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Abstract 
Based on the constituent quasiparticle model of the quark-gluon plasma 
(QGP), the Wigner function is presented in the form of a color path integral. 
The Monte Carlo calculations of the quark and gluon densities, pair correla-
tion functions and the momentum distribution functions for strongly coupled 
QGP plasma in thermal equilibrium at barion chemical potential equal to ze-
ro have been carried out. Analysis of the pair correlation functions points out 
on arising glueballs and related gluon bound states. Comparison results be-
tween the momentum distribution functions and Maxwell-Boltzmann distri-
butions show the significant influence of the interparticle interaction on the 
high energy asymptotics of the momentum distribution functions resulting in 
the appearance of quantum “tails”. 
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1. Introduction 

Studying the quark-gluon plasma (QGP) is nowadays one of the most important 
goals in high-energy physics. In recent years, experiments at the Relativistic 
Heavy-Ion Collider (RHIC) at Brookhaven National Laboratory [1] and the Large 
Hadron Collider (LHC) at CERN have provided a wealth of data. The most strik-
ing result, obtained from analysis of these experimental data [1] [2], is that the 
deconfined quark-gluon matter behaves as an almost perfect fluid rather than a 
perfect gas, as it could be expected from the asymptotic freedom. 

The most fundamental way to compute the properties of strongly interacting 
matter is provided by the lattice quantum chromodynamics [2] [3] [4]. However 
interpretation of these very complicated numerical computations requires the 
application of various quantum chromodynamics (QCD) motivated, albeit sche-
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matic, models simulating various aspects of the full theory and allowing for a dee-
per physical understanding. Moreover, such models are needed in cases when the 
lattice QCD fails, e.g. at large quark chemical potentials and out of equilibrium. It 
is, therefore, crucial to devise reliable and manageable theoretical tools for a 
quantitative description of non-Abelian QGP both in and out of equilibrium. 
Kinetic theory for the QGP can be formulated in two ways, namely: the color 
degrees of freedom are treated quantum mechanically and the distribution func-
tion of plasma constituents is a matrix in color space; in the second approach, on 
the other hand, the color may be considered as a continuous classical variable 
[5]. Here we use the latter approach that describes a particle carrying a classical 
color charge interacting with the chromodynamic field. The used approach is 
based on a quasiparticle picture and is motivated by the expectation that the main 
features of non-Abelian plasmas can be understood in simple semi-classical terms 
without the difficulties inherent to a full quantum field-theoretical analysis. 

In this work, we extend the previous classical nonrelativistic simulations [1] to 
take into account quantum and spin effects. This is done in the frame of quan-
tum Monte Carlo simulations where we rewrite the Wigner function of this sys-
tem in the form of color path integrals. For the integration over color variables 
we have developed a procedure of sampling the color quasiparticle variables ac-
cording to the SU(3) group Haar measure with the quadratic and cubic Casimir 
conditions. The developed approach self-consistently takes into account the Fermi 
(Bose) statistics of quarks (gluons). The main goal of this work is to calculate the 
quark and gluon pair distribution functions and momentum distribution func-
tions and to treat influence of the strong interparticle interaction on these quan-
tities. 

2. Basics of the Model 

The basic assumptions of the model are similar to those of Ref. [6] [7]: 
1) Quasiparticles masses (m) are of order or higher than the mean kinetic 

energy per particle. This assumption is based on the analysis of QCD lattice data 
[8] [9] [10]. For instance, at zero net-baryon density it amounts to ~m T , 
where T is a temperature. 

2) In view of the first assumption, interparticle interaction is dominated by a 
color-electric Coulomb potential. Magnetic effects are neglected as subleading 
ones. 

3) Relying on the fact that the color representations are large, the color opera-
tors are substituted by their average values, i.e. by Wong’s classical color vectors 
[eight-dimensional (8D) in SU(3)] with the quadratic and cubic Casimir condi-
tions [11]. 

4) We consider the 3-flavor quark model. For the sake of simplicity we assume 
the masses of “up”, “down” and “strange” quarks to be equal. As for the gluon 
quasiparticles, we allow their mass to be different (heavier) from that of quarks. 

Thus, this model requires the following quantities as a function of tempera-
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ture (T) and quark chemical potential ( qµ ) as an input: 
a) quasiparticle masses, for quarks qm  and gluons gm , and 
b) the coupling constant 2g , or 2 4πs gα = . 
Input quantities should be deduced from lattice QCD data or from an appro-

priate model simulating these data. Applicability of such approach was discussed 
in Refs. [5] [6] in detail. Our approach differs from that of Ref. [5] [6] by a quan-
tum treatment to quasiparticles instead of the classical one. 

