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Abstract 
Fraudulent automobile insurance claims are not only a loss for insurance 
companies, but also for their policyholders. The goal of this research is to de-
velop, first, a decision-making algorithm to classify whether a claim is classi-
fied as fraudulent or not; and, second, what types of variables should be fo-
cused to detect fraudulent claims. To achieve this goal, highly accurate pre-
diction models are built by discovering important sets of features via variable 
selection algorithms, which can in turn help prevent future loss. In this re-
search, parametric and nonparametric statistical learning algorithms are con-
sidered to reduce uncertainty and increase the chances of detecting the ap-
propriate claims. An important set of features for a model is determined by 
measuring variable importance based on the observed characteristics of a 
claim via a cross-validation and by testing improvement of the performance 
at which automobile fraudulent claims are accurately classified using Akaike 
Information Criterion. We could achieve accuracy above 95% with a set of 
features selected via a cross-validation. This research would offer some bene-
fit to the insurance industry for their fraud detection research in order to 
prevent insurance abuse from escalating any further. 
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1. Introduction 

Fraudulent insurance claims contribute to between 5 and 10 percent of total 
claims and are costing insurance companies approximately 31 billion dollars 
annually, with these numbers rising [1]. The current and predicted increase in 
monetary loss due to automobile insurance fraud is not only a concern for the 
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insurance companies, but also for the consumer. Boyer [2] quoted a study by the 
Rand Corporation institute for Civil Justice estimating that in automobile in-
surance claims, questionable medical claims added between $13 and $18 billion 
to the nation’s total automobile insurance bill in 1993. In order to compensate 
for the money lost through fraudulent insurance claims, the insurance compa-
nies often raise each policyholder’s premiums. 

Among the many different types of insurance, automobile fraud is found to be 
the most predominant. Automotive insurance fraud can be brought into many 
different forms such as staging an accident, the policyholder not involved in the 
claimed accident, duplicate claims for the same injury, a fake injury, and many 
other misrepresentations [3]. In order to detect these fraudulent claims, insur-
ance companies and fraud investigators need to know what characteristics lead 
to a fraudulent claim. Since there are numerous factors and situations that can 
be attributed to a fraudulent claim, this is a difficult task. It makes more difficult 
that most insurance companies do not share their claim data with one another, 
which would collectively enhance the information known about fraudulent 
claims. Thus, our goal in this paper is to provide a general statistical learning al-
gorithm for building a prediction model for a practical use in an insurance 
company having heavily lopsided data, not for a particular dataset. 

The main goal of identifying fraudulent claims is to find patterns that typically 
relate to a fraudulent claim. One method in identifying fraudulent claims con-
sists of using cost-related data, such as the cost for vehicle damages and auditing 
costs [1]. Another common method is to evaluate insurance claim data that are 
not cost-related, such as the policyholder’s demographic and insurance policy 
information, which is the method that is applied in this paper. Thus, in our 
study, we are looking for what variables affect the result and the patterns that 
typically related to a fraud. 

Many researchers have used statistical methods for automobile fraud predic-
tion in automobile insurance. A study for fraud detection of an automobile in-
surance claim was conducted based on a dataset of 1399 personal injury protec-
tion (PIP) claims from 1993 accidents collected by the Automobile Insurance 
Bureau (AIB) [4]. Ciaene, et al. [4] used various classification techniques in-
cluding logistic regression, decision tree, k-nearest neighbor, Baysian learning 
multilayer perceptron neural network, support vector machine, naïve Bayes, and 
tree-augmented naïve Bayes classification algorithms. For multinomial out-
comes, a multinomial logit model was used for fraud detection in data on Span-
ish automobile insurance claims [5]. On the other hand, in economics applica-
tion, discrete choice models were used on data claiming for automobile acci-
dents that occurred from 1993 and 1996 in order to detect automobile insurance 
fraud and misclassified claims [6]. 

