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Abstract 

Background: Artificial intelligence (AI) implementation in medicine will in-
crease the efficiency of medical services. Objective: To develop a disease 
management strategy for the direct and immediate implementation of AI 
MRI in radiology. Methods: Correlations between selected quantitative MRI 
parameters available in the literature and the corresponding physio-anatomy 
were made to build the human MRI physio-anatomical state chart 
(hMRI_PASC). Pathology can be assessed using the relative-to-normal (RN) 
values of each MRI parameter for corresponding control-normal (CN) and 
disease-affected (DA) regions, based on the equation: RN_Parameter(%) = 
multiply(100, divide(subtract(ParameterDA, ParameterCN), (ParameterCN))). 
The 50% RN_Parameter absolute value threshold for the selected MRI para-
meters was used to define a medical condition severity staging scale (MCSSS). 
The disease management strategy is presented for a scenario of DA human 
MRI organ model: the eye, using the hMRI_PASC, and MCSSS. Results: In-
flammation, constriction, stiffness, and/or infiltration of blood or T1 and/or 
T2 lengthening or shortening agents, macromolecules, calcifications, and iron 
particles through broken blood vessels or broken blood vessels and 
blood-to-tissue barriers can be assessed based on the hMRI_PASC. Three le-
vels: infiltration, dynamics and elastography (IDE), seven types, and eighteen 
stages are defined in the MCSSS. The disease management strategy intro-
duced in this study shows that integrity of the seven affected ocular regions 
could be regained through therapeutical intervention, possibly followed by 
surgery targeted to one of the affected ocular regions. Conclusion: The 
hMRI_PASC, MCSSS, and disease management strategy presented in this 
study can be implemented immediately and directly in a software for 
AI-based MRI. 
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1. Introduction 

Artificial intelligence (AI) is considered the third eye for medical specialists and 
has a promising perspective field for medical imaging [1], offering the most 
complex and accurate information to patients and medical specialists in the 
most rapid way through the most performance of medical evaluations [2] [3] [4] 
[5] [6]. AI-based imaging is needed to reduce the socio-economical burden 
caused by disease and improve the efficiency in radiology departments. 

The current situation of AI in medical imaging has been analysed recently and 
the future directions have been suggested [2]. Wandell et al., 2016 [6], 2015 [7] 
[8], Benson et al., 2012 [9], 2014 [10], 2018 [11], 2019 [12], Jiang et al., 2017 [13], 
and Dumoulin et al., 2008 [14], 2017 [15] have already made some steps in these 
directions and developed complex AI algorithms for image analyses. Strategies 
for data management to support reproducible research [16], the influence of 
feedback in intelligence processes [17], and algorithms for more rapid MRI data 
acquisition [18] were also evaluated. Many AI developments are suitable for MRI 
[19] due to the wealth of qualitative and quantitative pathophysiological infor-
mation offered for any organ in the human body and the low imaging invasive-
ness [20]. The brain [6] [8] [14] [15] [21] [22], prostate [23] [24] [25] [26], heart 
[27] [28], breast [29], and eye [20] [30] [31] are the human organs most fre-
quently evaluated using multiparametric MRI in recent years. Software develop-
ers need basic specifications for explainable MRI to implement these develop-
ments in AI-based clinical radiology. Specifications for explainable MRI were 
obtained from complex correlations between the geometrico-physicochemical 
MRI parameters and the corresponding pathophysiology to evaluate the rat 
brain [32]. A generalisation of this approach combined with the already available 
clinical AI-based strategies for medical diagnosis in dermatology [33] and cardi-
ology [34] was made to assess the clinical MRI data available in the literature and 
develop the human MRI physio-anatomical state chart (hMRI_PASC) and the 
medical condition severity staging scale (MCSSS) for AI-based disease manage-
ment. These results can be introduced directly and immediately in a software for 
AI-based clinical ocular MRI. 

The objective of this study was to introduce the basic specifications for ex-
plainable MRI: hMRI_PASC and MCSSS for AI-based disease management. 
These specifications were obtained from complex correlations between the geo-
metrico-physicochemical MRI parameters calculated in the literature and the 
corresponding human pathophysiology. The specifications for explainable clini-
cal MRI were organised in the structured hMRI_PASC and MCSSS. The eye was 
selected as an MRI human organ model [20] to explain the strategy proposed for 
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future AI-based disease management, using the hMRI_PASC and MCSSS. The 
ocular MRI scenario presented and analysed shows that extremely complex 
medical information can be achieved using the results in this study.  

