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Abstract 
This research addresses the planning and scheduling problem in and among 
the smart homes in a community microgrid. We develop a bi-linear algorithm, 
named ECO-Trade to generate the near-optimal schedules of the households’ 
loads, storage and energy sources. The algorithm also facilitates Peer-to-Peer 
(P2P) energy trading among the smart homes in a community microgrid. 
However, P2P trading potentially results in an unfair cost distribution among 
the participating households. To the best of our knowledge, the ECO-Trade 
algorithm is the first near-optimal cost optimization algorithm which consid-
ers the unfair cost distribution problem for a Demand Side Management 
(DSM) system coordinated with P2P energy trading. It also solves the time 
complexity problem of our previously proposed optimal model. Our results 
show that the solution time of the ECO-Trade algorithm is mostly less than a 
minute. It also shows that 97% of the solutions generated by the ECO-Trade 
algorithm are optimal solutions. Furthermore, we analyze the solutions and 
identify that the algorithm sometimes gets trapped at a local minimum be-
cause it alternately sets the microgrid price and quantity as constants. Finally, 
we describe the reasons of the cost increase by a local minimum and analyze 
its impact on cost optimization. 
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1. Introduction 

The significance of smart home research is growing rapidly because of increas-
ing industrial demand. In North America, the forecasted annual growth rate of 
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smart homes is 23.1%, resulting in 63 million smart homes by 2022 [1]. In 2017, 
the market revenues of smart homes were $12 billion and within the next five 
years, the market is expected to reach $36 billion [1]. The healthcare service pro-
viders consider the smart home as an effective way of providing healthcare ser-
vices, especially to the elderly and disabled who do not require intensive health-
care supports. Future smart homes will be connected to various service providers 
to automate and optimize services. Smart grid is one of the examples of service 
integration, which aims at optimizing the residential electricity usage according 
to energy demand and supply. People spend a significant amount of time in their 
households, which attracts potential investors to promote the integration of all 
possible services into traditional homes. Current trends indicate that smart 
homes are gradually becoming the centers for intelligent service consumption. 

This research addresses the planning and scheduling problem in smart homes. 
It also considers the interactions between the smart homes in a community mi-
crogrid. In the smart homes, the prosumers generate energy from the renewables 
(e.g., solar panels, miniature wind turbines, etc.) and store energy into energy 
storage systems (e.g., electric vehicles, home energy storage, etc.). A network of 
interconnected smart homes in a neighborhood forms a community microgrid 
which enables peer-to-peer (P2P) energy trading among themselves. This research 
emphasizes on energy source, storage and load scheduling in smart homes to in-
crease energy efficiency and minimize the energy costs. Figure 1 illustrates a 
community microgrid infrastructure formed by smart homes. 

This research integrates Demand Side Management (DSM) with P2P energy 
trading in a community microgrid. However, P2P energy trading may create a cost 
fairness issue. It means that a household cost when it trades energy in the micro-
grid is sometimes higher than the cost when it does not participate. This issue may 
discourage end-users from participating in energy trading. We address this unfair 
cost distribution problem by assuring Pareto optimality among the households in 
the microgrid. 
 

 
Figure 1. Community microgrid—a network of smart homes. 
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In our previous study, we developed an optimal model to solve this mul-
ti-objective cost optimization problem [2]. The optimal model is a non-convex 
Mixed Integer Non-Linear Programming (MINLP) model and we showed that 
even for the small and relatively trivial problems, the solution times of the op-
timal model became intractable, i.e., solution times increase exponentially with 
the increase of the problem sizes [2]. Therefore, using the optimal model is not 
practical to solve the real-world problems. To overcome this limitation, we de-
velop a near-optimal algorithm, named ECO-Trade which can solve this opti-
mization problem with lower computation time [3]. Our results show that the 
solution time of the proposed algorithm is very low, mostly less than a minute, 
compared to the optimal model which sometimes takes hours. It also shows that, 
for real and synthetic datasets, at least 97% of the solutions generated by the 
proposed algorithm are optimal solutions. Therefore, we can conclude that the 
ECO-Trade algorithm is a better alternative to the optimal model considering 
both accuracy and solution time. 

Furthermore, in contrast to our previous paper [3] where we identified the 
impact of peer-to-peer trading, this paper analyzes the conditions when the 
proposed ECO-Trade algorithm breaks down and generates sub-optimal solu-
tions. We analyze the solutions and identify that the proposed algorithm some-
times gets trapped at a local minimum because it alternately sets the microgrid 
price and microgrid quantity as constants. We describe the reasons of the cost 
increase by a local minimum and analyze its impact on cost optimization. This 
analysis may help the future researcher to improve the proposed algorithm. 

The reminder of this article is organized as follows. Section 2 identifies the re-
search gap and discusses the significance of the ECO-Trade optimization algo-
rithm. Section 3 describes the ECO-Trade algorithm. Section 4 presents the re-
sults using synthetic and real datasets. Section 5 analyzes the conditions for 
sub-optimal solutions. Section 6 discusses the impact of a local minimum on 
cost optimization. Finally, Section 7 concludes the article, summarizing our 
contributions. 

2. Literature Review 

An energy cost optimization problem is typically formulated as a linear or 
non-linear optimization model. Linear programming is widely used to solve li-
near optimization models [4] [5] [6]. The time required to solve a linear model is 
comparatively lower than a non-linear model. If an optimization model is 
non-linear but convex, it is still possible to solve within a realistic time frame [7]. 
However, in general, the solution times of non-linear optimization models are 
comparatively higher than the linear models and hence, such optimal solution 
approaches are not suitable to solve these problems [2]. Therefore, a number of 
researchers proposed approximate algorithms for this purpose [8] [9] [10] [11]. 
The ECO-Trade algorithm that we use in this paper is an approximate algorithm. 
However, the solutions generated by the ECO-Trade algorithm are optimal solu-
tions for almost all scenarios and problem sizes. 
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P2P energy trading among the households is a comparatively new concept. 
The P2P service providers maintain the distribution network and provide me-
tering and billing services [12] [13]. These projects primarily considered the de-
velopment of business models rather than optimizing energy cost coordinated 
with DSM. Shamsi et al. introduced an auction market in a community micro-
grid [14]. In this microgrid, each household trades energy with others in the 
presence of the grid. Liu et al. proposed an energy sharing infrastructure among 
the prosumers [15]. They considered the microgrid energy price as a function of 
the Supply and Demand Ratio (SDR) and modeled the optimization problem 
using bi-level programing. Tushar et al. emphasized on assuring fairness among 
the prosumers while selecting different pricing schemes [16]. This research 
aimed at obtaining socially optimal solutions, i.e., maximizing the total benefits 
of all participating households. Long et al. used a variant of the SDR method to 
ensure cost fairness among the prosumers [17]. However, none of the aforemen-
tioned methods coordinate DSM with P2P trading. More specifically, these me-
thods cannot provide a coordinated schedule of the households' loads with 
energy sources to maximize the benefits of P2P trading. 