Recently, Wang and Xu [7] proposed a deep learning model for insurance 
fraud detection that used Latent Dirichlet Allocation (LDA)-based analytics, 
with the data including both numeric and categorical variables from the Chinese 
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insurance company claims. Nian et al. [8] proposed a new unsupervised spectral 
ranking method of anomaly (SRA) and illustrated that the spectral optimization 
in SRA could be viewed as a relaxation of an unsupervised SVM problem. With 
an auto insurance claim dataset, they provided a solution that the choice of the 
fraud ranking reference could be made based on whether the cardinality of the 
smaller class (positive and negative) was sufficiently large, and demonstrated 
that proposed SRA yielded good performance for a few similarity measures for 
the auto insurance claim data. 

With today’s statistical learning algorithms, predictive modeling can more 
accurately classify a fraudulent claim. There are several predictive modeling 
methods that could be used in detecting a fraudulent claim in automobile in-
surance claim data. The most common and fundamental predictive modeling 
method for classifying fraudulent claims is logistic regression, with an emphasis 
on variable importance. A goal of this paper is to provide a general statistical 
learning algorithm best suited especially for highly lopsided data for a practical 
use in an insurance company. In this paper logistic regression and LASSO (least 
absolute shrinkage and selection operator) [9] are used for parametric methods. 
Random Forests [10] is used for a non-parametric ensemble method. Sup-
port-vector machines (SVMs, also support-vector networks) [11] are used for 
kernel-based classification methods. These statistical algorithms are compared 
based on their performance including classification accuracy and area under 
ROC curve, balance between sensitivity and specificity, and balance between 
positive and negative predictive values. 

2. Data Description and Preparation 

Since the goal of this paper is to propose a general statistical learning algorithm 
for fraud detection best suited especially for any highly lopsided data from an 
insurance company for a practical use, we obtained an exemplary dataset from a 
book entitled Data Preparation for Data Mining [12] to illustrate the proposed 
algorithm. The data set contains 32 predictor variables and a dichotomous re-
sponse variable for fraud with 15,420 observations. The data were collected over 
a three-year period from 1994 to 1996. There are 30 categorical variables, one 
continuous variable, and an identification variable. Since the proposed algorithm 
is strictly for fraud detection (classification) instead of prediction of insurance 
premium, none of them was time-sensitive variable. Each categorical variable 
was translated into dummy variables. The binary response variable describes 
whether the claim was categorized as fraud or true. There are 923 (6.4%) claims 
categorized as fraud within the dataset. There is no missing value in the dataset. 
The data are typically lopsided in insurance fraud detection and it is challenging 
to build a classification model with such a lopsided dataset. 

We note that only 3 years of cases were used in this dataset. The macro-economic 
changes that impact these variables would not be visible in a small period of 3 
years. However, even though only 3 years of data were used in the selected data-
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set, our algorithm does not depend on the years of data recruited because our 
algorithm treats the years as an ordinal variable. The proposed algorithm can be 
used to recent insurance data recruited for an increased number of years with 
millions of observations in practice. 

The predictor variables include several demographic variables such as age, 
gender, marital status, etc. Several variables describe the automobile involved in 
the claim such as type, make, price, age of vehicle, etc. Other variables describe 
the claim such as time of year, filing of police report, witness present, etc. The 
rest of the variables describe the type of insurance policy such as deductible, 
policy type, etc. The variables are summarized in Table 1. 

For an initial variable screening of the data, PolicyNumber (the identification 
variable) was eliminated because it holds no meaning to the analysis. Multicolli-
nearity among the predictor variables was examined by the variance inflation 
factor (VIF). If the VIF for a variable was greater than 10, then that variable was 
considered as highly correlated with other predictor variables and was removed 
from further analysis. The following variables were sequentially removed from 
consideration based on their VIF: BasePolicy, VehicleCategory, AgeOfPolicy-
Holder, Month, and AddressChangeClaim. Therefore, there were 26 remaining 
variables available for further analysis. These variables were defined as the initial 
26 variables to be considered. There were no observations eliminated from the 
dataset. 

