Retraction Notice

Title of retracted article:	The Riemann Hypothesis Holds True: A Rigorous Proof with Mean Formula and Extremum Principle Jinliang Wang
Author(s):	
* Corresponding author.	wangjinliang0811@126.com
Journal:	Applied Mathematics (AM)
Year:	2019
Volume:	10
Number:	8
Pages (from -to):	$691-703$
DOI (to PDF):	https://doi.org/10.4236/am.2019.108049
Paper ID at SCIRP:	7404264
Article page:	https://www. scirp.org/Journal/paperinformation.aspx?paperid=94527
Retraction date:	$2019-09-05$

Retraction initiative (multiple responses allowed; mark with \mathbf{X}):
$\begin{array}{ll}\mathbf{X} & \text { All authors } \\ \square & \text { Some of the authors: } \\ \square & \text { Editor with hints from }\end{array}$

Date initiative is launched: 2019-09-03

Retraction type (multiple responses allowed):
\square Unreliable findings
O Lab error
O Inconsistent data
X Analytical error
O Biased interpretation O Other:
\square Irreproducible results
Failure to disclose a major competing interest likely to influence interpretations or recommendations
Unethical research
Fraud
O Data fabrication
O Fake publication
O Other:
PlagiarismSelf plagiarism $\quad \square$ Overlap
Copyright infringement Other legal concern:
\square Editorial reasons
O Handling error
O Unreliable review(s)
O Decision error
O Other:
\square Other:

Results of publication (only one response allowed):
\square are still valid.
X were found to be overall invalid.

Author's conduct (only one response allowed):
X honest erroracademic misconductnone (not applicable in this case - e.g. in case of editorial reasons)

* Also called duplicate or repetitive publication. Definition: "Publishing or attempting to publish substantially the same work more than once."

History

Expression of Concern:
\square yes, date: yyyy-mm-dd
X no
Correction:
X yes, date: 2019-09-04
\square n

Comment:

This article has been retracted to straighten the academic record. In making this decision the Editorial Board follows COPE's Retraction Guidelines. Aim is to promote the circulation of scientific research by offering an ideal research publication platform with due consideration of internationally accepted standards on publication ethics. The Editorial Board would like to extend its sincere apologies for any inconvenience this retraction may have caused.

Editors guiding this retraction: Editorial Board of AM

The Riemann Hypothesis Holds True: A Rigorous Proof with Mean Formula and Extremum Principle

Jinliang Wang Email: wangjinliang0811@126.com
How to cite this paper: Wang, J.L. (2019)
The Riemann Hypothesis Holds True: A Rigorous Proof with Mean Formula and Extremum Principle. Applied Mathematics, 10, 691-703.
https://doi.org/10.4236/am.2019.108049

Research Institute for ESMD Method and Its Applications, College of Science, Qingdao

Received: July 31, 2019
Accepted: August 19, 2019
Published: August 22, 2019

Copyright © 2019 by author(s) and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).
http://creativecommons.org/license y/4.0/

Abstract

The Riemann hypothe s is a well-known athematical problem which has been in suspense for 1 it may be very simple p viewing all the exp gether with many times of failures, the ticle is a on rig ous ormere the contradiction method is adopted, and t^{\prime} Mean orn a and Extremum Principle of harmonic functions toget with th cmm ic properties play key parts in the proof. years. Thou its difficulty is daunting, the proof of vided that a easible approach is founded. After re-

Keywo
mann Hypo esis, Riemann Zeta Function, Nontrivial Zeros, Critical Line, Nu, er Theory, Riemann-Wang Hypothesis 1.IV roduction
e well-known "Riemann hypothesis" was left by the German mathematician Georg F. B. Riemann (1826-1866). He observed that the distribution of prime numbers among all natural numbers is very closely related to the behavior of an infinite series:

$$
\begin{equation*}
\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}} \tag{1}
\end{equation*}
$$

which is usually called the Riemann Zeta function. Here s is a complex number whose real part is usually denoted by $\operatorname{Re}(s)$. If there is a s_{0} who satisfies $\zeta\left(s_{0}\right)=0$, then we call it one zero point of $\zeta(s)$. Just as stated by E. Bombieri [1], this function has real zero points at the negative even integers $-2,-4, \cdots$ and one refers to them as the trivial zeros. Relatively, the other complex zero
points of it are called the nontrivial zeros.
Riemann hypothesis: All the nontrivial zeros of $\zeta(s)$ have real part $\operatorname{Re}(s)=1 / 2$.

Is it true? In 1986 the first 1.5 billion nontrivial zeros of $\zeta(s)$ (arranged by increasing positive imaginary part) had been checked in [2], and the result showed that they are simple and possess real part $\operatorname{Re}(s)=1 / 2 \quad$ [1]. So the Riemann hypothesis is very likely true. The proof of it had ever been a global hot topic when British mathematician Michael F. Atiyah (1929-2019) reported his findings in Heidelberg Laureate Forum on Sep. 24, 2018. Unfortunately, his approach does not work and the Riemann hypothesis ;ill an open problem. For the achievements on this topic, one can refer to th eviews in [1] [3] [4] and the related references. In the following, we focu ur a ntion on i] strating the useful terms for our proof.