We consider a multi-component QGP consisting of N  color quasiparticles: 

gN  gluons, qN  quarks and qN  antiquarks. The Hamiltonian of this system 
is ˆ ˆ ˆ CH K U= +  with the kinetic and color Coulomb interaction parts 

( )
( )( )2

2 2
,1ˆ ˆˆ , , .

2 4π
i i jC

i i i
i i j i j

g T Q Q
K m T U

µ
µ

≠

⋅
= + =

−
∑ ∑p

x x
        (1) 

Here i and j summations run over quark and gluon quasiparticles, iµ  are their 
chemical potentials, , 1, ,i j N= 

 , q q gN N N N= + + , q u d sN N N N= + +  and 

q u d sN N N N= + +  are total numbers of quarks and antiquarks of all flavours 
(up, down and strange), respectively, 3D vectors ix  are quasiparticle dimen-
sionless spatial coordinates, ( )2 , 4πig T µ  is coupling constant, the iQ  denote 
the Wong’s quasiparticle color variable (8D-vector in the group ( )3SU ), 
( )i jQ Q⋅  denote scalar product of color vectors. Nonrelativistic approximation 
for potential energy is used, while for kinetic energy we still keep relativistic 
form as the quasiparticle masses are not negligible as compared with tempera-
ture. The eigenvalue equation of this Hamiltonian is usually called the “spinless 
Salpeter equation”. 

The grand canonical ensemble with given temperature, net-quark-number ( qµ ) 
and strange ( sµ ) chemical potentials, and fixed volume V are fully described by 
the grand partition function 

( )

{ }

( ){ } ( ){ }
{ }( )

, , ,

exp exp
, , .

! ! ! ! ! ! !

q s

q q q s s s

N u d s u d s g

Z V

N N T N N T
Z N V

N N N N N N N

µ µ β

µ µ
β

− −
= ∑

     (2) 

Here { } { }, , , , , ,u d s u d s gN N N N N N N N= . In Equation (2) we explicitly wrote 
sum over different quark flavors (u,d,s). Below the sum over quark degrees of 
freedom is understood in the same way. Usual choice of the strange chemical 
potential is s qµ µ= −  (nonstrange matter), such that the total factor in front of 
( )s sN N−  is zero. Therefore, below we omit sµ  from the list of variables. 

The partition function in canonical ensemble { }( ), ,Z N V β  and the related 
thermodynamic properties of many particle systems of particles are defined by 
the diagonal matrix elements of the density-matrix operator ( )ˆˆ exp Hρ β= −  

{ }( ) ( ) ( ) ( )

{ }( )

ˆ
,

,
, , d d d d e

d d , , ; ; ,

H QZ N V x x Q Q x x Q Q x x

x Q x Q N

β
σ σ

σ σ

σ

β µ µ δ δ δ

µ ρ σ β

−
′

′

′ ′ ′ ′ ′= − −

=

∑∫
∑∫

 (3) 

where x, σ  and Q denote the multi-dimensional vectors related to spatial, spin 
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and color degrees of freedom of { }N  quasiparticles with related flavor indexes 
respectively. The σ  summation and spacial ( 3 3

1d d d Nx x x≡  ) and color 
( 1d d d NQ Q Qµ µ µ≡  ) integrations run over all individual degrees of freedom of 
the particles, d iQµ  denotes integration over SU(3) group Haar measure [5] [12]. 

3. The Wigner Function for Canonical Ensemble 

The Wigner function of the multiparticle system in canonical ensemble is de-
fined as the Fourier transform of the off-diagonal matrix element of density ma-
trix in coordinate representation [13] [14]: 

{ }( )
{ }( ) ( )1 ˆi

, , ; ;

, , d e 2 e 2 ,p H Q

W p x Q N

Z N V x xξ β

σ

β

β ξ ξ ξ
− −= − +∑∫

        (4) 

To avoid discussed in literature problems with definition of the relativistic 
Wigner function [15] [16] [17] [18] in this paper we take in Equation (4) the 
non relativistic limit for kinetic energy operator (1). 

Further we are going to obtain a new representation of the Wigner functions 
in the path integral form in the color phase space, which allows the numerical 
Monte Carlo simulations of the strongly coupled quantum systems of particles in 
canonical ensemble [19]-[24]. Average value of arbitrary quantum operator Â  
can be written as the Weyl’s symbol ( ), ,A p x Q  averaged over the color phase 
space ( ,p x ) with the Wigner function { }( ), , ; ;W p x Q N β : 

( )
( ) { }( )6

d dˆ d , , , , ; ; ,
2π N

p xA Q A p x Q W p x Q Nµ β= ∫ 

          (5) 

where the Weyl’s symbol of operator Â  is: 

( ) ( )i ˆ, , d e 2 2 .pA p x Q x A Q xξξ ξ ξ−= − +∫            (6) 

Weyl’s symbols for usual operators like 2 2 2ˆ ˆˆ ˆ ˆ ˆ, , , , ,p x p x H H  etc. can be easily 
calculated directly from definition (6). 