A learning set and a test set were created from the original dataset. The learn-
ing set was used to build all the models in this paper. The test set was used to test 
and provide the final results of all the models. Since the whole dataset was heav-
ily lopsided with 14,927 non-fraud cases and 923 fraud cases, the learning set 
was created to balance the data for more accurate results. The learning set was 
randomly selected for 1000 observations by a stratified random sampling. Five 
hundred of 1000 observations were randomly chosen from the 14,497 non-fraud 
cases and the rest 500 observations were randomly selected from the 923 fraud 
cases. The test set included the rest of 13,997 non-fraud cases and 423 fraud cas-
es, so thus the size of the test set was 14,420. 

3. Statistical Methodology 
3.1. Logistic Regression 

Logistic regression is a popular method to build a prediction model for a binary 
response variable. A multiple logistic regression model takes multiple predictor 
variables, { } 1

p
j j

x
=

, to predict the binary response variable { } 1

n
i i

Y
=

, with iY  
having values of 1 for positive outcome or 0 for negative outcome. A parameter 

iπ  represents the probability that the outcome is positive. The outcome desired 
(positive) is coded as 1 in the data. The multiple regression model can be written 
as follows: 
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Table 1. Summary of automobile claims data. 

Variable Description 

Month From January to December 

Week of Month 1, 2, 3, 4, 5 

Day of Week From Sunday to Saturday 

Make Accura, BMW, Chevrolet, Dodge, Ferrari, Ford, Honda, Jaguar, Lexus, Mazda, 
Mercedes, Mercury, Nisson, Pontiac, Porche, Saab, Saturn, Toyota, VW 

Accident Area Rural, urban 

Day of Week Claimed From Sunday to Saturday 

Week of Month Claimed 1, 2, 3, 4, 5 

Month Claimed From January to December 

Sex Male, female 

Marital Status Divorced, married, single, widow 

Age (Continuous) Ages range from 16 to 80 

Fault Policyholder, third party 

Policy Type Sedan—all perils, sedan—collision, sedan—liability, sport—all perils, 
sport—collision, sport—liability, utility—all perils, utility—collision, 
utility—liability 

Vehicle Category Sedan, sport, utility 

Vehicle Price (Less than $20,000), ($20,000 - $29,000), ($30,000 - $39,000), ($40,000 - 
$59,000), ($60,000 - $69,000), (greater than $69,000) 

Policy Number ID variable 

Rep Number 1 - 16 

Deductible 300, 400, 500, 700 

Driver Rating 1, 2, 3, 4 

Days Policy Claims 15 - 30, 8 - 15, more than 30, none 

Days Policy Accident 1 - 7, 15 - 30, 8 - 15, more than 30, none 

Past Number of Claims 1, 2 - 4, more than 4, none 

Age of Vehicle 2 years, 3 years, 4 years, 5 years, 6 years, 7 years, more than 7 years, new 

Age of Policy Holder 16 - 17, 18 - 20, 21 - 25, 26 - 30, 31 - 35, 36 - 40, 41 - 50, 51 - 65, over 65 

Police Report Filed Yes, No 

Witness Present Yes, No 

Agent Type External, internal 

Number of Supplements 1 - 2, 3 - 5, more than 5, none 

Address Change Claim Under 6 months, 1 year, 2 - 3 years, 4 - 8 years, no change 

Number of Cars 1, 2, 3 - 4, 5 - 8, more than 8 

Year 1994, 1995, 1996 

Base Policy All perils, collision, liability 

Fraud Found 0, 1 (response) 
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The model can also be written as follows: 
0 1 1 2 2

0 1 1 2 2

e
1 e

p p

p p

x x x

i x x x

β β β β

β β β βπ
+ + + +

+ + + +=
+





                    (2) 

After the correlated predictor variables are removed, a prediction model is 
built by using stepwise variable selection method. The stepwise selection proce-
dure is similar to the forward selection procedure. The difference is that once a 
variable is added, the procedure determines whether any of the variables already 
in the model should be eliminated. 