Table 1 presents a comparison among the methods proposed for P2P energy 
trading in a microgrid. It shows that Samadi et al. [18] and Zhou et al. [19] pro-
posed similar methods to ours. They used approximate methods to implement 
DSM systems coordinated with P2P trading. Additionally, Zhou et al. compared 
the performance among the SDR, Mid-Market Rate (MMR) and Bill Sharing (BS) 
methods [19]. Their results show that the SDR method outperforms the others. 
However, none of the methods proposed in the literature evaluated the perfor-
mance of their approximate algorithms with optimal methods. Therefore, we do 
not know the accuracy of the solutions generated by these methods and hence 
cannot evaluate their performance. On the contrary, in this paper, we evaluate 
our ECO-Trade algorithm with an optimal method [2]. Our results show that for 
real and synthetic datasets, the ECO-Trade algorithm generates optimal solu-
tions with 97% accuracy. 

This work presents a near-optimal cost optimization algorithm which consid-
ers the unfair cost distribution problem for a DSM system coordinated with P2P 
energy trading. Table 1 shows that most of the algorithms reported in the lite-
rature do not have the same features as ours. Therefore, a quantitative compari-
son with these methods is not a proper way to evaluate our algorithm. However, 
we still need an approach to compare our algorithm to demonstrate its effec-
tiveness. For this reason, we initially developed an optimal model [2] which al-
ways provides exact solutions. We used this optimal model to evaluate the per-
formance of the proposed approximate/heuristic algorithm. Table 1 also shows 
that the prior research rarely evaluated the accuracy of the approximate algo-
rithms compared to optimal models. Furthermore, we analyze the results to 
identify the causes of sub-optimal solutions which may help to further improve 
the performance of the ECO-Trade algorithm. 
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Table 1. Comparison between the P2P energy trading methods. 

Authors Year Method Solution Type 
Addressed Cost 
Fairness Issue? 

Coordinate DSM 
with P2P Trading? 

Evaluated with an 
Optimal Method? 

Shamsi et al. [14] 2016 Dynamic Programming Approximate Yes No No 

Liu et al. [15] 2017 Bi-Level Programming Approximate Yes No No 

Tushar et al. [16] 2017 Game Theory Approximate Yes No No 

Long et al. [17] 2018 
Constrained Non-Linear  

Programming 
Approximate Yes No No 

Samadi et al. [18] 2016 
Game Theory, Approximate  

Dynamic Programming 
Approximate Yes Yes No 

Zhou et al. [19] 2018 Multiagent System Approximate Yes Yes No 

ECO-Trade [3] 2019 Bi-Linear Programming Near-Optimal Yes Yes Yes 

3. ECO-Trade Algorithm 

The proposed ECO-Trade algorithm follows a bi-linear programming approach. 
It breaks down our previously proposed optimal model (which is a non-convex 
MINLP model [2]) into multiple Mixed Integer Linear Programming (MILP) 
models or modules. Each MILP model considers a convex feasible region which 
is smaller than the non-convex solution space. The proposed algorithm solves 
these MILP models until successive iterations converge to the final solution. Al-
gorithm 1 describes the pseudocode of the proposed algorithm. Module 1 calcu-
lates the energy demand and generation of individual households. Module 2 de-
termines the microgrid energy price. Module 3 computes the amount of micro-
grid energy being traded at a given price. The ECO-Trade algorithm iteratively 
generates the microgrid price (Module 2) and microgrid energy (Module 3) until 
a termination criterion is satisfied. Module 3 provides the final solution. We in-
troduce the following variables to control the flow of the algorithm: previous 
cost, preC , current cost, curC , threshold value,  , threshold counter, count , 
maximum threshold counter limit, max , and cost improvement, cur . x 
represents the final solution. For a description of all other notations, please see 
the nomenclature section at the end of this paper. 

3.1. Module 1: Initial Demand and Supply Module 

Module 1 optimizes the energy cost for the individual households when they do 
not participate in microgrid energy trading. It computes the initial values of 
energy supply and demand, k,hDS  (defined later in (16)). Module 2 uses the 
values of k,hDS  as constants in the first iteration of the bi-linear algorithm. 

Objective Function: If a household does not participate in microgrid energy 
trading, its energy cost is expressed as (1). 

, , , , , , 1NoTrade
k h k h k i k i k i h k i

h H i I h H
C GP GE d r h tτ

∈ ∈ ∈

  = ⋅ + − ⋅ + −  
  

∑ ∑ ∑       (1) 

The objective function is defined as (2), 

min NoTrade
kC                           (2) 
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The optimal solution should satisfy the following constraints. 
Energy Balance Constraints: Constraint (3) ensures the balance of energy 

consumption and generation in each timeslot for all households. The total ener-
gy consumed by the loads should be the same as the total energy generated by 
the energy sources. In this constraint, the grid and renewables are energy sources 
and the home appliances are loads. The storage and the microgrid can be energy 
sources or loads based on their functionalities in each timeslot. 

( ), , , , , , , , ,k i h k i k h k k h k h k h
i I

S p IC SP GE BE RE k K h H
∈

⋅ + ⋅ = + + ∈ ∈∑      (3) 

 

 
 

Stored Energy Constraints: In the first timeslot, storage energy is a function of ini-
tial storage energy, storage efficiency and self-discharging rate as expressed in (4). 