4. Path Integral Representation of the Matrix Elements  
of the Density Matrix Operator 

The exact density matrix 
ˆe Hβρ −=  of interacting quantum systems can be con-

structed using a path integral approach [19] based on the operator identity 
ˆ ˆ ˆ ˆe e e eH H H Hβ ε ε ε− − − −= ⋅  , where the r.h.s. contains 1M +  identical factors with 

( )1Mε β= + , which allows us to rewrite1 the integral in Equation (3) as follows 

{ }( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )
( ) ( ) ( )( ) ( )( ) ( )

1 1 1 1 1 2 1

,

d d , , ; ;

d d d d d d

1 ,

d d

P Pq q
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M M M
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P P P

M M M M M
qqg qqg

x Q x Q N

x Q x Q x Q

P

x Q x P x Q P Q

σ

σ

κ κ
σ σ

σ

µ ρ σ β

µ µ µ ρ ρ ρ

σ σ δ

µ δ δ ρ

− − −

+
′

′

= ⋅

′× −

× − −

∑∫

∑∫ ∫

∑∑∑ ∑

∫

 


      (7) 

 

 

1For the sake of notation convenience, we ascribe superscript (0) to the original variables. 
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where ( )0x x≡ , ( )0Q Q≡ , spin gives rise to the spin part of the density matrix 
(S) with exchange effects accounted for by the permutation operators q̂P , q̂P  
and ĝP  acting on the quark, antiquark and gluon degrees of freedom and the 
spin projections σ ′ . The sum runs over all permutations. In Equation (7) 

qPκ  
and 

qPκ  are permutation parity, while 
( ) ( ) ( ) ( ) ( ) { }( )

( ) ( ) ( ) ( )( )

1 1

ˆ1 1

, ; , ; ;

e ,

m m m m m

m m m mH

x Q x Q N

x x Q Qε

ρ ρ εβ

δ

− −

− −−

≡

= −
              (8) 

is the off-diagonal element of the density matrix. Since the color charge is 
treated classically, we keep only diagonal terms ( ) ( )( )( )1m mQ Qδ − −  in color de-
grees of freedom. Accordingly each quasiparticle is represented by a set of coor-
dinates ( ) ( ){ }0 , , M

i ix x
 (“beads”) and an 8-dimensional color vector ( )0

iQ  in the 
( )3SU  group. Thus, all “beads” of each quasiparticle are characterized by the 

same spin projection, flavor and color charge. Notice that masses and coupling 
constant in each ( )mρ  are the same as those for the original quasiparticles, i.e. 
these are still defined by the actual temperature T. 

The main advantage of decomposition (7) is that it allows us to use perturba-
tion theory to obtain approximation for density matrices ( )mρ , which is appli-
cable due to smallness of artificially introduced factor ( )1 1M + . Each factor 

( )mρ  should be calculated with the accuracy of order of ( )1 1M θ+  with 
1θ > , as in this case the error of the whole product in the limit of large M will 

be equal to zero. In the limit ( )1M + →∞  lρ  can be approximated by a prod-
uct of two-particle density matrices ( )

,
m

i jρ . Generalizing the electrodynamic 
plasma results [7] to the quark-gluon plasma case, we write approximate ρ  

( ) ( ) { }( )

{ }


( ) ( ) ( ) ( ) ( ) ( )

( )

1

, 0
, 0 , 0

3 3 3
1 1

, , , ; ; ;

per det det
exp .g q q

g q q

M

M
M M

M NN N N m
iiN N N

l ig q q

x x x Q N

U

ρ β

φ φ φ
β φ

λ λ λ = =

= − ∏∏




 

 


   (9) 

In Equation (9) the effective total color interaction energy 

( )

( ) ( ) ( ) ( )( )1
1 1

,
1 ,

1 1 , , ,
1 2

M N
m m m m

i j i j i j i j
l i j i j

U x x x x Q Q
M

+
− −

= ≠

= Φ − −
+ ∑ ∑      (10) 

is described in terms of the off-diagonal elements of the effective potential ap-
proximated by the diagonal ones by means of  

( ) ( )( )
( ) ( )( ) ( ) ( )( ) ( )( )

1,
, ,

1 1, ,
, , , , ,

, ; , ,

, , , , , , 2 ln .