In an epoch-making memoir publishe 1859 demann roduced a transformation for the Zeta function [1] [
where Γ is the gamma

with property $\Gamma(2+1) /(S / 2)$. This transformation has three advantages beloy

1) Tl Lero po ts δ, $\xi(s)$ coincide with the nontrivial zeros of $\zeta(s)$; $\mathbb{C}, \xi(s)$ is analytic at any point $s \neq \infty$;
The $\%$ possesses the symmetric property $\xi(s)=\xi(1-s)$.
e first ten indicates that, $\zeta(s)$ is equivalent to $\xi(s)$ and the proof of Rien on hypothesis only requires the fulfilment of $\operatorname{Re}(s)=1 / 2$ for the zero points $\mathrm{a}^{-} \varepsilon(s)$. The last two terms contains a lot of latent information which heed to be Interpreted. Fortunately, during this interpreting process we have found e key to the door. For an analytic function, its real and imaginary parts are harmonic functions which satisfy the two-dimensional Laplace equations. ence, the Mean Formula and Extremum Principle for them can be exploited. Meanwhile, the symmetric property of $\xi(s)$ can be also converted to its real and imaginary parts. To combine these beneficial tools it leads to a new approach. To follow this, the abstract complex analysis on $\zeta(s)$ is avoided, and the proof is just an elementary one which is only associated with two bivariate real functions.

Since for the case $\operatorname{Re}(s)>1$ the modulus of $\zeta(s)$ satisfies $|\zeta(s)|>0$ (the proof is provided in [3]), there is no zero points for $\xi(s)$ in the region $\operatorname{Re}(s)>1$. Meanwhile, the symmetric property $\xi(s)=\xi(1-s)$ indicates that there is no zero points in the region $\operatorname{Re}(s)<0$, either. So there is a natural setting for the proof: All the zero points of $\xi(s)$, that is, all the nontrivial zeros of
$\zeta(s)$ lie in the strip bounded by $0 \leq \operatorname{Re}(s) \leq 1$. Though there are some improvements on narrowing this strip, this original setting delimited by Riemann is enough for our proof.

The proof is rigorous. During this process, the contradiction method is adopted, and the symmetric property of $\xi(s)$, the Mean Formula and Extremum Principle of harmonic functions play key parts.

2. Convert to a Real-Valued Problem

To split the real part and imaginary part of $\xi(s)$, the camplex-valued problem can be converted to a real-valued problem.

It follows from Equations (1)-(3) that
here only the principal va es are concerned. set $s=x+i y$ and denote

Equà
(4) is rewritten as $\xi(x+i y)=(x-1+i y)(\phi+i \psi)(u+i v)$. To split the real part $\quad(x, y)$ and imaginary part $V(x, y)$ of ξ, it yields

$$
\begin{align*}
& U=(x-1)(\phi u-\psi v)-y(\phi v+\psi u) \tag{6}\\
& V=(x-1)(\phi v+\psi u)+y(\phi u-\psi v) \tag{7}
\end{align*}
$$

According to 2) the function $\xi(s)$ is analytic and the Cauchy-Riemann conditions hold for its real and imaginary parts:

$$
\begin{equation*}
U_{x}=V_{y}, U_{y}=-V_{x}, \tag{8}
\end{equation*}
$$

here the subscripts mean the taking of partial derivatives, such as, $U_{x}=\partial U / \partial x$. One can check these with Equation (6) and Equation (7). There is a direct result for these:

Proposition 1. The gradients of U and V are orthogonal with each other, that $i s$,

$$
\begin{equation*}
\nabla U \cdot \nabla V=U_{x} V_{x}+U_{y} V_{y}=0 \tag{9}
\end{equation*}
$$

which implies that the isolines of U and V are perpendicular with each other.

Let Ω be any finite two-dimensional domain in \mathbb{R}^{2}. The analytic property of $\xi(s)$ implies good smoothness for U and V on Ω. So the second-order derivatives of them exist and are continuous, that is, $U, V \in C^{2}(\Omega)$. In addition, $U, V \in C^{0}(\bar{\Omega})$ mean they are continuous on Ω together with its boundary $\partial \Omega$. Here this request is naturally satisfied. Simple deduction from Equation (8) results in:

$$
\begin{equation*}
U_{x x}+U_{y y}=0, V_{x x}+V_{y y}=0, \quad(x, y) \in \Omega \tag{10}
\end{equation*}
$$

These mean both U and V satisfy the two-dimensional Laplace equation, and the results below (which may appear in any textb named Mathematical Physical Equations) hold for them:

Proposition 2. (Mean Formula) [5]: For $\quad \underset{\sim}{\text { an }} \in C^{2}(\Omega) \cap \mathcal{C}^{0}(\bar{\Omega})$ which satisfies $w_{x x}+w_{y y}=0$ in Ω, then for each ISC $O \subset$ with c ter $\left(x_{0}, y_{0}\right)$, radius R and boundary ∂O,

Proposition 3. (Extre um Principl [5]: If w satisfies $w_{x x}+w_{y y}=0$ in Ω, then there is no extreme p t for it in therior of Ω, unless it is a constant.