( ),1 ,1 ,1,k k k k k k kSE IE SD IC SP E BE k K= ⋅ + ⋅ ⋅ − ∈           (4) 

The stored energy in the other timeslots is a function of the available stored 
energy in the immediate previous timeslot, storage efficiency, and self-discharging 
rate, which has been expressed in (5). 

( ), , 1 , , , , : 1k h k h k k h k k k hSE IE SD IC SP E BE k K h H h−= ⋅ + ⋅ ⋅ − ∈ ∈ ≠     (5) 

The proposed algorithm discourages charging and discharging a storage at the 
same time because it will increase the energy cost. While charging the storage, 
due to the efficiency ( kE ), we lose energy which we could have used directly to 
power an appliance/load or to sell, without loss. 
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There are 2 ways to represent storage charging. One is using discrete charging 
power (on/off charging using a Boolean variable). Another way is using conti-
nuous values as the storage charging power. We used the former method so that 
the proposed algorithm can also consider the storage of an EV. The charging 
duration of an EV depends on the charging power and this on/off charging fea-
ture with fixed charging power gives the user more control over the required 
time to charge a storage. 

Storage Capacity Constraints: Constraints (6) and (7) ensure that a storage 
energy should not exceed the maximum storage capacity and should not go be-
low the minimum energy level. 

( ), , ,k h kSE MinC k K h H≤ ∈ ∈                    (6) 

( ), , ,k h kSE MinC k K h H≥ ∈ ∈                    (7) 

Task Duration Constraints: For each appliance, Constraint (8) maintains the 
total duration of an operation. It also ensures that the operation of an appliance 
can be interrupted as long as its duration of operation satisfies the required time 
to complete the task. For example, a dishwasher is an interruptible appliance. If 
it takes three hours to complete a task and has to be completed by 12 am, it does 
not matter what three hours we are operating the dishwasher. 

( ), , , , ,k i h k i
h H

S t k K i I
∈

= ∈ ∈∑                      (8) 

Renewable Energy Availability Constraints: Constraint (9) ensures that the 
energy drown from the renewables should be equal or less than the available 
energy. 

( ), , , ,k h k hRE RQ k K h H≤ ∈ ∈                     (9) 

Reservation Time Constraints: Constraint (10) specifies that an appliance op-
eration should start after (or at) the reservation time. k,i,hh H r h

∈
⋅∑  refers to the 

reservation timeslot. An appliance is reserved only once in the time horizon. 
Therefore, the multiplication of k,i,hr  by the corresponding timeslot h provides 
the reservation timeslot. 

( )
, ,

, , , , , ,
k i hh H

N

k i h k i h
h H h r h

S S k K i I
∈∈ = ⋅∑

= ∈ ∈∑ ∑                (10) 

If an appliance is requested multiple times within the same time horizon, the 
algorithm schedules the appliance operation as if it had multiple similar ap-
pliances. 

Relationship between the Scheduling Vector and the End Time Constraints: 
Constraint (11) binds k,it  with k,i,hS . The end time of an appliance should also 
be the last execution time. 

( ), , , , , ,k i h k iS h k K i I h Hτ⋅ ≤ ∈ ∈ ∈                (11) 

Maximum Allowable Delay Constraints: Constraint (12) specifies that an ap-
pliance operation must be completed before (or at) the user defined maximum 
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allowable time limit. 

( ), , , ,k i k i k K i Iτ β≤ ∈ ∈                      (12) 

Uninterruptibility Constraints: Constraints (13) and (14) define that an unin-
terruptible appliance keeps running without any interruption until it completes 
its operation. 

( ) ( )
, 1

, , , , , , ,
0

1 , , , 1, 1
k it

k i h d k i k i k i h k i
d

S t t US k K i U h N t
−

+
=

 − ≥ − − ∈ ∈ = − + ∑   (13) 

( )
, 1

, ,
1

1, ,
k iN t

k i h
h

US k K i U
− +

=

= ∈ ∈∑                      (14) 

Utility Grid Max Power Limit Constraints: Constraint (15) limits the power 
that can be drawn from the grid. 

( )max
, , ,k h kGE L k K h H≤ ∈ ∈                   (15) 

Demand and Supply Constraints: Equation (16) calculates the demand or 
supply of energy from the external energy sources like grid and microgrid. If the 
value of k,hDS  is positive, the household has energy demand. If the value of 

k,hDS  is negative, the household has energy surplus. 

( )

, , , , , , ,

, , ,

k h k i h k i k h k k h k h
i I

k h k

DS S p IC SP RQ SE

BE MinC k K h H
∈

= ⋅ + ⋅ − −

− + ∈ ∈

∑
         (16) 

3.2. Module 2: Price Computation Module 

Module 2 computes the microgrid energy price. In this module, k,hME  is a 
constant and hMP  is a variable. 

Objective Function: The proposed model in Module 2 is a multi-objective op-
timization problem which is expressed as (17). 

( )1 2min , , , ,total kC C C C                  (17) 

Here, totalC  is the total cost of all households and kC  is the total cost of the 
k-th household which are expressed in (18) and (19) respectively. 

, , , , , , 1total h k h k i k i k i h k i
k K h H k K i I h H

C GP GE d r h tτ
∈ ∈ ∈ ∈ ∈

  = ⋅ + − ⋅ + −  
  

∑∑ ∑∑ ∑      (18) 

, , , , , , , 1k h k h h k h k i k i k i h k i
h H h H i I h H

C GP GE MP ME d r h tτ
∈ ∈ ∈ ∈

  = ⋅ + ⋅ + − ⋅ + −  
  

∑ ∑ ∑ ∑  (19) 

The total energy bought from the microgrid is the same as the total energy sold 
to the microgrid. Therefore, microgrid energy price does not have an impact on 
the total cost. Hence, Equation (18) does not require the microgrid energy cost. 
This multi-objective optimization problem is solved by using totalC  as the sole 
objective function and the remaining objective functions, kC , are added as in-
equality constraints (Constraint (24) discussed later). Therefore, the objective 
function of Module 2 is defined as (20). 
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min totalC                           (20) 

The optimization model should satisfy Constraints (4) (15) as well as the fol-
lowing constraints. 