Evaluation and selection of variables via a logistic regression model were 
based on a variable importance ranking procedure through 20 trials of 10-fold 
cross-validation (CV). For this method, the learning set was shuffled and parti-
tioned into ten segments. Nine segments were used as a training set to build the 
logistic regression model. The leftover segment was used to validate the model. 
This process was repeated ten times with each segment serving as the validation 
set. The 10-fold CV was performed 20 times to produce 200 logistic regression 
models. Each model used stepwise selection for its variable selection procedure. 
For the 200 logistic regression models, each variable that was selected through 
stepwise selection was counted. For example, a variable that was selected in every 
model would have a count of 200. From this algorithm, eight variables (Fault, 
Month Claimed, Policy Type, Age, Agent Type, Deductible, Year and Month) 
were selected as most important for the logistic regression model by checking 
AIC (Akaike Information Criterion) improvement using Likelihood Ratio Test 
(LRT). 

The probability response found from the logistic regression model was classi-
fied based on a threshold or a cutoff of 0.5. The threshold determines the proba-
bility of fraud iπ . This means that a predicted probability greater than or equal 
to 0.5 will be classified as a fraudulent claim (positive). 

3.2. Least Absolute Shrinkage and Selection Operator (LASSO) 

The LASSO method [3] [13] is a regression model that penalizes the absolute 
size of the coefficients, which can cause some regression coefficients to shrink to 
zero. The penalization, or constraint, allows the LASSO method to estimate a 
model while simultaneously performing automatic variable selection. Let α̂  be 
the intercept term, and β̂  be the least squares estimates. Given many predictor 
variables, { } 1

p
k k

x
=

, the LASSO estimate ( )ˆˆ ,α β  is defined by 

( ) ( )1 0
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where iπ  is denoted in Equation (2), 0λ ≥  and ( )T

1
ˆ ˆ ˆ, , pβ β β=  . The con-

straint, λ , regulates the extent of shrinkage that is applied to the coefficient es-
timates. 

The optimal λ  is found through 10-fold CV by seeking minimum misclassi-
fication error, which can be seen in Figure 1 in the cross-validation curve. The  
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Figure 1. Lambda (λ) values selected through a cross-validation for a LASSO model. The 
left dotted line defines the minimum lambda and the right dotted line defines the lambda 
one standard error away from the minimum lambda. 

 
optimal λ  produces the lowest misclassification error for the model. Each es-
timated λ  is accompanied by an upper and lower error bound for the esti-
mated misclassification error. The chosen values of λ  are designated by the 
two vertical dotted lines, which represent the minimum λ  and the 1SDλ , one 
standard error away from the minimum [14]. We used 1SDλ . With smaller val-
ues of λ , a LASSO model will produce least squares estimates of a standard re-
gression model. When λ  is larger, automatic variable selection occurs by 
shrinking more coefficients to zero, which removes them from the model. 
LASSO models are implemented using the R package “glmnet”. 

The learning set is used to build a LASSO model with the initial 26 variables, 
and as before in the logistic regression model, the most important variables for 
the LASSO model were found through 20 trials of 10-fold CV. For the 200 mod-
els, each variable was counted if it was significant for the model. The following 8 
variables were selected through LASSO variable selection via CV by checking 
AIC improvement using LRT: Month Claimed, Fault, Sex, Agent Type, Age, 
Deductible, Year, and Make. 

3.3. Random Forests 

Random Forests (RF) [10] consists of an ensemble of classification trees, where 
each classifier is built from different independent and identically distributed boot-
strap samples from a training set and each classifier casts a vote for the most pop-
ular class. Random Forests algorithm may be summarized in Algorithm 1 below. 

Algorithm 1. Random Forests 
1) Create n bootstrap samples from the training set to build n trees (default = 
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500 trees). 
2) For each bootstrap sample, at each node, randomly select m (where m ≤ 

total number of predictor variables; default = m ) predictor variables and de-
termine best split among those variables under a feature split criterion (e.g., Gini 
index). 