m mi j
i j i j i j

m m m m mi j i j
i j i j i j i j i j i j i j

x x Q Q

x x Q Q x x Q Q

ε

ε ρ

−

− −

Φ

 ≈ Φ +Φ ∝ − 

 Here the 

diagonal two-particle effective quantum Kelbg potential is 
( ) ( )( )

( )
( ) ( )

( )
( ) ( )( )

2

,

,
, ,

2

, ,

, , , ,

,
1 e π 1 erf ,

4π

m
i j

m m

m m

i j
i j i j i j

xq i j m m
i j i j

i j

x x Q Q

g T Q Q
x x

x x

ε

µ  − 
 

Φ

   = − + −  −   

      (11) 
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with ( ) ( ) ( )
, ,

mm
i j i j i j

mx x x λ= − ∆ , , ,2πi j i jmλ ε∆ = , ( ),i j i j i jm m m m m= +  Oth-

er quantities in Equation (9) are defined as follows: ( )53 3 0.5πa a mλ λ β=  with  

2πa amλ β=  being a thermal wavelength of an a type quasiparticle 
( , ,a q q g= ). The antisymmetrization and symmetrization takes into account 
quantum statistics and results in appearing permanent for gluons and determi-
nants for quarks/antiquarks. 

Functions ( ) ( )( ) ( )( )2

, 2
m m m

i i i i
K z zφ ≡  ( ( ) ( ) ( ) 2 2, 1m m

i i q iz m Tε µ η ε= +  are 

defined by modified Bessel functions. Gluon matrix elements are  


( ) ( ) ( ) ( )( ) ( ) ( )( ) ( )2, 0 , 0 , 0
2 , ,,

M M M
i j i j i ji j

K z z Q Qφ δ= − , while quark and antiquark matrix 

elements ( ) ( ) ( ) ( )( ) ( ) ( )( ) ( )2, 0 , 0 , 0
, 2 , , , ,i j i j

M M M
i j i j i j i j f fK z z Q Q σ σφ δ δ δ= −  depend addi-

tionally on spin variables iσ  and flavor index if  of the particle, which can 
take values “up”, “down” and “strange”, ,i jσ σδ  and ,i jf fδ  are the Kronecker’s 

deltas. These functions allow to exclude the Pauli blocking for particles with dif-
ferent spins, flavors and colors. Here arguments of modified Bessel functions are 

( ) ( ) ( ) ( ) ( ) 2, 0 0 2
, , 1M M

i j i q i jz m T x xε µ ε= + − . 

The coordinates of the quasiparticle ‘‘beads” ( ) ( ) ( )0m m
i i ix x y= + , ( 0l > ) are ex-

pressed in terms of ( )0
ix  and vectors between neighboring beads of an i par-

ticle, defined as ( ) ( )
1

lm k
i iky η

=
= ∑ , while ( ) ( )1 , , M

i iη η  are vector variable of in-
tegration in Equation (7). 

In the limit of M →∞  functions ( )m
iiφ  describe the new relativistic meas-

ure of developed color path integrals. This measure is created by relativistic op-
erator of kinetic energy ( )2 2 , qK p m T µ= + . Let us note that in the limit of 
large particle mass the relativistic measure coincide with the Gaussian one used 
in Feynman and Wiener path integrals. 

According to Equation (4) the antisymmetrized Wigner function can be writ-
ten as the Fourier transform of the off-diagonal matrix element of the density 
matrix: 

{ }( )
( )

{ }( ) ( ) ( ) ( ) ( )( )

( ) ( )

( ) ( ) ( ) ( ) ( )

ˆ ˆ

ˆ ˆ ˆ

2

1 1

1 21

0

, , ; ;

ˆ1 , d
, ,

ˆˆ
d d d d exp π π

2

ˆ
ˆπ

2 2

P Pq q

q q g

m m
qqg qqg

P P P

qqgqqgM

M
qqgm m m

qqg
m

W p x Q N

C M
P Q Q P Q

Z N V

P x xP E
q q Q i p

M M

mPM mmq q U P x x x q
M M M

κ κ

σ σσ

β

σ σ µ δ
β

ξ ξ
ξ µ ξ

ξξ
ε

+

′=

−

−
+

=

′= − −

 −+× − + −


  −   − − + − + + − +     

∑ ∑ ∫

∫ ∫

∑





 (12) 

where ( ) ( )6 1 2N MC M M −=


 is constant and ( ) ( )0Mq q= . The antisymmetriza-
tion for quarks and symmetrization for gluons takes into account quantum sta-
tistics. Here we have replaced variables of integration ( )mx  for any given per-
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mutation ˆ ˆ ˆ
q q gP P P  by relation 

( ) ( ) ( ) ( ) ˆ
ˆ ˆ ˆ .