Energy Balance Constraints: Constraint (21) ensures that, in a specific house-
hold, total energy consumption is equal or less than the total available energy. 

( ), , , , , , , , , ,k i h k i k h k k h k h k h k h
i I

S p IC SP GE BE RE ME k K h H
∈

⋅ + ⋅ ≤ + + + ∈ ∈∑  (21) 

Microgrid Energy Price Constraints: Constraints (22) and (23) define the 
maximum and minimum limits of microgrid energy price. 

( )0,hMP h H≥ ∈                        (22) 

( ),h hMP GP h H≤ ∈                       (23) 

Pareto Optimality Constraints: Constraint (24) implements Pareto optimality. 
It ensures that a household cost when it participates in microgrid trading must 
be less than or equal to the cost when it does not participate. 

( ),NoTrade
k kC C k K≤ ∈                     (24) 

3.3. Module 3: Energy Computation Module 

The third module computes the microgrid energy, k,hME , using the constant 
microgrid prices, hMP , provided by Module 2. The optimization model of 
Module 3 is similar to Module 2. The main differences are: 1) it does not require 
Constraints (22) and (23) because microgrid prices are constants, and 2) Con-
straint (21) of Module 2 is modified as Constraint (25). Module 3 also requires 
the following constraints. 

Energy Balance Constraints: Constraint (25) ensures that, for a specific house-
hold, the total energy consumption should be the same as the total available energy. 

( ), , , , , , , , , ,k i h k i k h k k h k h k h k h
i I

S p IC SP GE BE RE ME k K h H
∈

⋅ + ⋅ = + + + ∈ ∈∑  (25) 

A negative value of k,hME  means the household is an energy seller at that 
specific timeslot. A positive value means the household is a buyer. 

Energy Balance Constraints for Microgrid: Constraint (26) ensures that the 
total energy sold in the microgrid by all households must be equal to the total 
energy bought from the households. 

( ), 0,k h
k K

ME h H
∈

= ∈∑                        (26) 

Energy Constraints While Trading in Microgrid: Constraint (27) calculates 
the amount of available energy to trade in the microgrid. 

( )

, , , , , , ,

, , , ,

k h k i h k i k h k k h k h
i I

k h k h k

MQ S p IC SP GE RQ

SE BE MinC k K h H
∈

= ⋅ + ⋅ − −

− − + ∈ ∈

∑
          (27) 

If a household is a seller at a timeslot, this constraint limits the maximum 
amount of energy that the household can sell to the microgrid. If a household is 
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a buyer, this constraint defines the minimum energy required by the household 
from the microgrid. 

( ), , , ,k h k hME MQ k K h H≥ ∈ ∈                  (28) 

4. Results 

In this section, we compare the proposed ECO-Trade algorithm with the optim-
al model to evaluate its performance. We used a 64 bit Fedora 20 machine with 
Intel Core i7 CPU (2.67 GHz) and 12 GB RAM to collect the results. CPLEX 
12.6.1.0 [20] is used to solve the models. 

4.1. Small Scenarios with Synthetic Data 

This section shows the impact of the number of households, timeslots and ap-
pliances on the computation time. Table 2 specifies the static parameters used 
for the scenarios. Table 3 shows the minimum and maximum bounds for gene-
rating uniformly distributed parameters. The ECO-Trade algorithm terminates 
if the cost does not improve more than 0.1% in the last 10 iterations. We solved 
492 scenarios for the optimal model and the ECO-Trade algorithm. Among all 
these scenarios, 111 solutions exceeded the cut off time (set to 8 hr) for the op-
timal model and we did not get any solution for these cases. Therefore, the 
comparison between the optimal and the ECO-Trade models considers 381 so-
lutions of each model. 

Figure 2 shows that the median computation times of the ECO-Trade algo-
rithm are almost constant for any number of appliances. On the contrary, the 
computation times of the optimal model increase exponentially with the number 
of appliances. Figure 3 and Figure 4 show that the computation times of both 
algorithms increase exponentially with the number of timeslots and households. 
The average of the median solution times of the ECO-Trade algorithm is very 
low (0.46 sec) compared to the optimal model (2316 sec or 38 min). For all sce-
narios, the maximum median solution time of the ECO-Trade algorithm is less 
than 5 sec whereas the maximum median solution time of the optimal model is 
7737 sec (2 hr and 9 min). We consider 0.01% deviation from the optimal solu-
tion as an acceptable optimal solution. Our results show that over 97% of the 
ECO-Trade solutions are optimal solutions. The worst deviation from the op-
timal solution in all 381 cases is 5.2%. 

4.2. Large Scenarios with Real Data 

In the previous section, we compared the ECO-Trade algorithm with the optim-
al model for small problem sizes. Although it is the best approach to evaluate the 
performance of an approximate algorithm, it is not practical for our case because 
we are unable to generate solutions for large scenarios. If we exclude the 
non-linear constraints from the optimal model, its time complexity will decrease 
because in this case, the optimal model will be reduced to an MILP model. 
However, this optimal model will no longer ensure Pareto optimality. 
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Table 2. Static parameters. 

Parameter Value 

Storage Efficiency 90% 

Storage Self-Discharging Rate 0.01% 

Storage Initial Energy (kWh) 5 

Reservation Time 1st Timeslot 

End Time Last Timeslot 

Maximum Power Limit of a Household (kW) Infinite (200,000) 

 
Table 3. Uniformly distributed parameters. 

Parameter Min Max 

Duration of Appliance Operations 1 Total Timeslots 

Appliance Power (kW) 0.5 15 

Grid Energy Price (Cent) 0.1 5 

Disutility Factor (Cent) 0.01 10 

Storage Power (Cent) 2 5 

Minimum Storage Capacity (kWh) 0 2 

Maximum Storage Capacity (kWh) 5 10 

Renewable Energy (kWh) 0 10 

 

 
Figure 2. Comparison between the solution times of the optimal model and the 
ECO-trade algorithm for different number of appliances. 