The above thr alts an con quences of analytic property, while the symmetric propert, of ζ vesults in the following theorem:
Theore
proper $=U(x, y), U(1-x, y)=U(x, y)$,
$V(x,-y)=-V(x, y), V(1-x, y)=-V(x, y)$.
. It follows from Equation (5) and Equation (6) that

$$
\begin{align*}
U(x,-y)= & (x-1)[\phi(x,-y) u(x,-y)-\psi(x,-y) v(x,-y)] \\
& +y[\phi(x,-y) v(x,-y)+\psi(x,-y) u(x,-y)] \\
= & (x-1)[\phi(x, y) u(x, y)-\psi(x, y) v(x, y)] \tag{14}\\
& +y[-\phi(x, y) v(x, y)-\psi(x, y) u(x, y)] \\
= & U(x, y) .
\end{align*}
$$

In addition, $\xi(s)=\xi(1-s)$ reads

$$
U(x, y)+i V(x, y)=U(1-x,-y)+i V(1-x,-y)
$$

which indicates that $U(x, y)=U(1-x,-y)$ and $V(x, y)=V(1-x,-y)$. To substitute x by $1-x$ in Equation (14) the relation also holds, that is, $U(1-x,-y)=U(1-x, y)$. Furthermore, to combine these two equations we get $U(x, y)=U(1-x,-y)=U(1-x, y)$. In the same way the relations for V are proved to be true. The proof is finished.

For the particular cases $y \equiv 0$ and $x \equiv 1 / 2$, the relations for V read
$V(x, 0) \equiv-V(x, 0)$ and $V(1 / 2, y) \equiv-V(1 / 2, y)$. So $V(x, 0) \equiv V(1 / 2, y) \equiv 0$. It indicates $\xi(x+i y)$ has 0 imaginary part on the lines $y \equiv 0$ and $x \equiv 1 / 2$. This theorem can be understood as: U and V are symmetric and anti-symmetric about the two lines $y \equiv 0$ and $x \equiv 1 / 2$, respectively. Particularly, due to the direct relationship with the Riemann hypothesis, the line $x \equiv 1 / 2$ has drawn much attention. It owns a particular appellation "critical line" [4]. Relatively, the value of the line $y \equiv 0$ (which accords with the real axis) is usually ignored. Yet the symmetric properties about it cannot be neglected. They are beneficial for the proof.

As the real-valued problem concerned, the Riemap nypothesis is restated as: Except on the critical line $x \equiv 1 / 2, U(x, y)$ and (x, y) have no other mutual zero point in \mathbb{R}^{2}. The proof will be done ad tradiction m thod.

3. The Proof of Riemann Hypot sis

Suppose there is a mutual zero point $x^{*}, y, L U(x, y)$ and $V(x, y)$ (that is, $\left.U\left(x^{*}, y^{*}\right)=V\left(x^{*}, y^{*}\right)=0\right)$ aw rom the crim lin $x \equiv 1 / 2$. In view of the symmetric properties in Theore tos her with the aral setting $0 \leq \operatorname{Re}(s) \leq 1$ for $\xi(s)$, without loss of go wera ire $1 / 2<x^{*} \leq 1$ and $y^{*}>0$.

First of all, we say $\left(x^{*} y^{*}\right)$ can't be an ated zero point for $U(x, y)$ or $V(x, y)$. On the contrar if it is an iso ted zero point for $V(x, y)$, to draw a small disc O with its centel $\left(x^{*}, y^{*}\right)$, len the sign of $V(x, y)$ maintains unchanged on its bo an inner point $\left(x^{*}, y^{*}\right)$ must be minimum point or ma mum $V(x, y)$ on O which violates the Extremum Principle ne sa e ta occurs for $U(x, y)$.

Nor nat $\left(x^{*},\right)$ is ot an isolated zero point, there should be one or two continyous o-y ed lims it. The case with two lines may occur if $\left(x^{*}, y^{*}\right)$ is saddle po In fact, since $U(x, y)$ and $V(x, y)$ are two-dimensional surthese zero vlued lines are actually the intersected ones with the $x-y$ plana follows from Proposition 1 that the zero-valued lines for $U(x, y)$ and $V(x, y)$ sfer from each other. Notice that the anti-symmetry is more favorable than the symmetry for the proof, the function V is stressed in our consideration.

Firs we consider the variation of $V(x, y)$ respect to the vertical anti-symmetric axi $x \equiv 1 / 2$. To draw a circle O with center $\left(x^{*}, y^{*}\right)$ and radius R, then we see at in case $R>x^{*}-1 / 2$ it intersects with the line $x \equiv 1 / 2$ and on the contrary case it does not. Particularly, for the case $R>x^{*}-1 / 2$ there exists a part D_{L} of O to the left of this line (see Figure 1). Meanwhile, to the right of this line, there is a symmetric area D_{R} which is also included in O (This area can be seen as the part intersected by the critical line and another circle O^{\prime} with center $\left(1-x^{*}, y^{*}\right)$ and radius $\left.R\right)$. To get rid of D_{L} and D_{R}, the remainder C of disc O can be further divided into two symmetric parts, that is, the upper part C^{+} and lower part C^{-}, respect to the horizontal line $y \equiv y^{*}$. Here the remainder C is like the moon, it waxes for $R \leq x^{*}-1 / 2$ and wanes for $R>x^{*}-1 / 2$. For visualization we call this remainder by "the moon". Particularly, the bigger the radius, the thinner the moon.