3) Determine predicted classifications on out-of-bag data (about 1/3 of the 
sample called the out-of-bag, or OOB, data) that was not in the bootstrap sample 
by aggregating decisions from the n trees that were grown. 

4) Estimate the misclassification rate of OOB data. 
5) Aggregate the OOB predictions and calculate misclassification rate (or ac-

curacy) for Random Forests. 
Random Forests add more randomness than a single classification tree. The 

extra randomness is demonstrated through the use of n bootstrap samples and 
randomly selecting m predictor variables to determine the optimum split at each 
node for each bootstrap sample. The number of predictor variables m in each 
node may be extended to the total number of variables in each bootstrap sample 
in RF. 

An important feature of RF is a measure of variable importance. Variable im-
portance is determined by two methods, the Mean Decrease in Impurity (MDI) 
and the Mean Decrease in Accuracy (MDA). The MDI uses the Gini index as an 
impurity function and can also be known as the Mean Decrease Gini. The Gini 
Index ( )i t  is 

( ) ( )
1 2

0
1 | ,

c

k
i t p k t

−

=

= −   ∑
 

where ( )|p k t  is the fraction of observations belonging to class k at a given 
node t and c is the number of classes [13]. The MDI measures the importance of 
a variable mX  using the Gini Index ( )i t  by taking the sum of the weighted 
impurity decreases for all nodes and finding the average over all TN  trees in 
RF. A variable with a higher MDI is deemed as more significant. 

The MDA determines the importance of a variable by measuring mean de-
crease in OOB accuracy for each tree. Each variable’s importance is computed by 
the mean decrease in OOB accuracy before and after a random permutation of 
each variable [15]. The MDA takes the average difference in accuracies between 
the OOB data and the permuted OOB data over the TN  trees. A variable with a 
higher MDA is considered more important. 

Twenty trials of 10-fold CV were performed on the RF, a total of 200 RF mod-
els, to obtain a feasible set of important variables via variable importance rank-
ing. Random Forests models were built using the R package “randomForest”. 
Each RF implemented with 500 decision trees. A RF model was built with the in-
itial 26 predictor variables in the learning set. 

The variable importance plot from this Random Forests model is shown in 
Figure 2. The plots rank variable importance starting with the most important 
variable at the top of the plot with the highest MDA and MDI. The variables are  
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Figure 2. Variable importance plots for a Random Forests model, left for MDA and right for MDI. 

 
then ranked as next most important until the least important variable is reached 
at the bottom of the plot with the lowest MDA and MDI. The plots display each 
variable along the y-axis and their importance is shown in the x-axis. RF discov-
ers “Policy Type” as the most important variable. The MDA and the MDI varia-
ble importance plots show similar rankings in their most important variables. 

For MDI criterion, the following 10 variables were selected as most important 
variables based off learning set accuracy: Policy Type, Rep Number, Fault, 
Month Claimed, Month, Make, Day of Week, Age, Day of Week Claimed, Age of 
Vehicle. On the other hand, using the MDA criterion, 15 variables were chosen 
based on the learning accuracy. Here are the 15 most important variables: Policy 
Type, Fault, Deductible, Year, Past Number of Claims, Vehicle Price, Make, 
Month Claimed, Month, Police Report Filed, Rep Number, Days Policy Claim, 
Driver Rating, Sex, and Age. 