The hMRI_PASC and MCSSS developed in this study can be introduced di-
rectly and immediately in a software for AI-based clinical ocular MRI. The dis-
ease management strategy presented and analysed also demonstrates that 
AI-based MRI medical diagnosis is ready to be implemented in radiology, 
ophthalmology, and/or medicine. Future studies involving other imaging 
techniques are needed to generalise these results for AI-based diagnosis, prog-
nosis, therapy and/or surgery implementation in radiology and medicine. 

2. Methods 

MRI parameters assessed in statistical radiomic studies to date [20]-[37] were 
selected. These were grouped based on the general characteristic bio-physiological 
effect evaluated quantitatively and included in this study (Table 1). For each 
MRI parameter in Table 1, a relative-to-normal (RN) value was introduced 

 
Table 1. Quantitative MRI parameters. The name, symbol, and measurement unit of the 
geometrico-physicochemical MRI parameters used in this study to assess the human pa-
thophysiology [20]-[37] are presented below. The effects evaluated using the quantitative 
MRI techniques at present are also specified. 

Effect Technique 
Parameter 

Name Symbol Unit Type 

Infiltration 

Relaxometry 

T1 relaxation time T1 
ms 

physico- 
chemical T2 relaxation time T2 

spin density M0 % chemical 

Magnetisation 
transfer 

magnetisation transfer 
ratio 

R % physical 

macromolecular volume V mm3 geometrical 

macromolecular  
concentration 

C % chemical 

Susceptibility 
weighted 

magnetic susceptibility X no dimension 
physical 

magnetic permeability P H/m 

iron concentration I mmol/g chemical 

Dynamics 

Diffusion 

diffusion coefficient D mm2/s physical 

anisotropy A no dimension 
geometrical & 
physical 

fractional volume V % geometrical 

Flow 
volume V 

ml (blood)/ 
100g (tissue) 

geometrical 

flow f ml/g/min physical 

Elastography 
Any 

thickness T mm 

geometrical area A mm2 

volume V mm3 

Elastography stiffness S kPa physical 
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for any corresponding disease-affected (DA) and control-normal (CN) anatom-
ical region-of-interest to assess severity of a medical condition based on the 
procentual difference between corresponding DA and CN anatomical regions, 
using the equation: RN_Parameter(%) = multiply(100, divide(subtract (Parame-
terDA, ParameterCN), (ParameterCN))). 

Modifications relative to the corresponding CN anatomical region in this 
study were signaled by positive or negative RN_Parameter values. The 
RN_Parameter threshold absolute value for disease detection was set up to 50% 
in this study. The >, and < symbols were used for the RN_Parameter values over 
50% or below −50%, respectively. 

The correlations between each possible RN_Parameter value and the corres-
ponding physio-anatomy were made to define the hMRI_PASC (Table 2). An 
MCSSS for AI-based MRI (Figure 1) was also proposed based on each possible 
RN_Parameter value in Table 1. 

The disease management strategy for AI-based MRI is presented for a scena-
rio applied to a human body organ MRI model: the eye [20]. The ocular regions 
assessed using the results in this study are presented in Figure 2. The finest CN 
human eye anatomy visualised on an MRI slice was achieved at 3 T MRI [20] 
and consists of: cornea, iris, ciliary body, aqueous humour, lens, vitreous hu-
mour, sclera, optic nerve, and three layers in the retina-choroid complex region 
[20] [38] as presented in Figure 2(a). An example of DA eye with visibly in-
flamed iris and ciliary body, and deformed lens and aqueous humour is shown 
in Figure 2(b). The regions in Figure 2(c) show the selections used for the 
quantitative assessment of the MRI parameters presented in Table 1. 

 

 

Figure 1. MRI staging scale for future AI-based MRI disease management. The levels, 
types and stages were defined based on the general available MRI findings to date 
[20]-[37]. The letters are arranged along straight lines representing levels, types, and 
stages. Thickness of the straight lines increases from levels to stages. The rainbow colours 
are used in combination with the variable thickness for each straight line. The rectangular 
light and dark gray borders represent dynamic and dynamic susceptibility contrast en-
hancement, respectively. Letters without borders are used for unenhanced types. 
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Figure 2. High resolution MRI of the human eye. The normal human eye struc-
tures visualised at present using MRI [20] [30] [31] [38] are shown in (a). An ex-
ample of human ocular MRI pathology detected using MRI is also presented in 
(b). In (b), deformation of the lens and aqueous humour and inflammation of the 
iris and ciliary body are shown. The regions-of-interest for the quantitative eye 
MRI assessment from current literature [20] [30] [31] are presented in (c). 