Figure 1. Respect to the anti-sym ships between the circles and

3.1. The Integral on
 Property

For the case mula leads to

$$
\begin{align*}
& R^{2} V\left(x^{*}, y^{*}\right)=\iint_{O} V(x, y) \mathrm{d} x \mathrm{~d} y \\
& V(x, y) \mathrm{d} x \mathrm{~d} y+\iint_{D_{R}} V(x, y) \mathrm{d} x \mathrm{~d} y \tag{15}\\
& +\iint_{C^{+}} V(x, y) \mathrm{d} x \mathrm{~d} y+\iint_{C^{-}} V(x, y) \mathrm{d} x \mathrm{~d} y .
\end{align*}
$$

It for from the circle equation $\left[x-\left(1-x^{*}\right)\right]^{2}+\left(y-y^{*}\right)^{2}=R^{2}$ of O^{\prime} hat, the two intersected points with the line $x \equiv 1 / 2$ are

$$
y^{+}=y^{*}+\sqrt{R^{2}-\left(x^{*}-1 / 2\right)^{2}} \text { and } y^{-}=y^{*}-\sqrt{R^{2}-\left(x^{*}-1 / 2\right)^{2}}
$$

With the denotation $f(y)=1-x^{*}+\sqrt{R^{2}-\left(y-y^{*}\right)^{2}}$, the circular arcs for D_{R} and D_{L} are expressed by $x=f(y)$ and $x=1-f(y)$, respectively. It follows from Theorem 1 that $V(1-x, y)=-V(x, y)$, which results in

$$
\begin{align*}
& \iint_{D_{L}} V(x, y) \mathrm{d} x \mathrm{~d} y+\iint_{D_{R}} V(x, y) \mathrm{d} x \mathrm{~d} y \\
& =\int_{y^{-}}^{y^{+}} \int_{1-f(y)}^{1 / 2} V(x, y) \mathrm{d} x \mathrm{~d} y+\int_{y^{-}}^{y^{+}} \int_{1 / 2}^{f(y)} V(x, y) \mathrm{d} x \mathrm{~d} y \tag{16}\\
& =-\int_{y^{-}}^{y^{+}} \int_{f(y)}^{1 / 2} V\left(1-x^{\prime}, y\right) \mathrm{d} x^{\prime} \mathrm{d} y+\int_{y^{-}}^{y^{+}} \int_{1 / 2}^{f(y)} V(x, y) \mathrm{d} x \mathrm{~d} y \\
& =\int_{y^{-}}^{y^{+}} \int_{1 / 2}^{f(y)}[V(1-x, y)+V(x, y)] \mathrm{d} x \mathrm{~d} y=0 .
\end{align*}
$$

The combination of Equation (15) and Equation (16) indicates that, for the waned case the integral on the moon C satisfies

$$
0=\iint_{C^{+}} V(x, y) \mathrm{d} x \mathrm{~d} y+\iint_{C^{-}} V(x, y) \mathrm{d} x \mathrm{~d} y
$$

$$
=\int_{1 / 2}^{x_{1}} \int_{g_{1}(x)}^{g_{2}(x)} V(x, y) \mathrm{d} y \mathrm{~d} x+\int_{x_{1}}^{x_{2}} \int_{y^{*}}^{g_{2}(x)} V(x, y) \mathrm{d} y \mathrm{~d} x
$$

$$
+\int_{1 / 2}^{x_{1}} 2_{2 y^{*}-g_{2}(x)}^{2 y^{*}-g_{1}(x)} V(x, y) \mathrm{d} y \mathrm{~d} x+\int_{x_{1}}^{x_{2}} \int_{2 y^{*}-g_{2}(x)}^{y^{*}} V(x, y) \mathrm{d} y \mathrm{~d} x
$$

$$
=\int_{1 / 2}^{x_{1}} \int_{g_{1}(x)}^{g_{2}(x)} V(x, y) \mathrm{d} y \mathrm{~d} x+\int_{x_{1}}^{x_{2}} \int_{y^{*}}^{g_{2}(x)} V(x, y) \mathrm{d} y \mathrm{~d} x
$$

$$
-\int_{1 / 2}^{x_{1}} g_{g_{2}(x)}^{g_{1}(x)} V\left(x, 2 y^{*}-y^{\prime}\right) \mathrm{d} y^{\prime} \mathrm{d} x-\int_{x_{1}}^{x_{2}} \int_{g_{2}\left(y^{\prime}\right.}^{y^{*}}{ }^{\prime}\left(x, 2 y-y^{\prime}\right) \mathrm{d} y^{\prime} \mathrm{d} x
$$

$$
\begin{align*}
= & \int_{1 / 2}^{x_{1}} g_{g_{1}(x)}^{g_{2}(x)}\left[V(x, y)+V\left(x, 2 y^{*}-y\right)\right] \mathrm{d}^{\mathrm{d}} \mathrm{~d} x \tag{17}\\
& +\int_{x_{1}}^{x_{2}} \int_{y^{*}}^{g_{2}(x)}\left[V(x, y)+V\left(x, 2 y^{*} y\right)\right] \mathrm{d} y \mathrm{~d} \mathrm{~d} \\
= & \iint_{C^{+}}\left[V(x, y)+V\left(x, 2 y^{*}-\right)\right] \mathrm{d} x \mathrm{c}^{*}
\end{align*}
$$

where $\left.x_{1}=1-x^{*}+R, x_{2}=x^{*} R, \delta\right)=y^{*}+\sqrt{R} \sqrt{\left(x-1+x^{*}\right)^{2}}$ and $g_{2}(x)=y^{*}+\sqrt{R^{2}-(x-x}$