3.4. Support Vector Machine 

Support vector machines (SVMs) are kernel-based supervised learning algo-
rithms. Support vector machines consider data points as a p-dimensional vector 
and separate the data points by (p-1)-dimensional hyperplane for classification. 
In our study, the two categories (fraud and now-fraud claims) are classified by 
an optimal hyperplane in a multi-dimensional space, with the largest marginal 
distance to the nearest training-data point of any class. After a training phase, 
new observations are mapped into the same space and are classified to a category 
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based on a side of hyperplane [11]. 
Let the training data consist of n pairs ( ) ( ) ( )1 1 2 2, , , , , ,n ny y yx x x  with 

p
i ∈x   and iy  are binary response variable. If the data are linearly separable, 

the SVM finds the closest points in convex hulls and finds a hyperplane ( 0P ) bi-
secting the closest points, where 0P  is defined by ( ){ }0: 0f β′= + =x x x β , 
and 1=β . Then, the classifier creates a parallel hyperplane ( 1P ) on a point in 
class -1 closest to 0P  and a second parallel hyperplane ( 1P ) on a point in class 1 
closest to 0P . The optimal hyperplane that separates the data can be found by 
maximizing the margin (M) that is a perpendicular distance between two parallel 
supporting planes 1P  and 2P . A resulting classifier would be ( )0ŷ sign β′= +x β . 

For datasets that are not linearly separable, SVMs map the data into higher 
dimensional space where the training set is separable via some transformation 

( ):K φ→x x . A kernel function ( ) ( ) ( ), ,i j i jK φ φ=x x x x  computes inner 
products in some expanded feature space. Some kernel function such as linear 

( ), ,i j i jK =x x x x  and Gaussian (radial-basis function)  

( ) ( )2 2, exp 2i j i jK σ= − −x x x x  are widely used [16]. 

We applied SVM models with four sets of variables that were selected by Lo-
gistic Regression, LASSO, Random Forests by MDI, and Random Forests by 
MDA. We compared learning accuracies between SVM with linear kernel and 
SVM with Gaussian kernel. Support vector machines with linear kernel had bet-
ter learning accuracy. We compare the performance in “Results” section for 
SVM with linear kernel. 

4. Results 

The results of each model were compared based on accuracy, sensitivity, speci-
ficity, positive predictive value (PPV), negative predictive value (NPV), and Re-
ceiver Operating Characteristic (ROC) curve analysis (AUC). Accuracy is de-
fined as the percentage of predictions that were correct. Sensitivity is described as 
the percentage of the amount of positive (fraud) predictions when the actual clas-
sification is positive (fraud). Specificity measures the percentage of the amount of 
negative (non-fraud) predictions when the actual classification is negative 
(non-fraud). The PPV measures the percentage of accurate predictions when the 
prediction is positive. The NPV measures the percentage of accurate negative 
predictions when the prediction is negative. Receiver Operating Characteristic 
curve analysis is an alternative way to obtain accuracy of the test [17] [18]. 

For the training set, 500 observations were randomly selected from the 14,497 
non-fraud cases and 500 observations were randomly picked from the 923 fraud 
cases. The remaining 13,997 observations of the non-fraud cases and 423 obser-
vations of the fraud cases will be used as a test set. To summarize, we have 1000 

observations for the training set and 14,420 observations for the test set. 
The results of the logistic regression model with selected features (Fault, Month 

Claimed, Policy Type, Age, Agent Type, Deductible, Year and Month) found via 
cross-validation are given in Table 2. Since our dataset is highly lopsided (fraud  

https://doi.org/10.4236/tel.2019.96120


H. Moon et al. 
 

 

DOI: 10.4236/tel.2019.96120 1896 Theoretical Economics Letters  
 

Table 2. Model Performance (%) (Accuracy, Sensitivity, Specificity, Positive Predictive 
Value (PPV), Negative Predictive Value (NPV), and Receiver Operating Characteristic 
curve analysis (AUC)) of Logistic Regression (LR), LASSO, Random Forests via Mean 
Decrease in Gini Index (RF-MDI) and Random Forests via Mean Decrease in Accuracy 
(RF-MDA) methods. 