 
The cost of the previously proposed optimal model [2] can be equal or greater 

than the optimal model used in this section. The relationships between these 
costs are expressed in Figure 5. The minimum cost which does not consider the  
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Figure 3. Comparison between the solution times of the optimal model and 
the ECO-trade algorithm for different number of timeslots. 

 

 
Figure 4. Comparison between the solution times of the optimal model and 
the ECO-trade algorithm for different number of households. 

 
Pareto optimality is always equal to or less than the minimum cost that consid-
ers Pareto optimality. In Figure 5, the difference between these 2 costs is 
represented by a. Instead of comparing the ECO-Trade algorithm with the op-
timal model with Pareto optimality [2] (the difference is b), we compare it with 
the optimal model without Pareto optimality (the difference is c). Here, 
c a b= +  where the value of a is either 0 or a small number. Hence, c b≥ . 

We used household load datasets collected in Ottawa [21]. In [21], the authors  
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Figure 5. Relationship between the ECO-trade algorithm 
and the optimal models with/without Pareto optimality. 

 
considered 12 households which were selected based on their annual consump-
tion profiles. The electricity bills of the potential participants were examined; 
some volunteers were selected for the study because their annual electricity con-
sumption were close to the Canadian average, whereas others were selected be-
cause they consume below or above the average. 

We collected solar irradiance for Ottawa from the National Solar Radiation 
Database (NSRDB) [22] which is maintained by the National Renewable Energy 
Laboratory (NREL) [23]. The database is developed using the Physical Solar 
Model (PSM) [24]. The PV array configuration is given in Table 4. We used the 
PV_LIB MATLAB toolbox [25] developed by Sandia National Laboratories [26] 
to convert the solar irradiance to DC power. The King Diffuse model (developed 
by David L. King at Sandia National Laboratory) was used to determine the total 
diffuse irradiance (sky diffuse and ground reflected irradiance) [27]. We did not 
consider any DC to AC inverter. 

We used Tesla Powerwall as the home energy storage. The storage characte-
ristics are given in Table 5 [28]. A Powerwall battery can store up to 6.4 kWh 
and we consider that its energy level should not go below 40% of the maximum 
storage capacity (2.56 kWh). The required power to charge the storage is 3.3 kW. 
Its charging efficiency is 92% and self-discharging rate is approximately 1% per 
day which is 0.042% per hour. 

We used 4 representative days of 2010 based on seasons (summer and winter) 
and days of the week (weekend day and weekday). We used Real-Time Price 
(RTP) and Time-Of-Use (TOU) prices of these days to evaluate our algorithm. 
Hydro Ottawa uses a TOU price which is set by the Ontario Energy Board (OEB) 
[29]. Pagani et al. considered the day ahead price advertised by the wholesale 
market as the retail energy price for the end user and proposed that this price 
can be used as RTP [30]. To use this idea in our research, we collected the hourly 
wholesale energy price advertised by the Independent Electricity System Opera-
tor (IESO) [31]. The Hourly Ontario Energy Price (HOEP) from IESO Historical 
Reports (2002-present) was used as RTP [32]. IESO is responsible for operating 
the electricity market and directing the operation of the bulk electrical system in 
the province of Ontario, Canada. Hydro Ottawa buys energy from IESO [33]. 
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Table 4. PV array configuration. 

Properties Description 

PV Module Suntech STP200S-18/ub-1 Module 

Array Tilt Angle 45.41˚ (Site Latitude) 

Array Azimuth 180˚ (South Facing Array) 

Number of Modules in Series 2 

Number of Parallel Strings 2 

 
Table 5. Characteristics of Tesla Powerwall [28]. 

Properties Values 

Power 3.3 kW 

Efficiency 92% 

Self-Discharging Rate 1% per Day (0.042% per Hour) 

Minimum Energy Level 2.56 kWh (40% of Max Capacity) 

Maximum Energy Level 6.4 kWh 

 
We used different settings of the parameters to generate different scenarios. 

For household loads, we considered a summer weekday, a summer weekend day, 
a winter weekday and a winter weekend day load profiles. For each of these load 
profiles, we divided the scenarios based on user preference: economy and com-
fort. A user may prefer to save cost, which we labeled as economy. We used a 
low value of the disutility factor (0.001 per timeslot) so that the algorithm can 
tolerate more delay in appliance operation. On the other hand, a user may prefer 
more comfort. In this setting, the disutility factor is set to a higher value (200 per 
timeslot) so that the algorithm shows reluctance to any delay in appliance opera-
tion. If the household has a storage, the scenarios were varied based on the initial 
storage energy. A household can have minimum storage energy or maximum 
storage energy at the beginning of a planning cycle. The parameters were also 
different for RTP and TOU energy price schemes. A detailed description of how 
these parameters were used to generate different scenarios can be found in [34]. 

We generated 112 different scenarios for performance analysis. The ECO-Trade 
algorithm terminates if the cost does not improve more than 0.1% within 3 con-
secutive iterations. Results show that the ECO-Trade algorithm provides optimal 
solutions for 99% of the scenarios. The remaining 1% of cases had a cost at most 
1.8% higher than the optimal solution. The median solution time is around 4.6 
sec for all scenarios. For the ECO-Trade algorithm, the solution times of 90.2% 
of the scenarios are below 1 min. We observed that 7.1% of the scenarios took 
more than 2 min to solve. Therefore, we conclude that the proposed ECO-Trade 
algorithm is a better alternative to the optimal model considering the trade-off 
between the accuracy and the solution time. 

5. Analysis of Local Minima 

The ECO-Trade algorithm sometimes gets trapped into a local minimum and 
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cannot improve the resulting solution any further. In this section, we analyze the 
conditions under which the algorithm generates sub-optimal solutions. For sim-
plicity, we consider only 2 households, 2 timeslots and 1 appliance. We exclude 
the renewables and the self-discharging feature of the storage. We do not con-
sider the disutility cost, i.e., all disutility factors are set to 0. The appliance and 
storage characteristics are shown in Table 6 and Table 7 respectively. 

