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Abstract 
Previous studies have demonstrated that genetic identity between interacting 
perennial plants results in more effective defense when emitter and receiver 
neighbors have greater genetic similarity. However, the effects of both genetic 
relatedness and presence of herbivores on fitness-related responses of neigh-
boring plants have not yet been explored. Our aim was to examine how ma-
nipulating these two important factors genetic and environmental factors can 
influence indirect plant-plant communication in the annual crucifer Arabi-
dopsis thaliana. Plants of a single genotype (receivers) were exposed to vola-
tile emissions of neighboring emitter plants with a similar or different geno-
type, and either intact or damaged by larvae of a specialist herbivore for ten 
days. Each of the four treatments was isolated in separate environmental 
chambers and the full experiment was replicated twice. Receiver plant growth 
and reproductive-related traits were measured ten days after exposure to 
treatments, and at senescence. Results showed that the effect of herbivory and 
plant genotype of emitter plants influenced responses related growth and re-
production in receiver plants. Receiver plants grew taller, had more inflores-
cence branching, and produced more fruits (60% more) when exposed to 
undamaged emitters of a different genotype than receivers exposed to the 
other emitter plant treatments. Therefore, genotype identity and environ-
mental context (presence of herbivory) may be important factors influencing 
indirect plant-plant communication, which could, in turn, result in selection 
for genotypes showing increased fitness-related responses. 
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1. Introduction 

Due to their inability to escape stressful environments, plants have evolved me-
chanisms to physiologically deter herbivores and competitors through chemical 
and mechanical defenses, or by enhanced growth to compensate for tissue loss. 
Plant defenses can be expressed constitutively or inducibly to reduce fitness costs 
[1] [2] [3]. Induction is a process under which plants increase physical and 
chemical defenses after they have incurred damage from environmental stressors 
such as pathogens, or herbivores. Plant inducible defense mechanisms are me-
tabolically advantageous due to reductions in production costs when herbivory 
does not occur [4]. To further fine-tune induction responses to antagonists, such 
as herbivores, plants can communicate via airborne volatiles [5] [6]. Plant ex-
posed to volatile cues have been shown to reduce subsequent herbivore damage 
in Artemisia tridentata [7] [8], or to increase competitive ability in Nicotiana 
tabacum [9] [10]. 

Even though plant volatile cues can travel through space rapidly [11], the effi-
ciency for which volatile cues can be received seem to depend on emit-
ter-receiver identity. In the perennial shrub, Artemisia tridentata, plant-plant 
communication was more effective in reducing herbivory when plants were ex-
posed to volatiles of neighbors with greater genetic similarity [12] [13] than 
those exposed to volatiles of genetically distinct neighbors. The effect of plant 
genetic identity on induced responses has been attributed to a similarity in vola-
tile cues between close relatives [14]. As such, plants that interact with neighbors 
with a similar volatile bouquet may be able to gather information about the en-
vironment more effectively than plants exposed to genetically distinct neighbors. 
However, more information is needed regarding potential effects of plant geno-
type relatedness on plant-plant communication mediated by airborne volatile 
cues. 

Differences in the genetic identity of emitter and receiver plants may influence 
plant characters related to structure or architecture (e.g., vascular systems, branch-
ing, aboveground tissue and roots, etc.). Plant structure has been shown to affect 
how chemical cues are transmitted within a plant due to the variable connectivi-
ty of the vascular transport system for different phyllotaxies [15]. Many species 
display these vascular signaling constraints, which results in uneven signal 
transduction [16] [17] [18]. Airborne defense signaling is thought to circumvent 
these structural constraints [15] [19]. However, not all species are limited by 
within plant signaling due to phyllotaxy [20] [21]. Therefore, airborne defense 
signaling may be influenced by the efficiency of plant internal transport systems 
of defense chemicals involved in plant-plant communication [15]. 

Plant-plant communication can also be important for integrative pest man-
agement, since induced neighbouring plants may show higher resistance against 
insect pest attacks [14]. These responses have been shown not only in wild plant 
species, including Arabidopsis thaliana, but also in some agriculturally impor-
tant plant species. Current research has demonstrated that some domesticated 
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crops have retained that ability to communicate via volatiles, which shows po-
tential for the development of strains that could maximize the benefit of 
plant-plant communication through selective breeding [22] [23] [24] [25]. In 
addition, resource costs of plant-plant priming via airborne volatiles should be 
lower than herbivore-induced defenses, which may allow plants to allocate more 
energy to growth and enhanced yields [5] [6]. These ideas are relatively new, and 
more studies are needed to test the potential value of incorporating plant-plant 
communication as a pest management strategy. 