For the waxed case, the Cean Formul an be directly applied and the integral on the moon C saticfies

$=\left[\begin{array}{l}x_{2} \\ x_{1}\end{array} y_{y} V(x, y) \mathrm{d} y \mathrm{~d} x+\int_{x_{1}}^{x_{2}} \int_{2 y^{*}-g_{2}(x)}^{y^{*}} V(x, y) \mathrm{d} y \mathrm{~d} x\right.$
$=\int_{x_{1}}^{*} J_{y^{*}} V(x, y) \mathrm{d} y \mathrm{~d} x-\int_{x_{1}}^{x_{2}} \int_{g_{2}(x)}^{y^{*}} V\left(x, 2 y^{*}-y^{\prime}\right) \mathrm{d} y^{\prime} \mathrm{d} x$
where $x_{1}^{*}-R, \quad x_{2}=x^{*}+R$ and $g_{2}(x)=y^{*}+\sqrt{R^{2}-\left(x-x^{*}\right)^{2}}$.
ace, no matter the moon C wanes (for $R>x^{*}-1 / 2$) or waxes (for $R \leq x^{*}-1 / 2$), the integral of bivariate function

$$
F(x, y)=V(x, y)+V\left(x, 2 y^{*}-y\right)
$$

always maintains to be 0 on one half of it. To be specifically, with two new denotations $\phi(x, R)=y^{*}+\sqrt{R^{2}-\left(x-1+x^{*}\right)^{2}}$ and $\psi(x, R)=y^{*}+\sqrt{R^{2}-\left(x-x^{*}\right)^{2}}$, the combination of Equation (17) and Equation (18) indicates that

$$
\Phi(R)=\left\{\begin{array}{l}
\int_{x^{*}-R}^{x^{*}+R} \int_{y^{*}}^{\psi(x, R)} F(x, y) \mathrm{d} y \mathrm{~d} x, 0<R \leq R_{0} \tag{19}\\
\int_{\alpha(R)}^{x^{*}+R} \int_{y^{*}}^{\psi(x, R)} F(x, y) \mathrm{d} y \mathrm{~d} x+\int_{1 / 2}^{\alpha(R)} \int_{\phi(x, R)}^{\psi(x, R)} F(x, y) \mathrm{d} y \mathrm{~d} x, R>R_{0}
\end{array}\right.
$$

always satisfies $\Phi(R) \equiv 0$ on the interval $(0, \infty)$, where $\alpha(R)=1-x^{*}+R$
and $R_{0}=x^{*}-1 / 2$.
Does the arbitrariness of radius R in Equation (19) imply $F(x, y) \equiv 0$? It seems true. A rigorous proof is needed.

3.2. The Derivative of the Integral Respect to the Radius

There is a known formula for the differential under the integral symbol: For a given integral of the form

$$
\begin{equation*}
h(y)=\int_{a(y)}^{b(y)} f(x, y) \mathrm{d} x, \tag{20}
\end{equation*}
$$

where $a(y), b(y)$ and $f(x, y)$ are all differenti re tunctions, its derivative satisfies

$$
\begin{equation*}
\left.\left.\left.h^{\prime}(y)=\int_{a(y)}^{b(y)} f_{y}^{\prime}(x, y) \mathrm{d} x+f(b(y), y)(y)-\lambda(y), y\right) a^{\prime}\right\rangle\right), \tag{21}
\end{equation*}
$$

here the superscript "'" means the taki of ordi ly derm e, $f_{y}^{\prime}(x, y)$ denotes the partial derivative $\partial f / \partial y$.
To follow this formula we co der the den tive $\Phi(R)$. For the case $0<R \leq R_{0}$, it reads

$$
\begin{aligned}
\Phi^{\prime}(R)= & \left.\int_{x^{*}}^{x^{*}+R}(x, \psi(x, R)) \psi, R\right) \mathrm{d} x \\
& +\int x^{\left(x^{*}+R, R\right)} F\left(x^{*}+y\right) \mathrm{d} y\left(x^{*}+R\right)^{\prime} \\
& \int^{\psi(\lambda)}, y\left(x^{*}-R\right)^{\prime}
\end{aligned}
$$

$$
\begin{equation*}
\int^{x^{*}+P^{\prime}} f^{\prime}(x, 4,(x, R)) \frac{R}{\sqrt{R^{2}-\left(x-x^{*}\right)^{2}}} \mathrm{~d} x \tag{22}
\end{equation*}
$$

$F\left(x^{*}+R, y\right) \mathrm{d} y+\int_{y^{*}}^{y^{*}} F\left(x^{*}-R, y\right) \mathrm{d} y$