5.1. Cost without Microgrid Trading 

We use Module 1 of the ECO-Trade algorithm to generate the household cost 
when they are not participating in the microgrid energy trading. Table 8 shows 
that the minimum costs for household 1 and household 2 are 19.5 and 43.5 
respectively when they are not participating in microgrid trading. These costs 
should be the maximum costs when they participate in microgrid trading for 
cost optimization. Therefore, when the 2 households are optimized individually, 
the total cost is 63. 

5.2. Cost Using the Optimal Model 

Now, we introduce the microgrid and solve the same optimization problem, but 
this time also allowing the households to trade energy with each other. Table 9 
summarizes the results for the 2 households, using the same format as before. A 
negative value of microgrid energy indicates that the household is actually sell-
ing energy to the microgrid, whereas a positive value indicates that the house-
hold buys that much energy from the microgrid. Compared to the previous so-
lution, the total cost of household 1 decreases from 19.5 to 18.14 and the total 
cost of household 2 decreases from 43.5 to 41.86. 

5.3. Sub-Optimal Cost Using the ECO-Trade Algorithm 

To generate a suboptimal result with this simple scenario, we initialize the mi-
crogrid prices for the two timeslots as follows. We use the grid price (which is the 
maximum limit of the microgrid price) as the microgrid price at the 1st timeslot 
and we use 0 (which is the minimum limit of the microgrid price) as the microgrid 
price at the last timeslot. The ECO-Trade algorithm gets trapped into a local 
minimum and cannot improve the solution any further. It generates the same 
solution in the next few iterations and finally terminates with a solution which is 
given in Table 10. 

In Table 10, for household 1 at timeslot 1, both microgrid and grid prices are 
3. It is cost effective to charge the storage with cheap energy at this timeslot to 
use it at the last timeslot when energy is expensive. In the 1st timeslot, the total  
 
Table 6. Appliance characteristics. 

Household Appliance 
Duration 

(Time-slots) 
Power (kW) 

Disutility 
Factor () 

Reservation 
Time-slot 

Max Delay 

Household 1 App1 2 2 0 1 2 

Household 2 App1 2 4 0 1 2 
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Table 7. Storage characteristics. 

Characteristics Household 1 Household 2 

Initial Energy (kWh) 2 2 

Power (kW) 5 3 

Max Capacity (kWh) 6 8 

Min Capacity (kWh) 2 2 

Charging Efficiency 50% 50% 

Self-Discharging Rate (per Timeslots) 0% 0% 

 
Table 8. Cost without microgrid trading. 

Household Household 1 Household 2 

Timeslot 1 2 1 2 

Price Grid 3.00 9.00 3.00 9.00 

Stored Energy (Availability) 4.00 2.00 3.50 2.00 

Energy Source Grid 6.50 0 7.00 2.50 

Storage 0.50 2.00 0 1.50 

Load Storage Charging 1 0 1 0 

App1 1 1 1 1 

Total Cost: 63 Cost: 19.5 Cost: 43.5 

 
Table 9. Optimal cost with microgrid trading (optimal model). 

Household Household 1 Household 2 

Timeslot 1 2 1 2 

Price Grid 3.00 9.00 3.00 9.00 

Microgrid 1.22 6.09 1.22 6.09 

Stored Energy (Availability) 4.50 2.00 3.50 2.00 

Microgrid (Demand/Availability) −1.32 −1.28 −2.68 1.28 

Energy Source Grid 5.82 0.78 8.18 1.22 

Storage 0 2.50 0 1.50 

Microgrid (Source/Load) 1.18 −1.28 −1.18 1.28 

Load Storage Charging 1 0 1 0 

App1 1 1 1 1 

Total Cost: 60 Cost: 18.14 Cost: 41.86 

 
minimum load is 7 kWh (2 kWh for the appliance and 5 kWh for charging the 
storage). Household 1 sells 7 kWh of energy to Household 2. Therefore, the total 
load at this timeslot is 14 kWh. This 14 kWh is drawn from the grid and the sto-
rage (13.5 kWh from the grid and 0.5 kWh from the storage). Selling energy to 
the microgrid does not have any impact on the household cost because buying 
grid energy has the same cost as selling energy to the microgrid. Therefore, the  
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Table 10. Sub-optimal cost with microgrid trading (ECO-trade algorithm). 

Household Household 1 Household 2 

Timeslot 1 2 1 2 

Price Grid 3.00 9.00 3.00 9.00 

Microgrid 3.00 0 3.00 0 

Stored Energy (Availability) 4.00 2.00 3.50 2.00 

Microgrid (Demand/Availability) −9.00 0 5.50 0 

Energy Source Grid 13.5 0 0 2.50 

Storage 0.50 2 0 1.50 

Microgrid (Source/Load) −7.00 0 7.00 0 

Load Storage Charging 1 0 1 0 

App1 1 1 1 1 

Total Cost: 63 Cost: 19.5 Cost: 43.5 

 
energy cost for household 1 is 19.53 for 6.5 kWh energy. At timeslot 2, household 
1 does not buy energy from the grid. It uses 2 kWh of energy from the storage. The 
microgrid price is 0 at this timeslot. Hence, buying or selling energy to the micro-
grid does not impact the household cost (microgrid quantity is set to 0 kWh). 

In an iteration, when the microgrid prices are 3 and 0 (constants) for timeslots 
1 and 2 respectively, we get a solution which trades −7 kWh and 0 kWh of ener-
gy in the microgrid. This solution provides the maximum cost for Household 1, 
which is 19.5. The microgrid quantity does not have any impact on the energy 
cost because either the microgrid price is 0 or it is the same as the grid price. 
Therefore, this solution cannot be improved for the given constant microgrid 
prices. 

In the next iteration, when the microgrid quantities are constants (−7 kWh 
and 0 kWh for timeslots 1 and 2 respectively) the solution cannot be improved 
either. At timeslot 1, any microgrid price which is less than 3 will increase the 
Household 1 energy cost to more than 19.5, which violates the Pareto optimali-
ty constraint. For timeslot 2, the microgrid price does not have any impact on 
energy cost because the households do not trade energy at this timeslot. 