 
Table 2. Human physio-anatomical MRI state chart. The corresponding phy-
sio-anatomical state for each possible RN_Parameter value in Table 1 is presented below. 
The symbols: 0, >, and < stand for absolute differences between corresponding DA and 
CN RN_Parameter absolute values: smaller (0), and larger (>, and <) than the 50% thre-
shold value. >, and < were used to symbolise RN_Patameter values over and below the 50% 
and −50% threshold, respectively. 

Level 
RN MRI 
Parameter 

MRI physio-anatomical state chart 

0 > < 

Infiltration 
T1, T2, R,  
V, C, X, P, I 

no T1, T2,  
macromolecular, 
calcification-specific, 
iron-based agent 

blood or T1-, T2-, R-, 
X-, P-, I-lengthening 
substance infilitration 
through broken blood 
vessels 

T1-, T2-, R-, X-, P-, 
I-shortening substance 
infiltration through  
broken blood vessels and 
blood-to-tissue barrier 

Dynamics 

D 
no diffusion changes 
of 1H nuclei in water 
molecules 

faster diffusing 1H 
nuclei in water  
molecules 

slower diffusing 1H nuclei 
in water molecules 

A 
same degree of  
diffusion anisotropy 

increased degree of 
diffusion anisotropy 

decreased degree of  
diffusion anisotropy 

V 
no volume changes  
of the diffusing  
component 

increased volume  
of the diffusing  
component 

decreased volume of the 
diffusing component 

V, f 
no flow (volume, rate) 
changes of 1H nuclei 
in water molecules 

increased flow  
(volume, rate) of 1H 
nuclei in water  
molecules 

decreased flow (volume, 
rate) of 1H nuclei in water 
molecules 

Elastography 
T, A, V no inflammation inflammation constriction 

S same stiffness increased stiffness decreased stiffness 
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3. Results 

The specifications relevant for the diagnosis of a medical condition detected are 
presented in the hMRI_PASC in Table 2. The IDE MCSSS presented in Figure 1 
was used to detect bio-physiological changes in the regions-of-interest, produced 
by: external agent infiltration, changes in the dynamics of the 1H nuclei in water 
molecules, and/or elastic deformations. Infiltration of blood or T1 and/or T2 
lengthening or shortening agents, macromolecules, calcifications, and iron par-
ticles through broken blood vessels or broken blood vessels and blood-to-tissue 
barriers can be detected using MRI. The dynamics of the 1H nuclei in water mo-
lecules can be assessed with diffusion [39] and flow sensitive [35] MRI tech-
niques applied to different regions of the human body. Inflammation, constriction 
or stiffness of regions can be detected in MRI elastography studies [37]. The geo-
metrico-physicochemical parameters in Table 1 were used to analyse the physio-
logical IDE status of a region-of-interest based on the hMRI_PASC in Table 2. 

According to Figure 1, severity of a medical condition can be classified in 3 
levels, 7 types, and 18 stages. The 3 levels are: infiltration (I), dynamics (D), and 
elastography (E), IDE. The I, D, and E levels are of 3, 2, and 2 types, respectively. 
The 7 severity types are: I relaxometry: I(R), I magnetisation transfer: I(M), I 
susceptibility-weighted: I(S), D diffusion: D(D), D flow: D(F), E dimension: 
E(D), and E elastography: E(E). The level types D(F) and E(D) can be: unen-
hanced, dynamic or dynamic susceptibility contrast agent enhanced, represented 
by: non-, light, and dark gray highlighted terms, respectively. Each level type has 
different stages: I(R(T1, T2, M0)), I(M(R, V, C)), I(S(X, P, I)), D(D(D, A, V)), 
D(F(V, f)), E(D(T, A, V)), and E(E(S)), depending on the number of the MRI 
parameters calculated.  

The total number of general MRI parameters in this study is 18 and this also 
represents the number of IDE stages. 

The general configuration of the MCSSS in Figure 1 is:  
Level(Type(Subtype(Stage(RN_Parameter value) or Stage(RN_Parameter val-

ue)))). The first configuration is for positive RN_Parameter values, while the 
underlined Stage(RN_Parameter value) configuration corresponds to negative 
values. 

