
Journal of Software Engineering and Applications, 2019, 12, 321-338
https://www.scirp.org/journal/jsea

ISSN Online: 1945-3124
ISSN Print: 1945-3116

DOI: 10.4236/jsea.2019.129020 Sep. 4, 2019 321 Journal of Software Engineering and Applications

Implementation of a Particle Accelerator Beam
Dynamics Code on Multi-Node GPUs

Zhicong Liu1,2, Ji Qiang1*

1Lawrence Berkeley National Laboratory, Berkeley, CA, USA
2Key Laboratory of Particle Acceleration Physics and Technology, Institute of High Energy Physics, Chinese Academy of Sciences,
Beijing, China

Abstract
Particle accelerators play an important role in a wide range of scientific dis-
coveries and industrial applications. The self-consistent multi-particle simu-
lation based on the particle-in-cell (PIC) method has been used to study
charged particle beam dynamics inside those accelerators. However, the PIC
simulation is time-consuming and needs to use modern parallel computers
for high-resolution applications. In this paper, we implemented a parallel
beam dynamics PIC code on multi-node hybrid architecture computers with
multiple Graphics Processing Units (GPUs). We used two methods to paral-
lelize the PIC code on multiple GPUs and observed that the replication me-
thod is a better choice for moderate problem size and current computer
hardware while the domain decomposition method might be a better choice
for large problem size and more advanced computer hardware that allows di-
rect communications among multiple GPUs. Using the multi-node hybrid
architectures at Oak Ridge Leadership Computing Facility (OLCF), the opti-
mized GPU PIC code achieves a reasonable parallel performance and scales
up to 64 GPUs with 16 million particles.

Keywords
Particle Accelerator, Particle-In-Cell, GPU, Parallel Beam Dynamics
Simulation

1. Introduction

The modern particle accelerator as one of the most important inventions in 20th
century provides an important tool in scientific discovery and industrial
application. For example, large accelerators are used in high energy physics and
nuclear physics to study the fundamental structure and property of matter, to

How to cite this paper: Liu, Z.C. and
Qiang, J. (2019) Implementation of a Par-
ticle Accelerator Beam Dynamics Code on
Multi-Node GPUs. Journal of Software
Engineering and Applications, 12, 321-338.
https://doi.org/10.4236/jsea.2019.129020

Received: February 27, 2019
Accepted: September 1, 2019
Published: September 4, 2019

Copyright © 2019 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

https://www.scirp.org/journal/jsea
https://doi.org/10.4236/jsea.2019.129020
http://www.scirp.org
https://doi.org/10.4236/jsea.2019.129020
http://creativecommons.org/licenses/by/4.0/

Z. C. Liu, J. Qiang

DOI: 10.4236/jsea.2019.129020 322 Journal of Software Engineering and Applications

discover new fundamental particles, and to understand the origin of the universe.
Particle accelerators are also used to generate high brightness x-ray radiation
and high-intensity neutron flux for research in material science, biology,
chemistry, physics, and others. In industry, particle accelerators are used for
radiotherapy, ion implantation, and other applications.

Inside the particle accelerator, a train of charged particle beams are produced,
confined, and accelerated to a range of energies (from MeV to TeV) for different
applications. In the particle accelerator design and operation, one major area
(beam dynamics) is to study the dynamic behavior of those charged particles
inside the accelerator in order to minimize the loss of charged particles onto the
pipe wall causing radioactivity, and to maximize the brightness of the beam to
achieve best performance in high energy colliders and x-ray radiation light
sources. To study the charged particle beam dynamics self-consistently, the
particle-in-cell (PIC) method has been used in the particle accelerator
community [1]-[8]. In this method, at each step, particles are deposited onto a
computational grid to obtain charge density distribution in spatial domain. Then,
the Poisson equation is solved on the grid in the moving beam frame to attain
electric fields due to the Coulomb interaction of charged particles on the grid.
These fields (also called space-charge fields) are then interpolated from the grid
back to the particles and transformed to the laboratory frame following the
relativistic Lorentz transform. The space-charge fields together with the external
fields from the particle accelerator devices are used to advance particles. This
step is repeated many times until the beam moves out of the accelerator or the
maximum computing time is reached. The PIC method for beam dynamics
simulation is usually computationally expensive since it tracks a large number of
macroparticles (more than millions) and has to solve the Poisson equation
self-consistently at each step. A number of parallel PIC beam dynamics codes
using Message Passing Interface (MPI) were developed in the accelerator
community for high intensity/high brightness beam simulations [2] [3] [4] [5]
[6].

The pure MPI based parallel beam dynamics code is useful on parallel
multi-processor computers. However, these massive parallel computers can be
expensive. Meanwhile, the Graphics Processing Unit (GPU), which was
originally developed for computer graphics and video game, now becomes a
general-purpose computer processor and cost-effective for high-performance
computing [9] [10] [11]. Moreover, one GPU contains several hundreds or even
thousands of computing cores. For example, a single Nvidia GTX GPU consists
of several Streaming Multiprocessor (SM), and each SM contains many
computing cores. It uses high-bandwidth bus (~200 Gb/s) connecting the
memory on chip to the computing cores and is optimized for simultaneous
parallel calculations, particularly for single instruction multiple data (SIMD)
operations [12]. Manufacturers of GPU have approaches to general-purpose
computation with their own application program interfaces (API). The Compute

https://doi.org/10.4236/jsea.2019.129020

Z. C. Liu, J. Qiang

DOI: 10.4236/jsea.2019.129020 323 Journal of Software Engineering and Applications

Unified Device Architecture (CUDA) is a parallel computing platform and
programming model for GPUs developed by the NVIDIA [13] [14]. It enables a
fast implementation of numerical models on a GPU and dramatically increases
computing performance by harnessing the computing power of the GPU.