A similar explanation is also applicable to household 2. When the microgrid 
prices are constants (3 and 0 for timeslots 1 and 2 respectively), the total energy 
cost of this household is the same for any amount of microgrid energy trading. On 
the other hand, when the microgrid quantities are constants (7 kWh and 0 kWh 
for timeslots 1 and 2 respectively), any value which is less than 3 violates the Pa-
reto optimality constraint for Household 1. For timeslot 2, the microgrid price 
does not have any impact because it does not trade energy in microgrid. 

In an iteration, if the energy price is greater than 0 (at timeslot 2 for both 
households), we will not trade energy: the only household available to sell into 
the microgrid is household 1, but it has no energy available (unless it bought 
some from the grid, but then it would have to sell at least at the grid price to 
come out ahead). 

In addition to this simple example, we analyze all scenarios which generated 
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sub-optimal solutions. These are relatively large scenarios and it is hard to iden-
tify the exact reasons for sub-optimal solutions. We notice different patterns in 
the solutions which are mostly related to the boundary values of the microgrid 
price. Every sub-optimal scenario we found has microgrid energy prices that are 
higher in adjacent timeslots and the price is either 0 or the same as (or at least 
very close to) the grid price. However, scenarios where the grid prices are close 
to these boundary values do not always result in a sub-optimal solution. 

In the proposed bi-linear optimization, the algorithm sets the microgrid prices 
as constants and determines the microgrid quantities in one module. In the next 
iteration, it sets the microgrid quantities as constants and determines the micro-
grid prices. This property of the algorithm sometimes does not allow the solu-
tion to be improved while maintaining the Pareto optimality constraints in each 
iteration. Therefore, we can conclude that the ECO-Trade algorithm sometimes 
gets trapped at a local minimum because it alternately sets the microgrid price 
and microgrid quantity as constants. 

6. Impact of Local Minima 

In this section, we analyze how a local minimum increases the total cost in a mi-
crogrid. To explore the factors, we studied the scenario which provides the worst 
solution with synthetic data. The scenario consists of 30 households, 2 appliances 
and 3 timeslots. The parameters used for this optimization were generated ran-
domly as described in Section 4.1. For this scenario, the optimal cost is 132.79 and 
the sub-optimal cost generated by the ECO-Trade algorithm is 139.68. The 
sub-optimal cost is 5.2% higher than the optimal cost. We use this specific sce-
nario to analyze all the results presented in this section. 

There are 2 main reasons for an increase in the cost of the proposed the 
ECO-Trade algorithm. First, the sub-optimal microgrid price may force the 
ECO-Trade algorithm to buy more energy from the grid compared to the optimal 
solution. Second, it may delay an appliance operation compared to the optimal 
solution. 

6.1. Buying More Energy from the Grid 

If, in a microgrid area, the households buy more energy from the grid compared 
to the optimal solution, then the ECO-Trade algorithm cannot produce the op-
timal solution. There are 2 main reasons that may cause the solution derived by 
the ECO-Trade algorithm to buy more energy from the grid: 

6.1.1. Energy Loss Due to Storage Charging Efficiency  
Table 11 shows that one of the main reasons for the higher cost in the ECO-Trade 
algorithm is that the derived solution unnecessarily charges the storage, which 
imposes energy loss due to storage charging. The solution charges the storage de-
vices of households 1, 2, 3, 8, 9, 10, 16, 17 and 26. The optimal model never 
charges any storage in any households. Due to storage charging efficiency, the 
ECO-Trade solution lost 3.15 kWh of energy compared to the optimal solution.  
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Table 11. Impact of local minima on the ECO-trade algorithm cost. 

Household 
Max. 

Cost () 
Opt. 

Cost () 
ECO-T. 
Cost () 

Cost 
Incr. () 

Energy Loss 
Self-Dis.(kWh) 

    Stor. Disuti. Opt. ECO-T. 

1 28.55 24.14 28.55 0.46  0.11 0.16 

2 6.67 5.17 6.67 0.64  0.10 0.12 

3 14.22 12.34 14.21 0.67  0.11 0.16 

4 0.00 −2.81 −3.06  0.06 0.10 0.06 

5 2.52 1.04 2.50   0.11 0.10 

6 4.52 3.27 4.51   0.11 0.13 

7 5.88 4.34 4.01   0.11 0.12 

8 13.71 12.01 13.71 0.59  0.10 0.17 

9 13.78 10.60 13.78 0.42  0.10 0.16 

10 9.32 8.09 9.31 0.41  0.10 0.13 

11 0.99 0.02 0.99   0.11 0.11 

12 0.00 −3.44 −12.22   0.11 0.08 

13 12.53 9.53 12.52   0.10 0.14 

14 0.00 −2.62 −5.14   0.09 0.05 

15 5.54 4.05 4.53   0.11 0.12 

16 13.16 10.66 13.16 0.31  0.10 0.15 

17 26.52 22.34 26.51 0.33  0.10 0.17 

18 0.00 −2.66 −5.19   0.09 0.05 

19 3.28 1.35 3.15   0.10 0.06 

20 0.31 −1.68 −5.97  0.31 0.11 0.11 

21 7.16 5.64 7.25  0.45 0.11 0.12 

22 4.76 3.32 4.71   0.10 0.11 

23 4.04 2.11 1.10  0.57 0.10 0.11 

24 2.12 −0.07 −2.37   0.11 0.08 

25 0.00 −1.59 −4.40   0.11 0.08 

26 8.98 7.67 8.98 0.62  0.11 0.14 

27 3.77 1.38 1.02  0.96 0.10 0.10 

28 3.04 0.85 0.06   0.11 0.09 

29 0.00 −1.65 −0.02   0.10 0.06 

30 0.88 −0.63 −3.18   0.10 0.11 

Total 196.26 132.79 139.68 4.43 2.35 3.15 3.35 

Cost Difference Total Increased ECO-Trade Algorithm 

between the Cost in ECO-Trade Lost 0.2 kWh 

the Algorithms: 6.89 Algorithm: 6.78 More Energy 
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The households in the ECO-Trade solution buy this energy at the 1st timeslot from 
the grid at a price of 1.41. Therefore, the ECO-Trade algorithm incurs an addi-
tional cost of 3.15 kWh*1.41/kWh = 4.43 compared to the optimal solution. 