Current research on plant-plant communication has focused on either how 
plants of different species interact [22] or how perennial species interact with 
conspecifics [12] [13] [26]. This study was aimed at determining whether plant 
genotype and herbivory in emitter plants influenced fitness-related responses of 
receiver plants. We hypothesized that receiver plants may differ in responses re-
lated to growth and reproduction when exposed to plant volatiles from emitters 
with the same or distinct genetic background, and that these responses may also 
be influenced by the presence or absence of herbivores. Genetic similarity in vo-
latile profiles could provide a potential mechanism for plants to distinguish 
neighbors, and to differentially respond to insect herbivory. The model plant, 
Arabidopsis thaliana, provides an ideal system for this research due to its short 
generation time, and the presence of genetically distinct lines differing in their 
volatile chemical signatures [27] [28]. 

2. Materials and Methods 
2.1. Study Organism and Growing Conditions 

Two wild-type lines of Arabidopsis thaliana, Columbia (Col-0) and Landsberg 
erecta (Ler), were used to evaluate the effect of genotype and herbivore damage 
(present or absent) of emitter plants on fitness-related traits of neighboring re-
ceiver plants. The selected genotypes are known to differ in their volatile chemi-
cal composition, but have similar developmental and growth-related characters 
[27] [28]. Ler genotype plants have been demonstrated to constitutively produce 
less (Z)-β-ocimene [28], but more hexanal [27] than Col-0 genotype plants. Ler 
plants also produce trans-2-hexenal, which is absent in Col-0 volatile emissions 
[27]. Emitter plants of both genotypes were grown from seed obtained from the 
Arabidopsis Biological Resource Center (Columbus, OH) in 10-cm pots (vo-
lume: 511 cm3) filled with a commercial soil mix, Metromix Pro-Mix BX (Prem-
ier Tech Horticulture, Quakertown, PA). Emitter plants were started two weeks 
prior to planting receiver plants to ensure a sufficient source of food for larvae 
during pre-treatments. Receiver plants were planted in 5-cm pots (volume: 98 
cm3) filled with Turface All Sport (Profile Products LLC, Buffalo Grove, IL), 
which facilitates root harvest. Due to the lack of organic matter in this media, all 
receiver plants were supplemented with a balanced, 14-14-14, slow-release ferti-
lizer (The Scotts Company, Marysville, OH), at a rate of 0.9 kg∙m−3 when first 
planted; and further supplemented with liquid 20-20-20 fertilizer (JR Peters Inc, 
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Allentown, PA) at a rate of 0.82 g∙L−1 (166 ppm N) when watered weekly. Upon 
planting, both emitter and receiver plant seeds were cold-treated at 4˚C under 
dark conditions for five days to break dormancy and ensure uniform germina-
tion. After the cold treatment, emitter and receiver planted seeds (in pots) were 
transferred to growth chambers set to 14:10 hour day-night cycle and at a tem-
perature of 21˚C. 

2.2. Experimental Design 

Receiver plants of the Col-0 genotype were exposed to emitter plants assigned to 
four treatments: 1) intact emitters with the same genetic background (i.e., 
Col-0), 2) herbivore-damaged emitters with the same genetic background (i.e., 
Col-0), 3) intact emitters with a different genetic background (i.e., Ler), or 4) 
herbivore-damaged emitters with a different genetic background (i.e., Ler). A set 
of eight receiver plants was arranged equidistantly around two emitter plants 
(three sets per chamber and per experimental repetition). All emitter plants 
(both intact and herbivore-damaged) were covered with a plastic container cov-
ered in fine mesh to confine insect larvae, when present. To avoid pseudorepli-
cation, due to treatments being confounded with chambers (one treatment per 
chamber), the entire experiment was replicated in time (two experimental 
rounds) with treatments randomly assigned to growth chambers in each repeti-
tion. 

Treatments were performed in four separate, sealed growth chambers (Perciv-
al Scientific model AR36L3C8, Perry, IA, USA) to eliminate potential volatile 
contamination between genotype and herbivore-damaged treatments. Special 
care was taken to minimize plant exposure to volatiles from another treat-
ment/chamber by allowing 80 minutes of ventilation time between accessing 
different chambers. Ventilation time was determined via an equation of ventila-
tion [29], which estimates when the final concentration of plant volatiles would 
reach zero to indicate no further volatile pollution in the room. Turnover of total 
air in the room was determined by using the environmental chamber room’s 
volume (space volume), the concentration of volatiles (environmental chamber 
volume), and the time until total air turnover (ventilation rate). The initial con-
centration of plant volatiles considered the total volume of the environmental 
chambers divided by the enclosed room volume. The minimum exhaust rate of 
the room’s ventilation system was used as ventilation rate. 