A number of PIC codes (especially in plasma physics community) were
implemented on GPUs in previous studies and significant improvement of
computing performance was reported in [15]-[27]. Most of those studies focused
on the performance optimization of the PIC code on a single GPU. However, as
the size of problem increases (e.g. with the number of simulation particles >10
millions), the memory of a single GPU (typically a few GB) can no longer store
the problem for simulation, multiple GPUs are needed. Meanwhile, some
large-scale high-performance computers such as Titan and Summit at Oak
Ridge Leadership Computing Facility (OCLF) [28] [29] have multi-node hybrid
architecture where each node contains one or multiple GPUs. In previous
studies, multiple GPUs were used for electromagnetic plasma PICs [16] [19] [20].
To the best of our knowledge, there was no report on the implementation of a
parallel particle accelerator beam dynamics PIC code on multiple GPU nodes. In
this paper, the MPI based parallel beam dynamics PIC code, ImpactT [6], was
implemented and optimized using the CUDA parallel computing platform on
both a single GPU and multi-node GPU architectures. Using a single GTX 1060
GPU, the code speeds up by more than 40 times compared with that running on
an AMD Opteron 6134 CPU core. This is about twice faster than the original
MPI version running on the 64-core AMD CPU computer. Besides the
techniques used for single GPU optimization, we also tested two parallel
strategies for multi-GPU performance optimization.

The organization of the paper is as follows, after the Introduction, the PIC
particle tracking model and the race condition on the GPU of the hybrid
architecture computer are reviewed in Section 2. Then, we present the PIC code
structure and its GPU optimization, especially the parallel depositor without
conflict, in Section 3. After that, the performance of the PIC code on a single
GPU and two multi-node GPUs is presented in Section 4. Finally, conclusions
are drawn in Section 5.

2. Multi-Particle Beam Dynamics PIC Model

Inside particle accelerators, the charged particles evolve subject to the following
equations:

d
d

c
t γ
=

r p (1)

d 1
d

q
t mc mγ

 
= + × 

 

p E p B (2)

where (), ,x y z=r denotes the particle spatial coordinates,
(), ,x y zp mc p mc p mc=p the particle normalized mechanic momentum, m

the particle rest mass, q the particle charge, c the speed of light in vacuum, γ

https://doi.org/10.4236/jsea.2019.129020

Z. C. Liu, J. Qiang

DOI: 10.4236/jsea.2019.129020 324 Journal of Software Engineering and Applications

the relativistic factor defined by 1+ ⋅p p , t the time, (), , ,x y z tE the electric
field, and (), , ,x y z tB the magnetic field. Here, the electric and the magnetic
fields include both the space-charge fields from the solution of the Poisson
equation and the external fields.

The solution of the Poisson equation can be written as:

() () ()
0

1, , , , , , , , , d d d
4

x y z G x x y y z z x y z x y zφ ρ′ ′ ′ ′ ′ ′ ′ ′ ′=
π ∫ (3)

where G is Green’s function of the Poisson equation, ρ is the charge density
distribution function. For the charged particle beam inside the accelerator, the
pipe aperture size is normally much larger than the size of the beam. In this case,
an open boundary condition can be assumed for the solution of the Green’s
function in the above equation. Here, the Green function is given by:

()
() () ()2 2 2

1, , , , ,G x x y y z z
x x y y z z

′ ′ ′ =
′ ′ ′− + − + −

 (4)

Now consider a simulation of an open system where the computational
domain containing the particles has a range of ()0, xL , ()0, yL and ()0, zL ,
and where each dimension is discretized using xN , yN and zN point, from
Equaiton (3), the electric potentials on the grid can be approximated as:

() () ()
1 1 10

, , , , , ,
4

yx zNN N
x y z

i j k i i j j k k i j k
i j k

h h h
x y z G x x y y z z x y zφ ρ′ ′ ′ ′ ′ ′

′ ′ ′= = =

= − − −
π ∑∑∑

 (5)

where ()1i xx i h= − , ()1j yy j h= − , and ()1k zz k h= − . The direct numerical
summation of the above equation for all grid points can be very expensive and
the computational cost scales as 2N , where x y zN N N N= is the total number
of grid points. Fortunately, this summation can be replaced by the summation in
a periodic doubled computational domain. In this periodic doubled
computational domain, the original Green’s function in the negative domain, i.e.
()G r− , is mapped to the extended domain following the periodic condition.

The charge density in the extended domain is set to zero. In this periodic system
with a new periodic Green’s function and charge density, the summation can be
done efficiently using the Fast Fourier Transform (FFT) method whose
computational cost scales as ()()logO N N . This new summation yields exactly
the same values as the original summation inside the original domain [30].

Using the above mathematical equations, a schematic diagram of a single step
of the PIC model in the beam dynamics simulation is shown in Figure 1. First,
the charged particles are deposited onto the mesh grid to obtain charge density
distribution on the grid. Next, the field on the grid is obtained by solving the
Poisson equation using the above FFT based convolution method and
interpolated back to individual particle location. Finally, the particles are pushed
using the electric and magnetic fields including both the self-consistent
space-charge fields and the external fields by solving Equations (1) and (2) using
a numerical integrator. This loop repeats for many times until the stopping
criterion is reached.

https://doi.org/10.4236/jsea.2019.129020

Z. C. Liu, J. Qiang

DOI: 10.4236/jsea.2019.129020 325 Journal of Software Engineering and Applications

Figure 1. A single step of the PIC model.