6.1.2. Energy Loss Due to Storage Self-Discharging  
In a microgrid area, households may buy more energy from the grid if the sto-
rage devices lose more energy due to self-discharging. Table 11 shows that in the 
sub-optimal solution, the households lose 0.2 kWh more energy compared to the 
optimal solution due to self-discharging. 

6.2. Disutility Cost 

The ECO-Trade solution sometimes delays an appliance operation, which in-
creases the cost due to the disutility cost. Table 11 shows that households 4, 20, 
21, 23 and 27 increase their cost by 2.35 compared to the optimal model. 

Table 11 shows that the total cost increment due to increased disutility and 
storage charging is 6.78, which is almost the cost difference between the optim-
al and the ECO-Trade algorithm (6.89). The remaining 0.11 cost increase is 
due to the cost related to self-discharging loss and the precision of the used val-
ues (we considered 2 digits after the decimal point). The root cause of this 
sub-optimal solution is that the ECO-Trade algorithm does not determine the 
optimal microgrid price. 

7. Conclusions 

This paper analyzes the performance of the ECO-Trade algorithm compared to 
the optimal model. We get 97% optimal solutions for synthetic (small) data sets 
and 99% optimal solutions for more realistic (large) datasets. Also, the difference 
in results is less than 5.2% in the first case and 1.8% in the second case. The so-
lution time is almost always less than one minute, and much lower than the op-
timal model. Therefore, based on the results presented in this paper, we can 
conclude that the ECO-Trade algorithm is a better alternative to the previously 
proposed optimal model considering the accuracy and the solution time. 

We analyze the solutions generated by the ECO-Trade algorithm for a wide 
range of problem sizes and identify that the sub-optimal cost potentially arises 
when the microgrid price reaches the boundary limits. Every sub-optimal scena-
rio we found has microgrid energy prices that are higher in previous adjacent 
timeslots and the price is either 0 or close to the grid price. In a local minimum, 
the sub-optimal microgrid energy price forces the households either to buy more 
energy to compensate for storage energy loss or delays appliance operations. 
However, having microgrid prices that take on their boundary values is not suf-
ficient for a suboptimal solution to occur. In our work, only a small percentage 
of cases ended up being trapped in a local minimum. Going forward, we will ex-
plore how to deal with this issue. For example, we can verify whether a given so-
lution has microgrid prices at the boundaries, and re-run modules 2 and 3 itera-
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tively using perturbed microgrid prices (for example the average price) as a 
starting point. 
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Nomenclature 
A) Sets 

H Set of timeslots where h H∈  

I Set of appliances where i I∈  

K Set of households where k K∈  

U Set of uninterruptible appliances where U I⊂  

 
B) Parameters 

preC  Previous cost 

curC  Current cost 

,k id  Disutility factor of an appliance 

kE  Storage efficiency 

hGP  Grid energy price 

kIE  Initial storage energy level 

max
kL  Maximum grid power limit 

kMinC  Maximum storage capacity 

kMinC  Minimum storage capacity 

N Number of timeslots in the scheduling time horizon 

,k ip  Power consumption of an appliance 

, ,k i hr  

Reservation time of an appliance which represents the time when 
the scheduler gets a request to start a specific appliance (boolean 
constant, , , 1k i hr =  means that operation of the appliance is 
requested) 

,k hRQ  Amount of generated renewable energy 

kSD  Self-discharging coefficient of the storage 

kSP  Required power to charge the storage 

,k it  Duration of the running time of an appliance 

x Final solution 

,k iβ  Maximum allowable delay of an appliance 

  Threshold value 

count  Threshold counter 

max  Maximum threshold counter limit 

cur  Cost improvement 
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C) Variables 

,k hBE  Energy used from the storage ( ,k hBE +∈ ) 

kC  
Total cost of the k-th household when it participates in microgrid 
energy trading ( kC ∈ ) 

NoTrade
kC  

Total cost of the k-th household when it does not participate in 

microgrid energy trading ( NoTrade
kC ∈ ) 

totalC  Total cost of all households ( 0totalC +∈ ) 

,k hDS  
Energy demand or supply of a household ( ,k hDS ∈ , a positive 
value represents energy demand and a negative value represents 
energy surplus) 

,k hGE  Energy drawn from the grid ( ,k hGE +∈ ) 

,k hIC  Storage charging state (boolean vector, , 1k hIC =  means the 
storage is in charging state) 

,k hMQ  

Demand or supply of microgrid energy ( ,k hMQ ∈ , a positive 
value represents the minimum energy demand of the household 
and a negative value represents the maximum amount of energy 
that the household can sell to the microgrid) 

,k hRE  Energy used from the renewable source ( ,k hRE +∈ ) 

,k hSE  Energy level of a storage ( ,k hSE +∈ ) 

, ,k i hS  Appliance operation time (boolean vector, , , 1k i hS =  means the 
appliance is in operation) 

, ,k i hUS  
Start time of an uninterruptible appliance (boolean vector, 

, , 1k i hUS =  represents the timeslot when an uninterruptible 
appliance starts its operation) 

,k iτ  End time of an appliance operation ( ,k iτ ∈ ) 

 
D) Variables or Parameters 

,k hDS  

Energy demand or supply of a household ( k,hDS ∈ , a positive 
value represents energy demand and a negative value represents 
energy surplus). k,hDS  is a variable in Module 1 and a parameter 
in Module 2. 

k,hME  
Energy traded in microgrid ( k,hME ∈ , a positive value 
represents a buyer and a negative value represents a seller). 

k,hME  is a parameter in Module 2 and a variable in Module 3. 

hMP  
Price of microgrid energy ( hMP +∈ ). hMP  is a variable in 
Module 2 and a parameter in Module 3. 
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