Three second-instar larvae of the crucifer specialist Plutella xylostella L. (Le-
pidoptera: Plutellidae) were placed on each herbivore-damaged emitter for ten 
days. The herbivore treatment was started on emitter plants when they were four 
weeks old. Moth larvae originated from a lab culture (Benzon’s Research; Car-
lisle, Pennsylvania, USA), which had been raised on an artificial diet prior to this 
experimental setup. Receiver plants were exposed to emitter plants of the 4 dif-
ferent treatments for 10 days. After these 10-days, emitter plants were removed 
from all chambers. Receiver plants were only exposed to the volatile cues of ad-
jacent damaged or undamaged emitter plants. They were not exposed to direct 
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herbivore damage and they were never in direct contact with emitter plants. 

2.3. Plant Fitness-Related Responses 

Plant diameter of receiver plants was recorded at the beginning of the experi-
ment, and after the ten-day exposure to the different emitter treatments. The 
change in diameter of receiver plants before and after those ten days was used in 
the statistical analyses. At senescence, the following traits were measured: 1) 
plant height was measured from the base of the plant rosette to the longest stem, 
2) fruit number was recorded by counting the total number of fruit pods per 
plant, 3) branch number included the total number of lateral branches per plant, 
and 4) above-ground and total biomass were measured. To determine biomass 
for aboveground (leaves and stems) and total biomass (including roots), plant 
material was oven-dried (80˚C) for five days and weighed. In addition, to deter-
mine whether receiver plants were allocating resources in different proportions 
to shoots and roots, above-ground biomass was divided by total biomass. 

2.4. Statistical Analysis 

A mixed model analysis of variance was performed to test for the fixed effects of 
genotype, herbivory treatment, the interaction of genotype and herbivory, and 
the random effect of experimental repetition (two rounds) on plant height, fruit 
number, branch number, change in rosette diameter, and the ratio of above- 
ground to total biomass. When assumptions of normality and heterogeneity 
were not met, data were transformed using a logarithmic or square root trans-
formation. Pairwise comparisons among treatment means were performed using 
Fisher’s Least Significant Difference tests when ANOVA models were significant 
(protected LSD). Statistical analyses were performed using SAS version 9.3 (SAS 
Institute, Cary, NC, USA). 

3. Results 

Results from analyses of variance indicated that emitter plant treatments (i.e., 
genotype identity and herbivore damage) significantly affected several receiver 
plant-fitness related traits (Table 1). There was also a significant effect of the 
repetition of the experiment on branch number, fruit set, and biomass of receiv-
er plants; however, results showed similar trends between the experimental repe-
titions (Table 1 and Figure 1). Genotype identity of emitter plants significantly 
influenced plant rosette diameter, height, number of branches, total biomass, 
and fruit number of receiver plants (Table 1). Likewise, the effect of herbivore 
damage on emitter plants, and the interaction of damage and genotype signifi-
cantly influenced height, branch number, total biomass, and fruit set of receiver 
plants (Table 1). As indicated by the significant genotype by damage interaction, 
these two factors modified plant receiver responses to emitters. Results from 
Fisher’s LSD post-hoc multiple comparisons showed that receiver plants had 
significantly larger growth (increase diameter, height, total biomass, and fruit  
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Table 1. Mixed-model ANOVA evaluating effects of emitter genotype (Col-0 or Ler) and 
herbivore treatment of emitters (undamaged or damaged) on receiver A. thaliana fit-
ness-related traits: change (∆) in rosette diameter before and after treatment exposure, 
final height and total biomass, the ratio of above-ground (ABG) to total biomass, and to-
tal branch and fruit number. Experimental repetition was included in the analyses as a 
random effect. Significant F-values are shown in boldface (P < 0.05). df = degrees of 
freedom. 

  ANOVA source of variation (F-values) 