To implement the above beam dynamics PIC model onto the multi-node
hybrid architecture, the race condition arises and may lead to wrong results
during the deposition stage due to the use of multiple threads in the GPU. The
race condition occurs when two or more threads access shared data in a memory
and try to write in it simultaneously [31] [32]. Usually in a multi-thread
scheduling system, threads can be scheduled at any sequence, so coders cannot
determine the order in which the threads would attempt to access the shared
data. Therefore, the results are dependent on the thread scheduling algorithm,
i.e. both threads are “racing” to access and change the data. To avoid the race
condition, it’s necessary to sort the particle with respect to the grid before the
deposition by dividing the grid into smaller tiles, as shown in Figure 2. Each tile
is associated with a thread and each tile contains a number of grid points.
Assuming N is the number of tiles, we declare N arrays corresponding to N tiles
and assign the particle data into each array. At each step, the particles are sorted
into different tiles after the particle advance. In this way, each thread handles
particles in the corresponding tile without the race condition. A flow chart of the
PIC algorithm including the reordering is shown in Figure 3. In the following
section, we will describe the components which are different from the original
PIC algorithm, as marked yellow in Figure 3.

3. Implementation on Multiple GPUs

The implementation of the particle accelerator beam dynamics simulation code
on GPUs is discussed in this section. The particles are distributed among
multiple GPUs uniformly (in the replication method) or based on their spatial
positions (in the domain-decomposition method) [33]. With the particles on
each GPU, we will reorder them into individual tile to avoid the race condition.
Then, those particles are deposited onto a computational grid to obtain the
charge density distribution on the grid. Next, the Poisson equation is solved on
the grid to attain the space-charge fields. Finally, those fields together with the
external fields are used to push the particles in phase space.

https://doi.org/10.4236/jsea.2019.129020

Z. C. Liu, J. Qiang

DOI: 10.4236/jsea.2019.129020 326 Journal of Software Engineering and Applications

Figure 2. A schematic plot of tiles with computational grids.

Figure 3. A flow of the PIC chart with the particle reordering.

3.1. Reorder

The implementation of pusher, kicker, and depositor on multiple GPUs were
done by distributing the total number of particles among the GPUs. However,
the particles must be reordered (i.e. sorted) at each time step before the particle
deposition to avoid the race condition, which is not very straightforward since it
is highly irregular and hard to execute in parallel. Here we use a buffer array as a
temporary storage.

Firstly, the arrays nhole and ndirec are declared to handle the indices and the
number of particles that would leave the current tile to each direction, as shown
by the orange arrows in Figure 4. The nhole is preallocated at a given size, which
determines the maximum number of particles leaving these current tiles. The
size is determined by the available GPU memory size. If the number of particles
leaving a tile exceeds the maximum number, an exception would rise and the
code would stop. In this case, the user should use a smaller number of particles
or run the code on a GPU with larger memory size.

https://doi.org/10.4236/jsea.2019.129020

Z. C. Liu, J. Qiang

DOI: 10.4236/jsea.2019.129020 327 Journal of Software Engineering and Applications

Figure 4. A schematic plot of particle reordering for different tiles.

Secondly, the particles leaving a tile are copied into an ordered global buffer:
pbuff. Same as nhole, the size of pbuff is also determined by the maximum
number of particles that would leave the current tile. With a running sum to the
ndirec, we can know the memory address where we would put the particles to,
so the particles going to the same direction are stored contiguously.

Thirdly, for each tile, we could know how many particles would move in and
where they are located in pbuff by the nhole and ndirec of the neighbor tiles. If
there is a particle that leaves this tile, the hole left would be filled by the
incoming particle first. After all holes are filled, the new incoming particle is put
to the end of the particle array. If there are still holes left after including all
incoming particles, some particles at the bottom of the array are moved upward
to fill in the holes to ensure that the particles in this tile always occupy a
contiguous memory.

The procedures can be summarized as follows:
 Step 1: Write the indices of particles leaving a tile and their direction to nhole

and ndirec.
 Step 2: Particles leaving a tile are copied into an ordered global buffer: pbuff.
 Step 3: According to nhole and ndirec, the buffer data is copied back into

particle array.
With those procedures, there would be no race condition because each thread

only handles its own tile and buffer.

3.2. Depositor

After the particles reordering, the memory locations of the particles in the same
tile are arranged contiguously. In this way, each thread can handle the particles

https://doi.org/10.4236/jsea.2019.129020

Z. C. Liu, J. Qiang

DOI: 10.4236/jsea.2019.129020 328 Journal of Software Engineering and Applications

in a tile without thread conflict to obtain the local density distribution rhoTile.
Then, the global density distribution rho is attained by combining all local
rhoTiles, as shown in Figure 5.

When using multiple GPUs, we have two options. One is to have different
GPUs handle different spatial subdomains and communicate before and after
deposition, which is called domain decomposition method. The other one is to
let all GPUs deposit the particles onto the entire domain and performs a
communication afterwards, which we call data replication method.

In the following, an example using 4 GPUs is shown to compare these two
methods with the assumption that the total number of grid points is
64 64 64× × , and the number of tiles is 16 16 16× × so that each tile contains
4 4 4× × grid points.

3.2.1. Domain Decomposition Method
In the domain decomposition method, each GPU only needs to process the
corresponding domain. Now that the number of tiles is 16 16 16× × , the domain
size for each GPU would be 4 16 16× × tiles when running on 4 GPUs.
However, this method requires prior sorting of the particles with respect to the
subdomains to ensure that the particle data is located in the memory of correct
GPU, thus additional communication and computation is necessary. The
procedure is as follows:

1) Move particles among different GPUs.
(a) Pick particles. Each thread handles a tile, so we have 4 16 16 1024× × =

threads. It is less than the core number on a GPU, and we are unable to fully
utilize the GPU.

