integral, integrate by parts using the gamma function identities, and take 
stationary phase asymptotics about the given critical point (and apply the 
Lemma from this section) to obtain  

( )( ) ( ) ( ) ( )( ) ( ) ( ) ( )
1 1 1 1

1
, ,

1,0

ˆ , .A jj A jj E AIm c L c L Im c L c L
jj

U z U I zαπ π−
⋅ ⋅

 ≠ 

 
 Γ − ×
 
 
∏





 

Then, the following Lemma’ will be needed. Consider a version of the second 
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Lemma from this section, call it Lemma’, with the changes,  
( ) ( ), 1,0

P D ddq q
α    +→








   for the series f ; and 
( ) ( )( ) ( )( )ln ln1c L q qz z z z z

x xν ν+ +∂ + ∂ − ∂
→   for the denominator integrand factor, 

for ( )( ) ( )1 1Im c L c Lε = ⋅  and a second version Lemma”, for ( )( )1Ker c Lγ = ⋅ , 
with the same preceding first change, and without any change in the 
denominator operator integrand  

( ) ( )( ) ( ) ( )( )ln ln1 1c L q c L qz z z z z z
x xν ν+ +∂ + ∂ ∂ + ∂

→   

in place relative to Lemma. Then, use  

( )( ) ( )( ) ( )1 1 1Ker c L Im c L c LIdα π π⋅ ⋅= +


 

to establish that either restriction is in place, as follows 

( )
( )( )

( )
( )

( )( ) ( )
, 1,0

1

1 1

1 on
e

e on

P zt
P zt

Ker c L
q

q Im c L c L

α

α   

 ⋅
= 
 ⋅

















 

Then, ( ) ( ) ( ), 1,0P D P Dα   =


  . In order to arrive at the same net factor series 
(whose individual factors evaluate to ( )1c L  at 0z =  in either case), in the 
present context of integral asymptotics (derived from either phase function, 
respectively), the ratio of operator integral asymptotics from Lemma' or Lemma'' 
are applied to arrive at the restrictions of the main series corresponding to either 
substrata of α , respectively. In the former case only ( ) ( ), 1,0

0d P Dα   + ≤



  

contributes, while in the present case only ( )( ) ( ) ( ), 1,0
1 0d c L D P Dα   + + ≥




  

contributes to the summation index, due to the cohomology restrictions of the 
main series corresponding to ( )( )1Ker c Lπ ⋅  and ( )( ) ( )1 1Im c L c Lπ ⋅ , respectively. 

Thus, the sum of the two series is a section of  

( )( ) ( )( ) ( )1 1 1
.B BKer c L Im c L c L

α απ π⋅ ⋅⊕    

The factors of gamma functions from the quantum Riemann-Roch theorem 
(Section 7.2) can be lifted from either13 of (the loop spaces based on) 

( )( ) ( )( ) ( )1 1 1,Ker c L Im c L c L⋅ ⋅  to the requisite product of gamma functions on 
(the loop space based on) the cohomology of ( )E Aα . In order to establish 
that the sum of the two series is a section of B

α , it suffices to establish that the 
asymptotics derived from the two phase functions ( ), ,Imf x λ λ′  and 

( ), ,Kerf x λ λ′  can be obtained from the asymptotics derived from a phase 
function valued in ( )( )*H E Aα , denote it by ϕ . The following 
constructions will involve an extra step, defined in terms of additional 
parameters ,v w  graded-homogeneous of degree 0, for the asymptotics. Thus, 
the phase function ϕ  will not quite be the lift of either separate phase function. 

The main role of the stationary phase asymptotics is to provide a common 

 

 

13The latter is interpreted as ( )( )1Im c L ⋅ . The Poincaré pairing on ( )*H B , when pulled back to 

either subspace, may have a non-trivial kernel which makes the quantization formalism undefined. 

The loop space formalism will only be used on ( )( )*H Bα , and the resulting series has well-defined 

restrictions to either subspace. 

https://doi.org/10.4236/apm.2019.99033


J. Brown 
 

 

DOI: 10.4236/apm.2019.99033 680 Advances in Pure Mathematics 
 

translated domain point (in terms of the differential operator critical value of the 
phase function) of the series ( ),B z τF  of the cone B  in either case of 

( )( )1Ker c Lπ ⋅  or ( )( ) ( )1 1Im c L c Lπ ⋅ . This subtlety comes from the Proposition before 
Section 7.2. 

The stationary phase asymptotics of operator integrals applied to ( ),B z τF , as 
an analytic function in z, describes the simple poles and zeroes of the restrictions 
of ( )E AI α  as Taylor series in z, except for the poles at 0z =  which are of all 
positive orders. The poles at 0z =  from the operator integral asymptotics 
applied to ( ),B z τF  are partially accounted for in the toric bundles case by the 
differential operator critical value of the phase function in the stationary phase 
asymptotics of the operator integral applied to ( ),B z τF , which includes a shift 
of the domain variable of the series ( ),B z τF . 