Treatment df Genotype Damage Gen × Dam Repetition 

Δ Diameter 4, 143 9.05 0.01 3.15 2.3 

Height 4, 130 31.22 14.89 15.89 3.74 

Total Biomass 4, 130 7.48 15.71 22.51 0.01 

ABG/Total Biomass 4, 130 0.09 0.54 4.56 2.97 

Branch Number 4, 130 8.49 5.04 16.42 11.36 

Fruit Number 4, 130 10.31 23.52 23.52 12.62 

 
number) when exposed to emitters of a different genotype (Ler) compared to 
emitters of the same genotype (Col-0), although only when Ler was not exposed 
to herbivory (Figure 1). The presence of herbivores on Ler emitters cancelled 
this enhanced growth response in receiver plants. On average, receiver plants 
exposed to undamaged Ler emitters grew 14% taller (Figure 1(b)), weighed 32% 
more (Figure 1(c)), produced 42% more branches (Figure 1(e)) and 62% more 
fruits (Figure 1(f)) than receiver plants exposed to all other emitter treatments. 
However, the first experimental round had 22% more branches, 21% more bio-
mass allocated aboveground, and 24% more fruits compared to the second one, 
but the trend direction was similar between rounds (Figure 1). Despite a signif-
icant overall increase in total biomass and other plant-fitness related traits, the 
proportion of above-ground biomass from the total biomass did not differ 
among receiver plants exposed to the different emitter plant treatments (Figure 
1(d)). In other words, emitter plant treatments did not affect the allocation of 
resources to above- and below-ground biomass. 

4. Discussion 

This study showed that plant genotype relatedness and the presence or absence 
of herbivores on emitters had a significant effect on fitness-related traits of re-
ceiver plants. We hypothesized that receiver plants might differ in responses to 
both the genetic identity and herbivore damage status (damaged or intact) of 
emitter plants, but only undamaged emitters of a different genetic background 
(Ler) induced a change in the phenotype of receivers. This change involved an 
increase in plant stem height, number of branches, total biomass, and fruit set. A 
previous similar study measured resource allocation in barley (Hordeum vul-
gare) plants exposed to volatiles of intact emitters from the same and a different 
cultivar [23]. No overall increase in biomass for plants exposed to emitters of ei-
ther barley cultivar was observed [23]. However, consistent with our findings,  
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(a)                                     (b) 

 
(c)                                      (d) 

 
(e)                                      (f) 

Figure 1. Effects of emitter genotype (Col-0 or Ler) and herbivore treatment of emitters 
(undamaged or damaged) on receiver A. thaliana fitness-related traits (means and stan-
dard errors): (a) change (∆) in plant diameter after exposure to emitter treatments, (b) in-
florescence height, (c) total dry plant biomass (in grams), (d) ratio of dry plant biomass 
allocated above-ground (ABG) to total biomass, (e) inflorescence branch number, and (f) 
fruit set. Different letters above bars represent significant differences between treatment 
means based on Fisher’s LSD post-hoc multiple comparisons (P < 0.05). “Round” num-
bers represent results from each repetition of the full experiment. 
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specific leaf area increased in barley exposed to the volatiles of a different culti-
var in the absence of herbivores [23]. 

While studies on the effect of neighbor identity through volatile cues are un-
common, the observed elongated phenotypes of receiver plants could be consi-
dered analogous to shade avoidance or competitive phenotypes. Changes in 
plant structure such as elongated height are characteristic responses to the pres-
ence of competitors [24] [30] [31] [32], and A. thaliana has been shown to ex-
press petiole elongation and increased canopy height in response to competition 
[33]. Increasing the height of photosynthetic surfaces and root branching pro-
mote competitive ability, ultimately allowing plants to gather more resources 
such as sunlight aboveground, and water or nutrients belowground [34] [35]. 
Even though competition was not manipulated in our study (as plants were not 
allowed to directly interact with neighbors), the observed increase in growth-related 
traits of receiver plants of a different genotype than emitter plants resembled a 
plant-plant competition-like response. Since volatile composition differs be-
tween the genotypes selected for this study [27] [28], it could be speculated that 
receiver plants could “recognize” a genetically distinct neighbor through air-
borne volatiles. This could, in turn, elicit receiver phenotypes to mount a re-
sponse to a potential stressor such as competition. It has been previously dem-
onstrated that airborne chemical cues can activate shade avoidance responses, 
and thus, facilitate competitive preparedness between neighboring plants [25]. 
Ethylene emission, for instance, may induce shade avoidance syndromes such as 
elongation and narrowing leaf blades [9] [10]. Therefore, chemical communica-
tion provides a mechanism that could potentially explain plant genotype-specific 
responses to neighbors. 