(b) Communication among GPUs
i) Copy from GPU memory to host node memory. The total amount of data to

be copied is ()4 16 16 1nGPU nPtcMax× × × − × , in which nPtcMax is the max
number of particles to be transferred to another GPU.

ii) Communication through MPI send/receive.
iii) Copy from host memory to GPU memory. The total amount of data to be

copied is same as above.

Figure 5. A schematic plot of deposition and combination.

https://doi.org/10.4236/jsea.2019.129020

Z. C. Liu, J. Qiang

DOI: 10.4236/jsea.2019.129020 329 Journal of Software Engineering and Applications

2) Reorder particles inside the GPU, as shown in Section 3.1.
3) Deposit inside the GPU. It should be noted that the number of particles on

each GPUs is different, so it may take a longer time to deposit.
4) Gather the particle density among GPUs.
a) Copy 16 64 64× × grid points from GPU memory to host memory.
b) Communicate 64 64 64× × grid points through MPI Allgether.
c) Copy 16 64 64× × grid points from host memory to GPU memory.

3.2.2. Data Replication Method
In the replication method, all GPUs contain the same number of particles and do
the same work. Compared with domain decomposition method, it eliminates the
need to exchange particle data among GPUs. The process is as follows, each
corresponding to that from the domain decomposition method above.

1) No sorting among different GPUs.?
2) Reorder particles inside the GPU, with 16 16 16 4096× × = tiles per GPU.
3) Deposit inside the GPU. Since the first step is to sort the particles in the

GPU, the number of particles on each GPU is the same, the number of grid
points is 64 64 64× × .

4) Gather the particle density among GPUs.
a) Copy 64 64 64× × grid points from GPU memory to host memory.
b) Communicate 64 64 64× × grid points through MPI AllReduce.
c) Copy 64 64 64× × grid points from host memory to GPU memory.
Comparing two methods, the domain decomposition method has extra

communications in the first step, which results in a smaller amount of
computational workload in the following steps. However, it might not be worthy
costing communication to get less computation since the scalability of the PIC
code is mainly limited by the memory bandwidth and the communication speed,
not to mention that in the domain decomposition method the GPUs cannot be
fully utilized for a typical problem size. So, in the code and the following
performance test, the replication method is chosen for the depositor.

3.3. Poisson Solver

After depositing the particles onto the grid, the next step is to solve the Poisson
equation on the grid. The main part of the Poisson solver is the FFT. In the GPU
implementation, we used NVIDIA’s CUDA Fast Fourier Transform Library
(cuFFT) [34] to do this. Similar to the depositor, there are two ways to execute
the Poisson solver on multi-GPUs. One is the domain decomposition method,
which refers to the PIC program on the CPU and uses different processors to
handle different spatial subdomains; The other is the replication method to
directly make all GPUs do the same work. Because the Poisson solver is a critical
and time-consuming part of the entire code, we have implemented and
compared both methods.

The advantage of domain decomposition method is that by using multi-GPUs
to process different spatial subdomains, each GPU will have less computation

https://doi.org/10.4236/jsea.2019.129020

Z. C. Liu, J. Qiang

DOI: 10.4236/jsea.2019.129020 330 Journal of Software Engineering and Applications

work load and thereby the speed of the program will be improved. The drawback
is that domain decomposition method requires communication among different
GPUs. Currently, the GPUs cannot directly exchange information among each
other, especially between different nodes. This has to be carried out through the
host(CPU), which means that the communication requires three steps: copy data
from the GPU to the host(CPU), communicate among CPUs, and copy data
back from the CPU to the GPU.

Assuming that the grid points in the directions of X, Y and Z are xN , yN
and zN respectively, when performing the FFT in the X direction, the array
length of the transform would be xN , and the number of transformations
would be y zN N× . If we use 4 GPUs, the GPU 1 needs to process data as

[] []0
4

rho y
x z

N
N N

 
 
 

→ . Similarly, the data for GPU 2, 3, and 4 would be

[] []
4

ho 2
4

r y y
x z

N N
N N

 
→ 

 
, [] []2

4
o 3

4
rh y y

x z

N N
N N

 
→ 

 
, and

[] []3
4

rho y
x y z

N
N N N

 
 
 

→ . Each GPU only needs
4

y
z

N
N× transforms. Ideally,

it would take only a quarter of the time to run on 4 GPUs compared with that on
a single GPU. However, after the Fourier transform in X direction, additional
data moving is required for the Y-direction operation. Currently, the data on

each GPU is [] () () []1rho
4 4

y y
x z

N N
N n n N

 
 → 
 

− , but the data needed for the

Fourier transform in Y direction is () () []1
4

r
4

ho x x
y z

N N
n n N N       
− → . Data

transposing and exchanging among GPUs would be necessary. Since the GPUs
cannot communicate with each other directly, we need to copy the data from the
GPU back to the CPU memory and communicate on the CPU side, which will
takes extra time. So the efficiency of the domain decomposition method in
comparison to the replication method will depend on the difference between the
extra data moving time and the reduced computation time. More detailed
performance comparison will be presented in the performance study Section 4.