Similar, .or the case $R>R_{0}$,

$$
\begin{aligned}
(R) & =\int_{\alpha(R)}^{x^{*}+R} F(x, \psi(x, R)) \psi_{R}^{\prime}(x, R) \mathrm{d} x \\
& +\int_{y^{*}}^{\mu\left(x^{*}+R, R\right)} F\left(x^{*}+R, y\right) \mathrm{d} y\left(x^{*}+R\right)^{\prime} \\
& -\int_{y^{*}}^{\psi(\alpha(R), R)} F(\alpha(R), y) \mathrm{d} y \alpha^{\prime}(R)
\end{aligned}
$$

$$
+\int_{1 / 2}^{\alpha(R)}\left[F(x, \psi(x, R)) \psi_{R}^{\prime}(x, R)-F(x, \phi(x, R)) \phi_{R}^{\prime}(x, R)\right] \mathrm{d} x
$$

$$
+\int_{\phi(\alpha(R), R)}^{y(\alpha(R), R)} F(\alpha(R), y) \mathrm{d} y \alpha^{\prime}(R)
$$

$$
=\int_{1 / 2}^{x^{*}+R} F(x, \psi(x, R)) \frac{R}{\sqrt{R^{2}-\left(x-x^{*}\right)^{2}}} \mathrm{~d} x
$$

$$
\begin{equation*}
-\int_{1 / 2}^{\alpha(R)} F(x, \phi(x, R)) \frac{R}{\sqrt{R^{2}-\left(x-1+x^{*}\right)^{2}}} \mathrm{~d} x, \tag{23}
\end{equation*}
$$

here $\phi(\alpha(R), R)=y^{*}$ and $\psi\left(x^{*}+R, R\right)=y^{*}$ are used. It is easy to check from Equation (22) and Equation (23) that the derivative of $\Phi(R)$ is continuous at the point $R=R_{0}$.

Since for all positive R the equality $\Phi(R) \equiv 0$ holds, its derivative should satisfy $\Phi^{\prime}(R) \equiv 0$. We note here that the zero values of Equation (22) and Equation (23) can be obtained by the curvilinear integral form of Mean Formula in Equation (11) in a direct way. However, if this form of Mean Formula is employed from the beginning, the deduction process is un-reducible either, since the curvilinear integral is awkward in revealing the characteristics of the function $F(x, y)=V(x, y)+V\left(x, 2 y^{*}-y\right)$. So the previ arguments on the surface integral are necessary. Notice that only f the case $R>R_{0}$ the an-ti-asymmetric property of $V(x, y)$ about the itic ine $x \equiv 1 / 2$ is employed, in the following only Equation (23) is consir ed.

To denote the points $\left(1 / 2, \phi(1 / 2, R)(\alpha(R))^{*}\right)$ ana $\left.+R, y^{*}\right)$ by P , M and N respectively, then for ever give, a two ci alar arcs $\widehat{\mathrm{PM}}$ and $\overparen{\mathrm{PN}}$ differs from each other. Exc the mutua oint hey are composed by different points, so except on tho qlues of the iction $F(x, y)$ on $\overparen{P M}$ have no relation with those $\overparen{\sim}$. To tisfy $\Phi^{\prime}(R) \equiv 0$ in Equation (23) it requires

The -Asymmetric Property of V about the Line $y \equiv y^{*}$
the functio $F(x, y)=V(x, y)+V\left(x, 2 y^{*}-y\right)$, it is easily checked that $F_{x x}+=0$. So the Mean Formula and Extremum Principle also hold for $F(x, y)$. ticularly, $\left(x^{*}, y^{*}\right)$ is also a zero point of $F(x, y)$, since for this case $F\left(x^{*}, y^{*}\right)=2 V\left(x^{*}, y^{*}\right)=0$. The anti-asymmetric property of $V(x, y)$ about re critical line $x \equiv 1 / 2$ passes on to $F(x, y)$, and this line is also a zealued one for it. In addition, since

$$
F\left(x, 2 y^{*}-y\right)=V\left(x, 2 y^{*}-y\right)+V(x, y)=F(x, y)
$$

the function $F(x, y)$ is symmetric about the horizontal line $y=y^{*}$.
We claim that the equality $F(x, y) \equiv 0$ holds on any finite domain Ω. To prove this it needs to rule out other possibilities. First of all, it follows from the Extremum Principle that the point $\left(x^{*}, y^{*}\right)$ is not an isolated zero point. The case with a zero-valued patch at any location is not permitted either, since for this situation there must be an extreme point in the interior of an arbitrary large domain Ω which includes this patch, and it further leads to a contradictory result $F(x, y) \equiv 0$. Hence, the left possible cases are as follows: There is one or two continuous zero-valued lines across the point $\left(x^{*}, y^{*}\right)$, and to one side of
each branch (for one-line case and two-lines case there are 2 and 4 branches separated by the point $\left(x^{*}, y^{*}\right)$, respectively) the values of $F(x, y)$ have the same sign. It only needs to show the impossibility of these cases.

Firstly, these zero-valued branches cannot intersect with the critical line $x \equiv 1 / 2$ or form a closed loop by themselves. In fact, if there exists a branch which intersect with this line, there must be another one due to the symmetric property of $F(x, y)$. For this case, these two branches together with the line $x \equiv 1 / 2$ form a closed loop, and on the enclosed domain Ω the value of $F(x, y)$ has the same sign in the interior. Notice that $F(x, y)=0$ on the boundary $\partial \Omega$, there must be an extreme point in the interior, and is violates the Extremum Principle. Similarly, it is impossible for these br ches form a closed loop by themselves, either.