2 2
qqgm m

q q g

mPM mmx P P P x x x q
M M M

ξξ−
= − + + − +        (13) 

In Equation (12) E is the unit matrix, while the matrix presenting permutation 
ˆ ˆ ˆ
q q gP P P  is equal to unit matrix with appropriately transposed columns. 

5. Harmonic and Linear Approximation  
for the Wigner Function 

The expression (12) for the Wigner function contains complex-valued function 
and so is inconvenient for Monte Carlo simulations, usually making use real va-
lued functions. To overcome this difficulty we have to get explicit analytical real 
valued expression for the Wigner function. This can be done for free particles 
( ( ) 0U x ≡ ) and linear or harmonic potentials ( )U x . For general ( )U x  this 
integral cannot be analytically calculated but proper approximation of the 
Wigner function for any potential ( )U x  can be obtained from the Taylor ex-
pansion up to the first or second order in the variables ξ : 

( ) ( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( ) ( )
( )

2

2

ˆ ˆ ˆ
ˆ ˆ ˆ

2 2

ˆ

ˆˆ

2 2

ˆˆ ˆ ˆ ˆ1 .
2 2 2 2 2

q q gm
q q g

m
qqg

m
qqg

qqg

m
qqg

qqg q q g

mP P PM mmU P P P x x x q
M M M

mU P x x x q
M

mU P x x x qmPM m M
M M x

mU P x x x qmP mP P PM m M mM
M M M Mx

ξξ

ξξ

ξ ξξ ξ

 −
 − + + − +
 
 
 ≈ − + + 
 

 ∂ − + + −  − −
∂

 ∂ − + + − − + − −
∂

 (14) 

Here ˆ ˆ ˆ ˆ
qqg q q gP P P P= . The second term means scalar product of the vector related 

to ξ  combination with the multidimensional gradient of pseudopotential, while 
the third term means quadratic form with matrix of the second derivatives. 

This approximation for the Wigner function takes the form of the gaussian 
integral and can be calculated analytically. Here for simplicity let us consider 
expressions related to the linear approximation accounting for the linear term in 
this expansion. It is straightforward to account for the quadratic term. In the li-
near approximation, the Wigner function can be written in the form: 

{ }( )
( )

{ }( ) ( ) ( )

( ) ( )( ) ( ) ( )

ˆ ˆ

ˆ

2

1 1

, , ; ;

ˆ1 ,
, ,

ˆ
d exp π d d

P Pq q

qqg

qqg
P

qqgM M M
qqg

W p x Q N

C M
P

Z N V

P x x
Q Q P Q q q

M

κ κ

σ σσ

β

σ σ
β

µ δ

+

′=

−

′= ±

 − × − − 
  

∑∑

∫ ∫ 

        
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( ) ( ) ( ) ( )

( ) ( )
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ˆ
d exp π
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ˆ .
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P E
M
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ε

ξ ξ
ξ

ε
ξ

−
+

=

−

= = − + +

   × − − + − + +      


+× −




− ∂ + + − 

∂ 


∑

∫

∑

  (15) 

To test the developed approximations calculations of thermodynamic values 
and the ground state wave functions for quantum particle in 1D and 3D poten-
tial field, which strongly differs from harmonic one have been carried out in [20] 
[21]. The used approximation gives practically exact results even for potentials, 
which have no matter with harmonic potential. 

In degenerate system, average distance between fermions is less than the ther-
mal wavelength λ  and virtual trajectories in path integrals (15) are strongly en-
tangled. This is the reason why permutations cannot significantly affect the po-
tential energy in (15) in comparison with the case of the identical permutation. 
So we can replace permutation in the potential energy in (15) by the identical 
permutation. Now all permutations in (15) are acting only on variables x and ξ  
and can be taken out of the path integral. 

As was done in [25] for electromagnetic plasma it is enough for our purpose 
to take into account the pair permutations. These permutations cannot signifi-
cantly affect the potential energy in (15) in comparison with the case of the iden-
tical permutation, as virtual trajectories in path integrals (15) are strongly entan-
gled. So we can replace permutation in the potential energy in (15) by the iden-
tical permutation [20] [21] [25]. In this approximation permutations in (15) are 
acting only on variables x and ξ  and can be taken out of the path integral. So 
the Wigner function is determined by the path integral over all closed trajecto-
ries and can be presented in the form in (15) in comparison with the case of the 
identical permutation, as. 