3.4. Particle Pushing

As the particles are put into different tiles after the particle reordering and
deposition, we have two strategies to parallelize the particle pushing. One is to
parallelize by tiles just like the depositor, while the other one is to arrange
particles data back to a compact format and push in a typical parallel mover. A
test was done and showed that pushing particles by tiles results in a load
imbalance in the situation where some tiles contain much more particles than
others. So, despite additional time of copying data, we arrange the particles data
back to the compact format. The particle pushing can be summarized as: Step 1,
arrange particles back to compact format array dev_ray [N] [6]; Step 2, push and
kick particles; Step 3, arrange particles to tile format array dev_ray_tile for next

https://doi.org/10.4236/jsea.2019.129020

Z. C. Liu, J. Qiang

DOI: 10.4236/jsea.2019.129020 331 Journal of Software Engineering and Applications

reordering and deposition.

4. Performance Tests

The performance of the beam dynamics GPU code on hybrid computer
architectures was tested on a single GPU, a multi-noide GPU cluster Titan, and a
GPU cluster SummitDev [35] [36]. Titan is a multi-node hybrid architecture
supercomputer located at Oak Ridge National Laboratory (ORNL). It has 18,688
nodes each containing a 16-core AMD Opteron 6274 CPU with 32 GB of
memory and an NVIDIA Tesla K20X GPU with 6 GB of memory [28]. Each
Titan GPU contains 2688 CUDA cores at 732 MHz. The SummitDev system is
an early access system of ORNL’s next supercomputer Summit [29]. Each
SummitDev node has 2 IBM POWER8 CPUs and 4 NVIDIA Tesla P100 GPUs.
Each GPU contains 3584 cores and 16 GB memory. Before the performance
study of the entire code on those GPUs, we first tested the performance of the
Poisson solver which is usually the most time-consuming part of the code on
Titan.

4.1. Performance Test of the Poisson Solver

We first tested the time spent on solving the Poisson equation on Titan using the
domain decomposition method with 64 64 64× × grid points, as shown in
Figure 6. The blue line is the total time, and the different columns represent the
time spent on different parts of the Poisson solver. The total time scales
reasonably well with an increasing number of GPUs, and reaches the minimum
with 32 GPUs, after which the time for transpose and communication becomes
dominant. The time needed for copying data between CPU and GPU is reduced
almost linearly with the number of GPUs, while the time for communication
among the CPU nodes decreases up to 32 GPUs but begins to increase after the
communication becomes dominant. Looking into the detail, we can see that the
computation time only takes a very small fraction of the total time, while the
time for copying data between CPU and GPU and the communication among
nodes dominates the total time.

We then tested this parallel strategy using larger problem size. Figure 7 shows
the solver time as a function of GPUs with 128 128 128× × grid points. It is seen

Figure 6. The scalability of the Poisson solver under domain decomposition method
using 64 64 64× × grid points.

https://doi.org/10.4236/jsea.2019.129020

Z. C. Liu, J. Qiang

DOI: 10.4236/jsea.2019.129020 332 Journal of Software Engineering and Applications

Figure 7. The scalability of the Poisson solver under domain decomposition method
using 128 128 128× × grid points.

that in this case, the minimum time is reached with 128 GPUs since the amount
of computation becomes larger. However, using the domain decomposition
method, the minimum computing time of the solver in both 64 64 64× × and
128 128 128× × cases is still larger than the computing time on a single GPU
without data copying and communication, which will be the time using the
replication method. This minimum total computing time is mainly limited by
the memory bandwidth between the CPU and the GPU and the communication
speed among the CPU nodes. So, this parallelization strategy would not be very
useful until the system has large enough memory bandwidth to copy data. It is
expected the next generation GPU from NVIDIA would allow direct copy
technology, which can directly communicate among multiple GPUs and will
reduce the data copying time significantly. In that case, it would be more
efficient to use the domain decomposition parallel strategy in the Poisson Solver.
At present in the following performance study, the replication method is used to
let all GPUs run the same Poisson solver.

4.2. Performance Study on a Single GPU

The performance of the GPU beam dynamics PIC code is first tested on a single
NVIDIA GeForce GTX 1060 GPU with 6GB memory size. As a comparison, we
also run the CPU code on an AMD Opteron(TM) Processor 6376 with 2.3 GHz
clock speed. The speedup is calculated by the CPU runtime divided by the GPU
runtime. In this performance test, the grid number is 64 64 64× × while the
particle number varies from 16 thousand to 1.6 million.

Figure 8 shows the speedup as a function of the number of particles using the
single GPU. For small problem size, the speed up of the entire PIC code is over
50 and decreases to about 30 as the number of particles increases to 1.6 million.
There is a large variation in the speedup of individual function of the code. The
speedup of some functions, such as depositor, pusher&kicker, and output,
increases with the increase of the particle number. However, the speedup of the
Poisson solver, colored as orange in Figure 8, is about 64 and is independent of
the change of the particle number. The light blue and dark blue columns are the
speedups of the depositor and the diagnostic output of the charged particle beam

https://doi.org/10.4236/jsea.2019.129020

Z. C. Liu, J. Qiang

DOI: 10.4236/jsea.2019.129020 333 Journal of Software Engineering and Applications

Figure 8. Speedup of the beam dynamics GPU PIC Code on a single GPU versus the
number of particles.

information. The GPU’s depositor also includes the particle reordering
operation. Because of the irregularity of reordering, the speedup of depositor is
relatively low. The diagnostic output also contains the calculation of the statistics
of beam distribution. The reason for low speedup is due to the limit of output
bandwidth. The relatively low speedups of the depositor and the output reduce
the speedup of the entire code. The speedup of the entire code decreases when
the particle number becomes larger. The reason is that the time consumed by the
depositor, which has a lower speedup, dominates when the particle number
becomes larger, as shown in Figure 9.