To recall the symmetric property of $F(x)$, in addis to the articular case with $y \equiv y^{*}$, there should be one pair two pa of sy, cric zero-valued branches as in Figure 2. For convenier of cricular case will be considered in the last. Without ly of generalin we a ame that the values of $F(x, y)$ possess positive sign ctu $x \equiv 1 / 2$ al he upper branch (when there are two pairs, the one clos o the line $x \equiv 1 / 2$ is chosen). For all the cases, there is always suitable radius $R \quad \downarrow$ that the circular arc $\overparen{P M}$ (except the point P) lies in s positive do ain. The interval to be chosen for R is given by $1 / 2<\alpha(R)<x^{*}$, hat is, $\left.R_{0}\right\} R<2 x^{*}-1$. In fact, only if R is sufficiently close to is fulfilled. Notice that on this arc the point P is the uniq zero for $F(x, y)$, for a given small number $\delta>0$, there mu ve the vil number $\varepsilon>0$ such that $F(x, \phi(x, R)) \geq \varepsilon$ on the intery $1 / 2+\delta,(R)$ Hence, it follows from Equation (25) that

Figure 2. Respect to the horizontal line $y \equiv y^{*}$, the position relationships between the arcs and the zero-valued lines of $V(x, y)$.

$$
\begin{aligned}
0 \equiv & \int_{1 / 2}^{\alpha(R)} F(x, \phi(x, R)) \frac{R}{\sqrt{R^{2}-\left(x-1+x^{*}\right)^{2}}} \mathrm{~d} x \\
= & \int_{1 / 2}^{1 / 2+\delta} F(x, \phi(x, R)) \frac{R}{\sqrt{R^{2}-\left(x-1+x^{*}\right)^{2}}} \mathrm{~d} x \\
& +\int_{1 / 2+\delta}^{\alpha(R)} F(x, \phi(x, R)) \frac{R}{\sqrt{R^{2}-\left(x-1+x^{*}\right)^{2}}} \mathrm{~d} x \\
\geq & 0+\varepsilon \int_{1 / 2+\delta}^{\alpha(R)} \frac{R}{\sqrt{R^{2}-\left(x-1+x^{*}\right)^{2}}} \mathrm{~d} x>0 .
\end{aligned}
$$

For the case that the line $y \equiv y^{*}$ is a zero-yar one, the above contradiction still holds, nothing but another zero poir M is adu

In a word, all the possibilities other thar $F(x, y)>V\left(x,+\left(x, 2 y^{*}-y\right) \equiv 0\right.$ are excluded. Hence, on any finite domain th le is always an anti-symmetric property for $V: V\left(x, 2 y^{*}-y\right)=-V(, y) . \mathrm{Du}$ the trariness of Ω, this property should also hold in \mathbb{R}^{2} a cularly, on th -symmetric axis $y \equiv y^{*}$, it reads $V\left(x, y^{*}\right)=-V\left(x, y^{*}\right)$ which io to $V(x, y) \equiv 0$. So the horizontal line $y \equiv y^{*}$ is a zero-v red one for V) across the concerned point $\left(\boldsymbol{x}^{*}, \boldsymbol{y}^{*}\right)$. By the way, th anti-symme ${ }^{\text {c }}$ property for $V(x, y)$ is a strong result. It implies that, in add on to $y \equiv y$ and $y \equiv 0$, there are infinitely many horizontal zero- lines o with equal interval y^{*}.

3.4. The F: Pr of

Since ${ }^{\prime}$ horizor al lin $y \equiv 0$ is also an anti-symmetric axis for $V(x, y)$, we take $0, y)=\left(2 x^{*}-x, y\right)$ as the research object. Here we note that, this cas be zero-valued lines for $G(x, y)$ differ from those for $F(x, y)$, the line $x \leq \frac{1}{2}$ is not a zero-valued one for $G(x, y)$ anymore. The similar a ction process as the previous respect to Figure 3 results in $G(x, y) \equiv 0$. This ind es that the anti-symmetric property $V\left(2 x^{*}-x, y\right)=-V(x, y)$ holds or every $(x, y) \in \mathbb{R}^{2}$. So the line $\boldsymbol{x} \equiv \boldsymbol{x}^{*}$ is another zero-valued one for $\boldsymbol{V}\left(\boldsymbol{x}\right.$, across the point $\left(\boldsymbol{x}^{*}, \boldsymbol{y}^{*}\right)$.
\sqrt{y} all, if $\left(x^{*}, y^{*}\right)$ is a mutual zero point for $U(x, y)$ and $V(x, y)$, then $\equiv y$ and $x \equiv x$ are all the zero-valued lines for $V(x, y)$ across it. Hence, it should be a saddle point for $V(x, y)$. Yet, for this case, the rectangular region PQRS is enclosed by 4 segments of zero-valued lines (see Figure 3). In the interior of this region $V(x, y)$ possesses the same sign, and there must be a minimum point or maximum point, which violates the Extremum Principle. This contradiction indicates that, it is impossible for the existence of mutual zero point for $U(x, y)$ and $V(x, y)$ away from the critical line $x \equiv 1 / 2$. In another word, the function $\xi(s)=\xi(x+i y)=U(x, y)+i V(x, y)$ only possesses zero points for the case $\operatorname{Re}(s)=1 / 2$. Furthermore, notice that the nontrivial zeros of $\zeta(s)$ coincide with the zero points of $\xi(s)$, all their real parts must also satisfy $\operatorname{Re}(s)=1 / 2$. The proof of Riemann hypothesis is finished.