In addition to increased plant growth, we observed an increase in reproduc-
tive output (fruit set) of receivers in response to indirect exposure to emitter 
neighbors with a different genotype. It has been shown that the detection of 
plant competitors can have negative, allelopathic effects on neighbor reproduc-
tion [23] [32]. However, a previous study using A. thaliana failed to find changes 
in fruit set as a result of direct competition [33]. In our study, the induction of a 
competitive-like phenotype showing a higher allocation to growth (taller and 
larger plants) could account for the unexpected result of increased reproductive 
output. Upward growth in the monocarpic, basal rosette-forming A. thaliana 
and other crucifer plants is achieved through increasing inflorescence height 
[36], which was observed in this study. In fact, a maintenance or increase in fruit 
production following increased height or branching have been demonstrated in 
various crucifer species [37] [38] [39]. It could also be speculated that the ob-
served difference in reproductive output of receivers (all Col-0 genotype) could 
have resulted from differences in the volatile chemicals emitted by each genotype 
(Col-0 or Ler genotypes); however, this hypothesis was not directly tested in this 
study. The emitter Ler genotype that induced an increase in receivers’ growth is 
known to constitutively produce specific green leaf volatiles, which is not pro-
duced by the Col-0 genotype [27]. Furthermore, green leaf volatiles are known to 
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induce the jasmonate pathway [5], which is involved in promoting pollen matu-
ration [40]. Exposure to these green leaf volatiles could potentially increase fe-
cundity and reproductive output of neighboring plants. This hypothesis has not 
been previously tested and deserves further evaluation. 

Even though inflorescence structure (increased branching and height) changed 
for receivers exposed to undamaged emitters of a different genotype, the propor-
tion of resources allocated above- and below-ground did not differ for any other 
treatment. Other studies have observed an increase in root growth when com-
petitors are present, even at the cost of reproduction [30]. Additionally, volatile 
cues of potential competitors have been shown to increase allocation of re-
sources to roots [23]. Using barley plants, a previous study also prevented direct 
plant interactions, manipulated emitter genotype, and provided adequate re-
sources [23]. However, in contrast to our study, allocation of resources to be-
lowground biomass increased when barley was exposed to volatiles of a different 
cultivar. Other studies have shown that allocation of resources to roots seems to 
be dependent on the environmental context such as nutrient, water, and light 
availability [41] [42]. However, even though the study by Ninkovic [23] and our 
study provided plants with optimal nutrient environments, results differed in 
terms of resource allocation towards roots. The discrepancy between these find-
ings could be due to differences in competitive strategies implemented by barley 
and A. thaliana. For instance, barley is known to exude allelopathic chemicals 
from its roots that inhibit the growth of heterospecific competitors [43] indicat-
ing a “competitively confrontational” strategy [44]. Conversely, A. thaliana has 
been shown to implement both “competitive tolerance” and “competitive con-
frontational” strategies [45]. In any case, A. thaliana is not known for exuding 
growth inhibiting allelochemicals from its roots. Therefore, the value of allocat-
ing biomass to roots for A. thaliana under a high nutrient context may be low. 

The increased growth and reproductive output of receivers exposed to intact 
emitters of a different genotype were cancelled when emitter plants were dam-
aged by herbivores. Physiological factors related to anti-herbivore defense could 
be responsible for the observed context-dependent response. The induction of 
some defensive pathways, such as the jasmonic acid pathway, has been shown to 
inhibit cell division, growth, and reproduction in favor of defense when herbi-
vore cues are present [46] [47]. For instance, repeated wounding of A. thaliana 
reduced leaf growth in wild-type plants, but not in mutants with inhibited jas-
monic acid synthesis [46]. The study by Yang et al. [47] provided a mechanism 
for the growth-defense tradeoff in plants in which jasmonic acid (commonly 
induced by insect herbivory) impedes the gibberellic acid response (a plant 
hormone involved in plant growth and elongation) via DELLA repressor pro-
teins; thus, implementing a defense rather than growth response. Therefore, de-
fensive cues from damaged emitter plants could be inhibiting an increased 
growth response in receivers regardless of the genotype of emitters. The sup-
pression of a competitive-like phenotype (taller plants) in response to herbi-
vore-induced volatile cues could suggest a prioritization of defense over growth; 
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although, this was not tested in this study. Whereas favoring defense over growth 
is not usually expected in a highly competitive environment [48], plant-interactions 
with neighbors in our experiment were indirect. Therefore, we could hypothes-
ize that herbivore-induced plants in the absence of competition could have in-
vested more resources into defense than into growth. 

In conclusion, plant genotype and the presence of herbivores on emitter 
(neighboring) plants influenced responses of A. thaliana receiver plants in terms 
of both growth and reproduction. Studies in a perennial shrub have shown that 
communication between closely related plants benefits receivers by reducing leaf 
removal over a growing season [13]. While our study has not explored the sub-
sequent effect of plant-plant communication on herbivory of receiver plants, 
fitness-related benefits occurred as a result of indirect plant-plant interactions 
with genetically distinct plants, and only in the absence of herbivores. As such, 
increased productivity of genetically distinct neighbours suggests a potential ad-
vantage of plant-plant volatile communication between genotypes. 
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