4.3. Performance Study on Multi-Node GPUs

After testing on a single GPU, we ran performance test of the GPU PIC code on
the multi-node Titan GPUs. Figure 10 shows the results with 1.6 million
particles. The total computing time decreases with the increase of the GPU
number, and reaches the minimum with 32 GPUs. This is because the time
consumed by pusher&kicker and depositor become dominant in the large
particle number case as seen in Figure 9. Those functions scale well on multiple
GPUs as the number of particles on each GPU becomes less, the amount of
computation decreases too.

We further tested the performance of the GPU PIC code using a larger
number of particles, 16 million particles. The total computing time as a function
of the number of GPUs is shown in Figure 11. It is seen that the scalability of
the code improves and the minimum computing time reaches 64 GPUs in this
test. In the example above, we could not run the test on 1 or 2 GPUs due to the
limit of the GPU memory size. Unlike CPU memory, which can be easily
extended, the GPU memory is fixed in a given GPU model. Ideally, for a GPU
with memory size of 6 GB, the maximum particle number is about 80 million.
Here, each particle has 9 attributes and each is stored as a double precision
number. However, it is not practical to attain this number in the real simulation
since multiple copies of the particle array are used in the code. This is also
affected by the fragment of the GPU memory. Besides the computing efficiency,
the limit of memory size is another reason why we need to use multiple GPUs.

https://doi.org/10.4236/jsea.2019.129020

Z. C. Liu, J. Qiang

DOI: 10.4236/jsea.2019.129020 334 Journal of Software Engineering and Applications

Similar to the scaling study on Titan, we also carried out a scaling study of the
GPU PIC code on SummitDev, a more advanced GPU-accelerated early user test
supercomputer at OCLF. In this computer, the direct communication among
multiple GPUs are not enabled yet. Figure 12 shows the total computing time as
a function of the number of GPUs with 1.6 million particles. The total time
decreases with the increase of GPUs, and reaches the minimum with 16 GPUs.
Compared with the same problem size running on the Titan, it takes 50% less
time due to the improved hardware capability. Figure 13 shows the results with
16 million particles. Limited by the GPU memory size, the code cannot run on
one GPU. In this case, the total computing time monotonically decreases due to
the availability of a larger amount of computation.

Figure 9. The percentage of time taken by each part of the program with different
number of particles.

Figure 10. The scalability of the PIC code using 64 64 64× × grid points and 1.6M
particles on Titan.

https://doi.org/10.4236/jsea.2019.129020

Z. C. Liu, J. Qiang

DOI: 10.4236/jsea.2019.129020 335 Journal of Software Engineering and Applications

Figure 11. The scalability of the PIC code using 64 64 64× × grid points and 16M
particles on Titan.

Figure 12. The scalability of the PIC code using 64 64 64× × grid points and 1.6M
particles on SummitDev.

Figure 13. The scalability of the PIC code using 64 64 64× × grid points and 16M
particles on SummitDev.

5. Conclusion

A multi-particle parallel beam dynamics simulation code based on the PIC
method was implemented and optimized on hybrid multi-node GPU
architectures using the CUDA parallel computing platform. The GPU code
structure and the parallel strategy were discussed to avoid race condition and to
achieve better performance. On a single GPU card, we achieved a maximum
speedup of more than 50 compared with a single CPU core. The GPU PIC code

https://doi.org/10.4236/jsea.2019.129020

Z. C. Liu, J. Qiang

DOI: 10.4236/jsea.2019.129020 336 Journal of Software Engineering and Applications

also shows reasonably good scalability (up to 64 GPUs) on multi-node GPU
clusters Titan and SummitDev when the particle number is moderate. This
scalability will further improve with the use of a large number of particles (>100
million), which is needed in some high-resolution accelerator beam dynamics
applications.

Acknowledgements

We would like to thank Dr. Hongzhan Shan for helpful discussions. This work
was supported by the U.S. Department of Energy under Contract No.
DE-AC02-05CH11231. One of the author, Zhicong Liu, would like to extend his
thanks for the financial support from China Scholarship Council (CSC, File No.
201604910876). This research used resources of the Oak Ridge Leadership
Computing Facility, which is a DOE Office of Science User Facility supported
under Contract DE-AC05-00OR22725.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this pa-
per.

References
[1] Birdsall, C.K. (1991) Particle-in-Cell Charged-Particle Simulations, Plus Monte

Carlo Collisions with Neutral Atoms, PIC-MCC. IEEE Transactions on Plasma
Science, 19, 65-85. https://doi.org/10.1109/27.106800

[2] Friedman, A., Grote, D.P. and Haber, I. (1992) Three-Dimensional Particle Simula-
tion of Heavy-Ion Fusion Beams. Physics of Plasmas, 4, 2203-2210.
https://doi.org/10.1063/1.860024

[3] Qiang, J., Ryne, R.D., Habib, S. and Decyk, V. (2000) An Object-Oriented Parallel
Particle-in-Cell Code for Beam Dynamics Simulation in Linear Accelerators. Jour-
nal of Computational Physics, 163, 434-451. https://doi.org/10.1006/jcph.2000.6570
http://www.sciencedirect.com/science/article/pii/S0021999100965707

[4] Qiang, J., Furman, M.A. and Ryne, R.D. (2004) A Parallel Particle-in-Cell Model for
Beam: Beam Interaction in High Energy Ring Colliders. Journal of Computational
Physics, 198, 278-294. https://doi.org/10.1016/j.jcp.2004.01.008

[5] Amundson, J., Spentzouris, P., Qiang, J. and Ryne, R. (2006) Synergia: An Accele-
rator Modeling Tool with 3-D Space Charge. Journal of Computational Physics,
211, 229-248. http://www.sciencedirect.com/science/article/pii/S0021999105002718
https://doi.org/10.1016/j.jcp.2005.05.024

[6] Qiang, J., Lidia, S., Ryne, R.D. and Limborg-Deprey, C. (2006) A Three-Dimensional
Quasi-Static Model for High Brightness Beam Dynamics Simulation. Physical Re-
view Accelerators and Beams, 9, Article ID: 044204.
https://doi.org/10.1103/PhysRevSTAB.9.044204

[7] Uriot, D. and Pichoff, N. (2015) Tracewin, CEA Saclay.