So the Wigner function is determined by the path integral over all closed tra-
jectories ( ( ) ( )0Mq q= ) and can be presented in the form 
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where 
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∂ +
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∂∑

 
Here in the delta function of color vectors ( )i jQ Qδ −  we have introduced a 

fit parameter z and ,i jσ σδ  and ,i jf fδ  are the Kronecker’s deltas depending on 
spin iσ  and flavor indexes if  of quasiparticle. The later can take values “up”, 
“down” and “strange”. These functions allow to realize the exchange interaction 
for particles with the same spins, flavors and colors. 

To regularize integration over momenta and to avoid difficulties arising at 
Monte Carlo simulations due to the presence of delta-function in expression (16) 
let us consider the positive Husimi distributions being a coarse-graining Wigner 
function with a Gaussian smoothing [14]. So the Wigner function has to be av-
eraged over arbitrary “small” phase space cell. Let us introduce the function 
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with the equivalent cell area in the color phase space 
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For small 2
x∆  and 2

p∆  making use of the mean value theorem for integrals 
the Wigner function can be written in the form: 
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       (17) 

where the final expression for the phase space pair pseudopotentials accounting 
for the quantum statistical effects look like: 
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  (18) 

Here ,a q q= , 2
, 2

2
π 2a x∆ =

−
 and 1 2z = . To extent the region of applicability  

of obtained phase space pair pseudopotential the 2
p∆  and 2

Q∆  can be consi-
dered as a fit function small in comparison with unity. Our test calculations [25] 
have shown that the best fit for 2

p∆  can be written in the form  
2 2 30.00505 0.056p a anλ λ∆ = + , while 2

,a x∆  and 2
Q∆  were of order 0.1. Note that 

the expression (17) explicitly contains term related the classical Maxwell distri-
bution however modified by terms accounting for influence of interaction on the 
momentum distribution function. 

6. Simulation of QGP 

The main idea of the Monte Carlo simulations of QGP consists in constructing a 
Markov chain of different quasiparticle states in the color configuration or color 
phase spaces [7]. The computational procedure comprises two stages. At the first 
stage, a dominant, i.e., maximal, { }N -term in the sum of (2) is determined by 
calculations in the grand canonical ensemble. This term is indeed dominant in 
the thermodynamic limit of the box volume (V →∞ ). In the grand canonical 
ensemble, the quasiparticle numbers in the simulation box are varied, i.e., the 
consecutive states of the Markov chain can differ from each other by numbers of 
quarks, antiquarks, and gluons. Transitions between these states are the first type 
of Markovian elementary step. At the second type of elementary step, the coor-
dinates of a randomly chosen quasiparticle were changed. The color variables are 
changed according to the SU(3) group Haar measure at the third type of Marko-
vian elementary step. The Markov chain is generated until a full convergence of 
calculated values is achieved. This allows one to determine the average numbers 
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of quarks, antiquarks, and gluons in the box at fixed temperature. Here, only 
densities of each species, i.e., the ratios of these average numbers with respect to 
the box volume, have physical meaning. Usually, after several million elementary 
steps, the average numbers of these quasiparticles become stable, and, for exam-
ple, at the zero baryon chemical potential, the average number of quarks practi-
cally equals the average number of antiquarks. This equality can be considered 
as an inherent test of the consistency of the calculations. 

At the second stage, the fixed number of quarks, antiquarks, and gluons is 
chosen to be equal to the obtained at the first stage average values of quasipar-
ticles and calculations are performed in the canonical ensemble. However now 
according to (17) it is necessary do to integration in the color phase space and 
beside the second and third types of elementary step described above it is neces-
sary to introduce new type of Markovian elementary step changing the momen-
tum of quasiparticle [25]. 

The input parameters of the model should be deduced from the lattice QCD 
data or can be taken as HTL values of gm  and qm . In the present simulations 
we take only a possible set of parameters [7]: 

{ }( ) ( ) { }( )2 2 2 2
2
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          (20) 

where fN  is the number of quark flavors which can be excited, 3cN =  for 
SU(3) group, and 2g  is the QCD running coupling constant squared, generally 
depending on T and all qµ . All masses depend on combinations  

( )

1 2
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∑  and 
1 22

2
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= +  
 

 rather than on 

two independent variables T and qµ . 

It is also reasonable to assume that 2g  is a function of this single variable 

gz . This choice is done because 2g  like gluons is related to the whole system 
rather than one specific quark flavor. Then we can use the same “one-loop ana-
lytic coupling” 

( ) ( ) ( )
2
QCD2

2 22 2
QCDQCD

4π 1
11 2 3 lns

f

Q
N QQ

α
 Λ
 = +

− Λ − Λ 
        (21) 

and substitute Q by 2π gz  to use this coupling in our simulations. 