The x variables of critical points of ϕ  are graded inhomogeneous in the 
present non-toric bundles case, rather than being graded-homogeneous of 
degree 1 as in the toric bundles case. 

The mirror phase function ϕ  is defined as follows. Begin with the mirror 
phase function of ( )( )1Ker c L ⋅ . Then, replace the additive monomial y by 

1vy wy−+ . Then, add the terms with 
P

z α∂




 that appear in the mirror phase 
function of ( )( ) ( )1 1Im c L c L⋅ , considering Pα

  as an element of ( )*
TH α . 

Begin by putting 
P

z α λ′∂ →




 and 
j jz λΛ∂ → . Let ( ),uε λ λ′  be the critical 

value of the phase function. Then, replace 
jj zλ Λ→ ∂  1, ,j N∀ = 

, and 

P
z αλ′→ ∂





. Namely, interpret the operator integral with the new phase 
function also by stationary phase asymptotics, using the  -module generated 
by BF  to process the operators ,

P
z z αΛ∂ ∂





 in the critical value ( ),
P

u z z αε Λ∂ ∂




, 

( ) ( ) ( )
, 1

exp , , .
B

BPu P
z z zαα

ε
τΛΛ• •

 ∂ + ∂ ∂ 
 









 F  

The exponential of the differential operator produces the shift  

( )( ), , 1B Bz u Pα
ετ + Λ• •F  

of the series ( ),B z τF . This latter step is along the same lines as for the 
preceding restrictions of ( )( )1Ker c Lπ ⋅  or ( )( ) ( )1 1Im c L c Lπ ⋅  of the main series. 

The main new technical ingredient is that the sum 1vy wy−+  is graded 
inhomogeneous. The exponential ( )1

e
vy wy z−+  expands as  

( ) ( ) ( )2 2

0 0
1 e .

n m nn m n m t m n
j

n m j

n
z v w q x

m α

∞ − −− −

= = ∉

 
 
 

∑ ∑ ∏

  

The exponents m and n m−  give the exponents 2m n− . Let us now 
compute the integral, integrating by parts (before taking asymptotics). The 
integration by parts replaces each factor of jx  by linear degree 1 terms 
( )azχ +  in the numerator ( )0m >  or denominator ( )0m ≤ , contributing to 
the simple poles and simple zeroes in z. These simple poles and simple zeroes, 
that are not centered at 0z = , are analytic functions in z that can be expanded 
as Taylor series in z. For a net m

jx  integration by parts term, there is a 
corresponding product of m degree 1 factors in the numerator or denominator, 
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respectively. The result of integration by parts of the exponential expanded as 
above, with the factors of the gamma functions, is thus of the form (ignoring the 
factors of the gamma functions for now), 

( ) ( ) ( ) ( )
2

0 0
1 e degree 2 -series .

m nn t
j

n m n j
z q m n z

α

∞ − −

= ≤ ≤ ∉

−∑ ∑ ∏

  

The critical point equations ( ) ( ), , , 0
jx x y jϕ λ λ α
′

′ ′∂ = ∀ ∉  read  

( ) ( )
( ) ( )( ) ( )

*

11
,1, ,

11 1 1

,

1 1
,,, 1 1

0 1 e e

e .

j

K
i jij i j iai a

a

t t
j j j j U P

j j j j

KK m mmt
j i j i jj ia i i j

vx q x w q x x z z

x m m q x

α

αα

α
α α

α
α

−−
=

−− − −
′ ′

′∉ ∉ ≠

−
− −
′ ′

= = ∉

∑

= − − − ∂ + ∂

  
−   

   

∏ ∏

∑ ∏ ∏



 



 

 

The coordinates { }j j
x

α∉
 of the critical point of the phase function can be 

solved for recursively and uniquely from the critical point equation and the 
initial conditions ( ), 1,0*

j jx U P α
α

  = +


  modulo Novikov’s variables, j α∀ ∉ , as 
follows. The uniqueness assumes an expansion in both non-negative powers of 
q , and in positive powers of 1q−

  each multiplied by a polynomial (or power 
series) in the variables 

( )( )1
,

1
: e ; 1, , .a i j ia

K md t
i

i
q q a Kα

−

=

= =∏   

In addition, require positive powers of 1q−
  to be bounded at any given order 

dq , where ( )( )1 , 0K
a a aad n d MC E A nα

=
= ∈ ≥∑   1, ,a K∀ =  , as in the series 

expansions of the critical points of the mirror integral for the phase function f. 
Namely, for ( )( )1Ker c Lγ = ⋅ , the support of the series ( )* ,zγ τF  is given by  