[8] Batygin, Y.K. (2005) Particle-in-Cell Code BEAMPATH for Beam Dynamics Simu-
lations in Linear Accelerators and Beamlines. Nuclear Instruments and Methods in
Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated
Equipment, 539, 455-489. https://doi.org/10.1016/j.nima.2004.10.029

https://doi.org/10.4236/jsea.2019.129020
https://doi.org/10.1109/27.106800
https://doi.org/10.1063/1.860024
https://doi.org/10.1006/jcph.2000.6570
http://www.sciencedirect.com/science/article/pii/S0021999100965707
https://doi.org/10.1016/j.jcp.2004.01.008
http://www.sciencedirect.com/science/article/pii/S0021999105002718
https://doi.org/10.1016/j.jcp.2005.05.024
https://doi.org/10.1103/PhysRevSTAB.9.044204
https://doi.org/10.1016/j.nima.2004.10.029

Z. C. Liu, J. Qiang

DOI: 10.4236/jsea.2019.129020 337 Journal of Software Engineering and Applications

[9] Pharr, M. and Fernando, R. (2005) GPU Gems 2: Programming Techniques for
High-Performance Graphics and General-Purpose Computation. Addison-Wesley
Professional, Boston, MA.

[10] Owens, J.D., Luebke, D., Govindaraju, N., Harris, M., Krüger, J., Lefohn, A.E. and
Purcell, T.J. (2007) A Survey of General-Purpose Computation on Graphics Hard-
ware. Computer Graphics Forum, 26, 80-113.
https://doi.org/10.1111/j.1467-8659.2007.01012.x

[11] Owens, J.D., Houston, M., Luebke, D., Green, S., Stone, J.E. and Phillips, J.C. (2008)
GPU Computing. Proceedings of the IEEE, 96, 879-899.
https://doi.org/10.1109/JPROC.2008.917757

[12] Geforce (n.d.) Geforce GTX 1060 Graphics Cards from Nvidia Geforce
https://www.nvidia.com/en-us/geforce/products/10series/geforce-gtx-1060/

[13] Nvidia, C. (2010) Programming Guide.

[14] Sanders, J. and Kandrot, E. (2010) CUDA by Example: An Introduction to Gener-
al-Purpose GPU Programming. Portable Documents, Addison-Wesley Professional,
Boston, MA.

[15] Stantchev, G., Dorland, W. and Gumerov, N. (2008) Fast Parallel Particle-to-Grid
Interpolation for Plasma PIC Simulations on the GPU. Journal of Parallel and Dis-
tributed Computing, 68, 1339-1349. https://doi.org/10.1016/j.jpdc.2008.05.009

[16] Burau, H., Widera, R., Honig, W., Juckeland, G., Debus, A., Kluge, T., Schramm, U.,
Cowan, T.E., Sauerbrey, R. and Bussmann, M. (2010) PIConGPU: A Fully Relativis-
tic Particle-in-Cell Code for a GPU Cluster. IEEE Transactions on Plasma Science,
38, 2831-2839. https://doi.org/10.1109/TPS.2010.2064310

[17] Decyk, V.K. and Singh, T.V. (2011) Adaptable Particle-in-Cell Algorithms for
Graphical Processing Units. Computer Physics Communications, 182, 641-648.
https://doi.org/10.1016/j.cpc.2010.11.009

[18] Joseph, R.G., Ravunnikutty, G., Ranka, S., D'Azevedo, E. and Klasky, S. (2011) Effi-
cient GPU Implementation for Particle in Cell Algorithm. 2011 IEEE International
Parallel & Distributed Processing Symposium, Anchorage, AK, 16-20 May 2011,
395-406. https://doi.org/10.1109/IPDPS.2011.46

[19] Rossi, F., Londrillo, P., Sgattoni, A., Sinigardi, S. and Turchetti, G. (2012) Towards
Robust Algorithms for Current Deposition and Dynamic Load-Balancing in a GPU
Particle in Cell Code. AIP Conference Proceedings, 1507, 184-192.
https://doi.org/10.1063/1.4773692

[20] Bastrakov, S., Donchenko, R., Gonoskov, A., Efimenko, E., Malyshev, A., Meyerov,
I. and Surmin, I. (2012) Particle-in-Cell Plasma Simulation on Heterogeneous
Cluster Systems. Journal of Computational Science, 3, 474-479.
https://doi.org/10.1016/j.jocs.2012.08.012

[21] Chen, G., Chacon, L. and Barnes, D.C. (2012) An Efficient Mixed-Precision, Hybrid
CPU-GPU Implementation of a Nonlinearly Implicit One-Dimensional Par-
ticle-in-Cell Algorithm. Journal of Computational Physics, 231, 5374-5388.
https://doi.org/10.1016/j.jcp.2012.04.040

[22] Azevedo, E.F.D., et al. (2013) Hybrid MPI/OPENMP/GPU Parallelization of XGC1
Fusion Simulation Code. The International Conference for High-Performance
Computing, Networking, Storage and Analysis, Denver, CO, 17-22 November.