For the worse case scenario, let’s assume that in an MRI study, all the para-
meters presented in Figure 1 were calculated and each of these parameters had 
the positive or negative RN_Parameter values from v1 to v18. The configuration 
of such a situation is:  

I(R(T1(v1), T2(v2), M0(v3)); M(R(v4), V(v5), C(v6)); S(X(v7), P(v8), I(v9))) 
D(D(D(v10), A(v11), V(v12)); F(V(v13), f(v14))) 
E(D(T(v15), A(v16), V(v17)); E(E(v18))). 
The T1(v1) and T(v15) RN_Parameter values are negative and these were 

calculated using unenhanced and dynamic contrast enhanced MRI, respectively. 
Dynamic susceptibility contrast enhanced MRI was used to calculate the positive 
FV(v13) and negative Ff(v14) RN_Parameter values. 
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The first letter in the MCSSS configuration represents the level of the disease, 
corresponding to the phenomenon producing the detected physio-anatomical 
change. The second to the penultimate letters represent the types and subtypes 
of the disease level, specifying the MRI technique used to acquire and detect the 
analysed information. The D(F) and E(D) level types are: unenhanced, dynamic 
or dynamic susceptibility contrast enhanced. Non-, light, and dark gray highlighted 
terms symbolise: unenhanced, dynamic, and dynamic susceptibility contrast 
enhanced MRI techniques respectively. Subtype refers to any new MRI tech-
nique subtype that can be introduced in the MCSSS in the future. The final letter 
represents the stage of the medical condition and also the RN_Parameter calcu-
lated. Negative values of the RN_Parameters are represented by underlined let-
ters followed by underlined numbers. The numbers following the last letter in 
the configuration specifies the RN_Parameter value. 

The ocular disease management strategy developed in this study is explained 
for the RN_Paramater value combination scenario presented in Table 3. These 
RN_Parameter values correspond to the hypothetical situation shown in Figure 
2(b)). A hypothetical example of inflammation of the iris and ciliary body, and 
elastic deformations of the lens, and aqueous humour regions for 3 T human eye 
MRI is presented in Figure 2(b)). From all calculated RN_Parameter values, 
only I(R(T2))/D(F(f))/E(D(T))/E(D(V)) RN_Parameters showed significant 
changes between the corresponding ocular regions evaluated in the DA and CN 
subjects in Table 3. The absolute values of these parameters are larger than the 
threshold value in this study: 50%. 

 
Table 3. Scenario of RN_Parameters in different eye structures visualised on 3 T MRI 
images. The I(R(T2)) and D(F(f)) RN_Paramater values in the vitreous humour, reti-
na-choroid complex, and optic nerve regions presented below show that the I(R(T2)) and 
D(F(f)) values measured on the MRI images from the DA subject are significantly differ-
ent compared to their corresponding CN values. The same is true for the E(D(T)) 
RN_Paramer values in the: iris, ciliary body, lens, and aqueous humour. All other 
RN_Parameter values calculated for the visualised ocular MRI structures are null, show-
ing no significant changes between corresponding DA and CN RN_Paramater values. 
The MCSSS configuration is also specified for each ocular region. 

Ocular region 

RN_Parameter value (%) 

MCSSS configuration Level(Type(RN_Parameter)) 

I(R(T2)) D(F(f)) E(D((T)) E(D(V)) 

vitreous humour 92 156 0 0 I(R(T2(92))); D(F((f(156))) 

retina-choroid complex 563 198 0 0 I(R(T2(563)); D(F((f(198))) 

optic nerve -94 121 0 0 I(R(T2(94))); D(F((f(121))) 

iris 0 0 81 0 E(D(T(81))) 

ciliary body 0 0 54 0 E(D(T(54))) 

lens 0 0 0 65 E(D(V(65))) 

aqueous humour 0 0 0 -52 E(D(V(52))) 
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The negative I(R(T2)) RN_Parameter calculated in the optic nerve region for 
positive D(F(f)) RN_Parameter values (Table 3), corresponds to broken blood 
vessels and blood-to-optic nerve barrier (Table 2). Harmful cells infiltrated the 
optic nerve through the blood stream and the disrupted blood-to-optic nerve 
barrier. They produced a more solid concentration of the optic nerve from the 
DA eye compared to the corresponding optic nerve region in the CN. This con-
centration decreased the I(R(T2)) value in the optic nerve region of the DA eye 
with 94% (Table 3), compared to the corresponding CN I(R(T2)) values. 