( ) ( ), 1,0
0.d P Dα   + ≤




  

Let us now describe a geometry in the parameter space ,v w , in order to 
effectively reduce ( )1

e
vy wy z−+  from the ϕ  integral asymptotics, to  

1
e e 1vy z wy z−

+ −  for taking asymptotics as above with 0, 1v w= =  and 
1, 0v w= = , adding the two exponential functions. From there, we will arrive at 

the sum of pullback series, as required. Thus, we need to reduce the exponential 
to the sum of exponentials, while still giving a point on the cone B

α . This 
suggest starting with a variety 1vw =  and deforming it to 0vw =  on the “ϕ  
asymptotics”. Thus, we will arrive at the “direct sum of asymptotics”, by working 
with the “ϕ  asymptotics”. Thus, consider the curve vw ε= . Our goal is to 
arrive at the “direct sum of asymptotics”, by taking the limit 0ε →  in the 
following, 

( ) ( )0 0
1 1

, ; , , ; , .n n
v B w B

n n
Res v z v w Res w z v wτ τ

∞ ∞
− −

= =
= =

 + 
 

∑ ∑F F  

The terms of the expansion with positive powers of v and of w together, can 
be grouped as powers of wv ε= , together with factors of v or of w only, 
respectively. Thus, consider the terms of BF  in non-negative powers of v alone 
and in positive powers of w vε=  alone, respectively. The multiplications by 
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powers of 1v−  each preserve the tangent space of the cone at the points 

B B⊂ F . Then, the residue integral about 0v =  picks out the given terms of 

BF  with non-negative powers of v only. 
Similarly, consider the terms of BF  in non-negative powers of w alone and in 

positive powers of v wε=  alone, respectively. The multiplications by powers 
of 1w−  each preserve the tangent space of the cone at the points B B⊂ F . 
Then, the residue integral about 0w =  picks out the given terms of BF  with 
non-negative powers of w only. 

Let ,v w  depend upon ε  via proportionality to ε . As 0ε → , the critical 
value (that depends on ,v w ) converges to a critical value that is well-defined at 
( ) ( ), 0,0v w = . Then, the sums of residue integrals are computed near the same 
limiting tangent space ( 0ε → ) of B , at the point BF  with domain variable 
τ  shifted by the critical value of the phase function at the point ( ) ( ), 0,0v w = . 

The dependence of BF  on ,v w  can be computed by integration by parts 
before taking asymptotics, so that the critical value does not depend on ,v w , 
taking stationary phase asymptotics at the last step for the gamma functions. The 
integration by parts series with the factors of the gamma functions is of the form 
(ignoring the factors of the gamma functions for now). 

( ) ( ) ( ) ( )

( ) ( ) ( )

2

, 0 0

, 1,0*

e 1 e

degree 2 -series , .

m ndD t n t

D d n m n

D
j B

j

Q q z q

m n U P D z zα

α
ε τ

∞ − −

= ≤ ≤

  

∉

  × − − +    

∑ ∑ ∑

∏







 F
 

As 0ε → , the only terms that are non-vanishing are 0,m n= . The 0,m n=  
terms are supported along non-negative powers of 1,q q−

  . In this way, the sum 
of the two evaluation series-the function evaluations at 1, 0v w= =  and at 

0, 1v w= = , as well as the above formula in terms of residue integrals--are the 
same. 

The summation index n is identified with the Novikov's variables exponents 
( ) ( ), 1,0d P Dα   +




 . The analytic continuation convention then gives the condition 

0n ≥ . From the fact that the integrals produce the correct series as restricted by 

( )( )1Ker c Lπ ⋅  and ( )( ) ( )1 1Im c L c Lπ ⋅ , it follows that the supports are correct too. That is, 

( )( )1Ker c Lπ ⋅  is supported on 0n ≤  and ( )( ) ( )1 1Im c L c Lπ ⋅  is supported on 0n ≥ . 
Finally, let ( ),pre

B z τF  denote the series before applying the Lemma’ or 
Lemma”, as above; then consider the series 

( )( ) ( ) ( )( ) ( ) ( )( ) ( )
1 1 1

Lemma Lemma , .P z P z P z P z pre
BKer c L Im c L c Lq q q q z

α α α α
π π τ− − − −

⋅ ⋅+
 

 

  F” ’  

The numerator and denominator from the Lemma’ or Lemma” in the ratio of 
asymptotics, each produce the same net shift in the domain variable. Thus, the 
domain variable stays the same in either case, as required. 

In summary, the series αF  is contained in the cone B
α , and is obtained 

from the section of the cone B
α  depending on parameters ,v w , obtained from 

the stationary phase asymptotics from the mirror integral operator with phase 
function ϕ  applied to ( ),B z τF  as above. 
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