[23] Ibrahim, K.Z., et al. (2013) Analysis and Optimization of Gyrokinetic Toroidal Si-
mulations on Homogenous and Heterogenous Platforms. The International Journal
of High Performance Computing Applications, 27, 454-473.
https://doi.org/10.1177/1094342013492446

https://doi.org/10.4236/jsea.2019.129020
https://doi.org/10.1111/j.1467-8659.2007.01012.x
https://doi.org/10.1109/JPROC.2008.917757
https://www.nvidia.com/en-us/geforce/products/10series/geforce-gtx-1060/
https://doi.org/10.1016/j.jpdc.2008.05.009
https://doi.org/10.1109/TPS.2010.2064310
https://doi.org/10.1016/j.cpc.2010.11.009
https://doi.org/10.1109/IPDPS.2011.46
https://doi.org/10.1063/1.4773692
https://doi.org/10.1016/j.jocs.2012.08.012
https://doi.org/10.1016/j.jcp.2012.04.040
https://doi.org/10.1177/1094342013492446

Z. C. Liu, J. Qiang

DOI: 10.4236/jsea.2019.129020 338 Journal of Software Engineering and Applications

[24] Decyk, V.K. and Singh, T.V. (2014) Particle-in-Cell Algorithms for Emerging
Computer Architectures. Computer Physics Communications, 185, 708-719.
https://doi.org/10.1016/j.cpc.2013.10.013

[25] Pang, X. and Rybarcyk, L. (2014) GPU Accelerated Online Multi-Particle Beam
Dynamics Simulator for Ion Linear Particle Accelerators. Computer Physics Com-
munications, 185, 744-753. https://doi.org/10.1016/j.cpc.2013.10.033

[26] Shah, H., Kamaria, S., Markandeya, R., Shah, M. and Chaudhury, B. (2017) A
novel Implementation of 2D3V Particle-in-Cell (PIC) Algorithm for Kepler GPU
Architecture. Proceedings of 2017 IEEE 24th International Conference on
High-Performance Computing (HiPC), 1, 378-387.

[27] Fatemi, S., Poppe, A.R., Delory, G.T. and Farrell, W.M. (2017) AMITIS: A 3D
GPU-Based Hybrid-PIC Model for Space and Plasma Physics. Journal of Physics:
Conference Series, 837, Article ID: 012017.
https://doi.org/10.1088/1742-6596/837/1/012017

[28] Titan (2019) Titan Advancing the Era of Accelerated Computing.
https://www.olcf.ornl.gov/olcf-resources/compute-systems/titan/

[29] Summit (2019) Introducing Summit. https://www.olcf.ornl.gov/summit/

[30] Hockney, R.W. and Eastwood, J.W. (1988) Computer Simulation Using Particles.
Adam Hilger, New York.

[31] Netzer, R.H. and Miller, B.P. (1992) What Are Race Conditions?: Some Issues and
Formalizations. ACM Letters on Programming Languages and Systems (LOPLAS),
1, 74-88. https://doi.org/10.1145/130616.130623

[32] Quinn, M.J. (2004) Parallel Programming in C with MPI and Open MP.
McGraw-Hill Inc., New York.

[33] Qiang, J. and Li, X. (2010) Particle-Field Decomposition and Domain Decomposi-
tion in Parallel Particle-in-Cell Beam Dynamics Simulation. Computer Physics
Communications, 181, 2024-2034. https://doi.org/10.1016/j.cpc.2010.08.021

[34] Nvidia, C. (2010) Cufft Library.

[35] Tiwari, D., Gupta, S., Gallarno, G., Rogers, J. and Maxwell, D. (2015) Reliability
Lessons Learned from GPU Experience with the Titan Supercomputer at Oak Ridge
Leadership Computing Facility. In: Proceedings of the International Conference for
High-Performance Computing, Networking, Storage and Analysis, ACM, New
York, 38. https://doi.org/10.1145/2807591.2807666

[36] Wells, J., Bland, B., Nichols, J., Hack, J., Foertter, F., Hagen, G., Maier, T., Ashfaq,
M., Messer, B. and Parete-Koon, S. (2016) Announcing Supercomputer Summit.
Technical Report, ORNL (Oak Ridge National Laboratory), Oak Ridge, TN.

https://doi.org/10.4236/jsea.2019.129020
https://doi.org/10.1016/j.cpc.2013.10.013
https://doi.org/10.1016/j.cpc.2013.10.033
https://doi.org/10.1088/1742-6596/837/1/012017
https://www.olcf.ornl.gov/olcf-resources/compute-systems/titan/
https://www.olcf.ornl.gov/summit/
https://doi.org/10.1145/130616.130623
https://doi.org/10.1016/j.cpc.2010.08.021
https://doi.org/10.1145/2807591.2807666

	Implementation of a Particle Accelerator Beam Dynamics Code on Multi-Node GPUs
	Abstract
	Keywords
	1. Introduction
	2. Multi-Particle Beam Dynamics PIC Model
	3. Implementation on Multiple GPUs
	3.1. Reorder
	3.2. Depositor
	3.2.1. Domain Decomposition Method
	3.2.2. Data Replication Method

	3.3. Poisson Solver
	3.4. Particle Pushing

	4. Performance Tests
	4.1. Performance Test of the Poisson Solver
	4.2. Performance Study on a Single GPU
	4.3. Performance Study on Multi-Node GPUs

	5. Conclusion
	Acknowledgements
	Conflicts of Interest
	References