Figure 3. Respect to the ant mmotric axis of $V(x, y)$, the position relationships between the circles an

4. Discussion

We note that, in t involved, has eer olely mnished by the imaginary part $V(x, y)$. This means. o matte $U(y)$ equals to zero or not, $V(x, y)$ does not equal to zero en on ine $x \equiv 1 / 2$. This is a surprising result! Relative to the sinal fu on $\zeta(s)$, this good characteristic may owe to the symmetric perty of ξ It requires the imaginary part $V(x, y)$ to be anti-symmetric bot 'hout the verucal line $x \equiv 1 / 2$ and about the horizontal line $y \equiv 0$. In fact, it is not ange. It follows from Equation (7) that

$$
V=[(x-1) \psi+y \phi] u+[(x-1) \phi-y \psi] v .
$$

So $\zeta=U+i V$ differs from $\zeta=u+i v$, and the imaginary part of ξ depends only on v but also on u. Particularly, $u=v=0$ accords with $V=0$.
Now that the Riemann hypothesis is proved, all the nontrivial zeros of $\zeta(s)$ are in the form $s=1 / 2+i t$. Due to the symmetric property of $\xi(s)$ about the real axis, here only positive t is concerned. Though there are many numerical approaches for solving these nontrivial zeros, the distribution characteristics of them along the critical line are not clear. Is there a uniform explicit expression for these imaginary parts? For $s=1 / 2+i t$ the infinite series:

$$
\begin{equation*}
\eta(s)=\sum_{n=1}^{\infty}(-1)^{n+1} \frac{1}{n^{s}}=\sum_{n=1}^{\infty}(-1)^{n+1} n^{-\frac{1}{2}} \cos (t \ln n)+i \sum_{n=1}^{\infty}(-1)^{n} n^{-\frac{1}{2}} \sin (t \ln n) \tag{26}
\end{equation*}
$$

is convergent, and it is easily checked that $\eta(s)=\left(1-2^{1-s}\right) \zeta(s)$. Notice that $1-2^{1-s} \neq 0$ for this case, the nontrivial zeros of $\zeta(s)$ can be calculated by
$\eta(s)=0$. Let \mathbb{Z}^{+}be the set of positive integers. For a fixed t, though $\sin (t \ln z)$ and $\cos (t \ln z)$ have some kind of periodicity about z on $(0, \infty)$, that is, $f\left(\mathrm{e}^{2 k \pi / t} z\right)=f(z)$ for some $k \in \mathbb{Z}^{+}$, when the real number z is substituted by $n \in \mathbb{Z}^{+}$, this periodicity is not necessarily sustained. Particularly, if there exists a $m \in \mathbb{Z}^{+}$such that $2 k \pi / t=\ln m$, then the periodicity of the form $f(m n)=f(n)$ is met. On the contrary, if the inequality $2 k \pi / t \neq \ln m$ holds for all $k, m \in \mathbb{Z}^{+}$, then the terms of the series vary in a chaotic manner respect to n, and it may be in vain for pinning one's hope on that the two sums of infinite series in Equation (26) converge to 0 simultaneously. Enlightened by this, we give an extended version of "Riemann hypothesis" be" w:

Riemann-Wang hypothesis: The nontrivial ze sof $\zeta(s)$ possess same real part $\sigma=1 / 2$ and different imaginary parts y ch s. fy a unifor explicit expression:

Here the statement about the vart is prove the one about the imaginary part is open.

In addition to this res ch, we had as done some exploring on another well-known problem nan d " P versus " in [6], where a surprising result " $P=$ NP" was proved. One can o comment n it.

Conflicts of In Rir

The auth and aflicts of interest regarding the publication of this paper.
 .
ere
Bombieri, (200) Official Problem Description: The Riemann Hypothesis. tp://www.claymath.org/millennium-problems/riemann-hypothesis
[2] Lun Riele, J.J. and Winter, D.T. (1986) On the Zeros of the Riemann Zeta Function in le Critical Strip. IV. Mathematics of Computation, 46, 667-681.
https://doi.org/10.2307/2008005
[3] A, C.H. (2016) Ramble on the Riemann Hypothesis. Tsinghua University Press, Beijing, 20-38. (In Chinese)
Devlin, K.J. (2003) The Millennium Problems: The Seven Greatest Unsolved Mathematical Puzzles of Our Time. Basic Books, New York, 19-60.
[5] Gilbarg, D. and Trudinger, N.S. (2001) Elliptic Partial Differential Equations of Second Order. Springer-Verlag, New York, 13-30.
https://doi.org/10.1007/978-3-642-61798-0_2
[6] Wang, J.L. (2018) Fast Algorithm for the Travelling Salesman Problem and the Proof of P = NP. Applied Mathematics, 9, 1351-1359.
https://doi.org/10.4236/am.2018.912088