In the vitreous humour and retina-choroid complex regions, the I(R(T2)) and 
D(F(f)) RN_Parameter values were positive (Table 3). This corresponds to a 
significant number of broken blood vessels in the vitreous humour and reti-
na-choroid complex regions, but intact blood-to-: vitreous humour and reti-
na-choroid complex barriers (Table 2). The intact barriers did not allow harmful 
cells enter the vitreous humour and retina-choroid complex regions through the 
blood stream. The blood spilled through the broken blood vessels produced an 
increased liquid concentration in the vitreous humour and retina-choroid com-
plex regions. This determined an increase with 92% and 563% (Table 3) of the 
I(R(T2)) RN_Parameter values from the DA eye compared to the corresponding 
CN values in the vitreous humour and retina-choroid complex regions, respec-
tively.  

The events in the iris, ciliary body, lens, and aqueous humour, changed the 
ocular pressure in these regions, which produced a force applied on them and 
deformed them elastically. This corresponds to an increase of the E(D(T)) 
RN_Parameter values with 81% and 54% in the region of the iris and ciliary 
body, while for the lens and aqueous humour, the corresponding E(D(V)) 
RN_Parameter values increased with 65 and decreased with 52%, respectively. 
The MCSSS configurations of the eye condition in the vitreous humour, reti-
na-choroid complex, optic nerve, iris, ciliary body, lens, and aqueous humour 
regions are also presented in Table 3. 

Blood is supplied to the eye from the optic nerve [40]. If treatment is applied 
to stop or reduce the damage in the optic nerve region, it could be possible to 
regain the integrity of the aqueous humour, ciliary body, iris, lens, vitreous hu-
mour, and retina-choroid complex regions. If necessary, surgical intervention 
should be considered post optic nerve treatment to eliminate any remaining cel-
lular infiltrates. 

4. Discussion 

Results in this study can easily and immediately be implemented in AI-based 
ocular MRI and demonstrate the feasibility of introducing AI-based analysis of 
ocular MRI scans. This could potentially support a program for the prevention 
and treatment of eye disease. 

The research method developed and described here has three main compati-
bility areas: human anatomy, medical procedure, and imaging technique. The 
hMRI_PASC and MCSSS in this study have general human body applicability. 
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The strategy for disease management is explained with the ocular MRI example, 
but it can be generalised to any organ. The research method developed in this 
study can be further developed to integrate all imaging techniques used at 
present in radiology. A similar approach to that presented here could be used to 
develop AI-based medical imaging strategies and extend the MCSSS for MRI in 
this study to: ultrasonography, computed tomography, positron emission tomo-
graphy, laser or infrared medical imaging for example. The research method 
presented in this study is compatible with many medical procedures: diagnosis, 
prognosis, response to therapy, and surgery, for example. Once the generalisation 
to these three main compatibility areas has been achieved, software developers 
can integrate the research method in software for general human body AI-based 
medical imaging. This generalisation will answer the most important question for 
the need of standardised AI-based medical protocol implementation in medicine 
to tackle the socio-economic burden caused by disease worldwide [41] [42] [43]. 

Results in this study can also be customized and used immediately by medical 
specialists worldwide to increase the efficacy of their day-to-day practice, even 
before a general software for AI-based radiology is developed. 

One limitation of this study is the need for the automatic medical condition 
prediction selection. This can be developed based on the as low as reasonably 
achievable principle, followed by a periodic testing-evaluation cycle, for exam-
ple. Another important limitation is the evaluated subject role specification. Ap-
propriate automated protocols should be developed to inform and obtain the 
correct informed consent from the evaluated subject before beginning any pro-
posed medical procedure. All other ethical and legal aspects have to be clearly 
specified [44]. 

5. Conclusion 

In conclusion, the hMRI_PASC, MCSSS, and disease management strategy in 
this study can be customized and implemented immediately by medical special-
ists in their day-to-day care practice for increased efficacy. This method can also 
be implemented immediately in software for AI-based MRI to further help med-
ical specialists and reduce the socio-economical burden caused by disease. Re-
sults in this paper have applicability in the medical: diagnosis, prognosis, re-
sponse to therapies, and/or surgery. Similar developments for other imaging 
techniques in radiology will generalise results in this study for the future possible 
implementation of standardised AI-based medical imaging. 
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