7. The QGP Mometum Distribution Functions 

Here we present preliminary results of our QGP simulations. Figure 1 shows 
dependences of the quark and gluon densities on temperature at barion chemical 
potential equal to zero ( q qn n= ) obtained according to the Equation (2) at the 
first stage of Monte Carlo simulation in grand canonical ensemble [7]. 
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Figure 1. (Color online) The quark and gluon densities versus temperature at barion 
chemical potential equal to zero. 

 
Making use of the quark and gluon densities (see on Figure 1) obtained in 

grand canonical ensemble we present the Monte Carlo calculations in canonical 
ensemble of the QGP pair distribution and momentum distribution functions of 
quark, antiquark and gluons averaged over spin, color and flavours of quasipar-
ticles. 

First of all for physical analysis of interparticle interaction let us consider spa-
tial arrangement of the quasiparticles in the QGP by studying a pair distribution 
function (PDF) ( )abg R  defined as 

( )

( ) ( ) { }( )
1 2

, , 1 22
, ,

1 d d , , ; ; ,
i j

ab

a b
a a b b i j

i j i j

g

N N
r Q r Q N

Z Vσ
δ δ µ δ δ ρ σ β

≠

−

= − −∑ ∑ ∫

R R

R r R r
 (22) 

where ia a  and jb b  are types of the particles ( ,q q=  or g). The PDF gives a 
probability density to find a pair of particles of types a and b at a certain distance 

1 2R = −R R  from each other. The PDF depends only on the difference of coordi-
nates because of the translational invariance of the system. In a non-interacting 
classical system, ( ) 1abg R ≡ , whereas interactions and quantum statistics result 
in a redistribution of the particles. At temperatures 175T = , 350, and 525 MeV 
the PDF averaged over the quasiparticle spin, colors and flavors are shown in 
Figure 2. 

The quasiparticle interaction is dominated by attraction at short distances. 
Indeed, the QGP lowers its total energy by minimizing the color Coulomb inte-
raction energy via a spontaneous “anti-ferromagnetic”-like ordering of color 
vectors, i.e. the color vectors of nearest neighbor quasiparticles become an-
ti-parallel. This short-distance attraction is stronger for gluon-gluon and 
gluon-(anti)quark pairs than for (anti)quark-(anti)quark ones because of the 
corresponding difference in values of quadratic Casimir invariants, which de-
termine the maximal values of the effective color charge products i jQ Q⋅  in 
color Kelbg (Coulomb) potentials. For gluon-gluon pairs 24g gQ Q⋅ = , for 
gluon-(anti)quark pairs 10g q g qQ Q Q Q⋅ = ⋅ ≈ , and for (anti)quark-(anti)quark 
pairs 4q q q q q qQ Q Q Q Q Q⋅ = ⋅ = ⋅ = . Stronger gg attraction additionally en-
hances correlation of the gluon-gluon pairs at short distances. At the same time  
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Figure 2. (Color online) The Monte Carlo results for averaged over color, flavor and spin 
variables pair distribution functions ( ) ( )0 , , , ,abg r a a b q q g=  for quarks, antiqurks and 

gluons of the non ideal (solid lines 1 - 6) and ideal (dashed lines 1 - 6) QGP plasma. Here 
the dimensionless average distance between quasiparticles 0 0.3sr a =  is Wigner-Seitz 

radius ( 3 3 4πsr n= , n is the density of all quasiparticles, 0 1.1 fma = ). For top, middle 
and bottom panels temperatures are 175T = , 350, and 525 MeV respectively. Small os-
cillations indicate the statistical error of Monte Carlo calculations. 

 
the short-distance attraction is the only reason of the gluon-(anti)quark short-distance 
correlation. 

The short-distance correlation implies formation of the bound states of the 
gluon clusters (glueballs), if the product ( )2

abR g R  related to gluons has maxi-
mum (not shown here) [7]. Glueballs and strongly correlated pairs of the other 
quasiparticles are uniformly distributed in space. The last conclusion comes from 
the fact that the gg, qq and qq  PDF’s at distance larger than 0.7 fm are practi-
cally equal to unity. Possible existence of the medium-modified bound states was 
actively discussed some time ago, e.g., in [26] and later in [27] based on results 
from lattice QCD calculations of spectral functions [28] [29]. 

Obtained at the first time the Monte Carlo results for strongly coupled QGP 
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momentum distribution functions have been calculated at the mentioned before 
second stage of simulation. From physical point of view the momentum distri-
bution function ( )aw p  gives a probability density for particle of type a to 
have momentum p: 

{ }( ) ( ) { }( ); d d d , , ; ;H
a a aW p N x p Q p p W p x Q Nµ δ β= −∫       (23) 

where , ,a q q g= . 
The non ideal classical systems of particles due to the commutativity of the 

kinetic and potential energy operators have Maxwell distribution function (MD) 
proportional to ( )( )2 2exp 4πapλ−   even at strong coupling. Here at Figure 3 
and Figure 4 we present results for both ideal QGP plasmas and results for  

 

 
Figure 3. (Color online) The Monte Carlo results for averaged over color, flavor and spin 
variables momentum distribution functions ( )( ),aw p a q g=  for quarks and gluons of 

the non ideal (solid lines) and ideal (dashed lines) QGP plasma. The dotted line presents 
the Maxwell distributions. The momentum distribution functions for quarks and anti-
quarks practically coincide with each other (as example, the solid and dash-dot-dot lines 
1). Here 0 0.3sr a = , λ  is the thermal wave length and   is the Plank’s constant. For 
top, middle and bottom panels temperatures are 175T = , 350, and 525 MeV respective-
ly. All momentum distribution functions are normalized to unity. 
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Figure 4. (Color online) The momentum distribution functions for quarks and gluons in 
logarithmic scale of the non ideal and ideal QGP plasmas (solid lines 1 and 2 respectively) 
for 0 0.3sr a = . The dotted line 3 presents the Maxwell distributions. The momentum 
distribution functions for quarks and antiquarks practically coincide with each other (as 
example, the solid and dash-dot-dot lines 1). High energy quantum “tail” (the solid line 
4) is approximated by sum of the Maxwell distributions and product of 8const p  and 
the Maxwell distributions with effective temperature that exceeds the temperature of me-
dium [31]. So in approximation the two fit constants are made use of. For top, middle 
and bottom panels temperatures are 175T = , 350, and 525 MeV respectively. 

 
strongly coupled QGP plasmas. On these figures the dotted lines present the 
standard Maxwell distributions, while the dashed lines present Monte Carlo cal-
culations for ideal QGP plasma. 

The momentum distribution functions for quarks and antiquarks practically 
coincide with each other (as example, the solid and dash-dot-dot lines 1). 

Quantum effects can affect the shape of kinetic energy distribution function. 
Quantum ideal systems of particles due to the quantum statistics have Fermi or 
Bose momentum distribution functions. In addition interaction of a quantum 
particle with its surroundings restricts the volume of configuration space availa-
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ble for particles, which, can also affect the shape of momentum distribution 
function due to the uncertainty relation, i.e., in a rise in the fraction of particles 
with higher momenta [30]. 

Solid lines on Figure 3 and Figure 4 present the Monte Carlo results sup-
porting these phenomena for non ideal QGP plasma. Difference in momentum 
distribution functions for both ideal and non ideal QGP plasma is decreasing 
with increasing temperature and lowering coupling plasma parameter. As before 
the main physical reason responsible for difference in behaviour of momentum 
distribution function of quarks and gluons is that the quadratic Casimir values 
responsible for interparticle interaction is significantly larger for gluons in com-
parison to quarks. 

The peculiarities in asymptotic region of the quark momentum distribution 
function relates in arising out “quantum tails” due to the uncertainty relation as 
we have mentioned above. High energy quantum “tail” (the solid line 4) is ap-
proximated by sum of the Maxwell distributions and product of 8const p  and 
the Maxwell distributions with effective temperature that exceeds the tempera-
ture of medium [31]. So in this approximation the two fit constants are made use 
of. 

To verify the relevance of all above discussed trends, a more refined color-, 
flavor-, spin-resolving analysis of the distribution functions is necessary. This 
work is presently in progress. 

8. Conclusion 

In this paper, we have derived the new color path integral representation of Wign-
er function for the QGP plasma quasiparticle model for canonical ensemble. We 
have obtained explicit expression of the Wigner function in linear approximation 
resembling the Maxwell-Boltzmann distribution on momentum variables, but 
with quantum corrections. This approximation contains also the oscillatory 
multiplier describing quantum interference. The Monte Carlo calculations of the 
quark and gluon densities, pair distribution function and the momentum distribu-
tion function for strongly coupled QGP plasma in thermal equilibrium at barion 
chemical potential equal to zero have been done. Comparison with classical Max-
well-Boltzmann shows the significant influence of the interparticle interaction on 
the high energy asymptotics of the momentum distribution functions resulting 
in appearance of quantum “tails”. As a continuation of this work we are going to 
do detailed calculations of the spacial pair distribution functions, color correla-
tion functions, investigate screening properties of QGP and compare Debye 
mass with available lattice QCD calculations. 
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