 LR LASSO RF-MDI RF-MDA 

Accuracy 87.1 97.7 97.0 91.4 

Sensitivity 62.4 70.0 70.0 69.3 

Specificity 93.1 98.6 98.6 98.2 

PPV 56.3 60.7 60.5 54.1 

NPV 96.8 97.9 97.9 97.9 

AUC 82.4 85.3 83.6 73.8 

 
2.9%; non-fraud 97.1%), our logistic regression with the most important features 
produces the results showing unbalance between sensitivity (62.4%) and speci-
ficity (93.1%). On the other hand, the accuracy and AUC are reasonably high 
87.1% and 82.4%, respectively. 

The results of LASSO model with the most important variables (Month-
Claimed, Fault, Sex, AgentType, Age, Deductible, Year and Make) selected via 
cross-validation are also given in Table 2. As expected LASSO model has better 
improved performance compared to the performance from the logistic regres-
sion model. It produces the results showing unbalance between sensitivity 
(70.0%) and specificity (98.6%) due to extremely low fraud rate in the data. The 
accuracy and AUC are 97.7% and 85.3%, respectively. 

The full results of Random Forests models with MDI (RF-MDI) and MDA 
(RF-MDA) are also shown in Table 2. Results of RF-MDI were based on 10 va-
riables (Policy Type, Rep Number, Fault, Month Claimed, Month, Make, Day Of 
Week, Age, Day Of Week Claimed, Age Of Vehicle) selected via MDI method. 
Results of RF-MDA were based on 15 variables (Policy Type, Fault, Deductible, 
Year, Past Number Of Claims, Vehicle Price, Make, Month Claimed, Month, Po-
lice Report Filed, Rep Number, Days Policy Claim, Driver Rating, Sex, and Age) 
selected via MDA method. Accuracy and AUC for RF-MDI were higher as 
97.0% and 83.6% compared to those for RF-MDA of 91.4% and 73.8%, respec-
tively. Sensitivity and specificity from RF-MDI and RF-MDA were almost the 
same. On the other hand, PPV of RF-MDI was higher as 60.5% compared to 
PPV of RF-MDA of 54.1%. 

The results of SVM with different sets of variables selected by Logistic regres-
sion, LASSO, RF-MDI and RF-MDA are shown in Table 3. The performance 
was similar to the performance of LASSO in Table 2 that was the best model and 
was also similar to the performance of the other models (LR, RF-MDI and 
RF-MDA). However, PPV and AUC were substantially lower compared to those 
of models in Table 2. 

In summary, LASSO model with the eight variables selected through LASSO  
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Table 3. SVM Model Performance (%) (Accuracy, Sensitivity, Specificity, Positive Predic-
tive Value (PPV), Negative Predictive Value (NPV), and Receiver Operating Characteris-
tic curve analysis (AUC) based on four sets of variables selected by Logistic regression 
(LR), LASSO, RF-MDI and RF-MDA. 

 SVM with a Set of Variables Selected by 

 LR LASSO RF-MDI RF-MDA 

Accuracy 93.6 95.6 96.7 96.0 

Sensitivity 62.9 69.9 72.1 64.1 

Specificity 98.3 97.8 98.3 98.3 

PPV 52.1 50.0 56.0 53.0 

NPV 97.7 97.9 97.9 98.1 

AUC 76.9 77.3 80.9 78.0 

 
variable selection method (Month Claimed, Fault, Sex, Agent Type, Age, De-
ductible, Year and Make) had better performance compared to performance of 
other models. Ranges of accuracy and AUC among models considered were 
from 87.1% (LR) to 97.7% (LASSO) and from 73.8% (RF-MDA) to 85.3% 
(LASSO), respectively. Ranges of sensitivity and specificity were from 62.4% 
(LR) to 72.1% (RF-MDI) and from 93.1% (LR) to 98.6% (LASSO and RF-MDI), 
respectively. Ranges of PPV and NPV were from 50.0% (SVM-LASSO) to 60.7% 
(LASSO) and from 96.8% (LR) to 98.1% (RF-MDA), respectively. The balance 
between sensitivity and specificity was a bit unbalanced and so does between 
PPV and NPV because of the lopsided test set. The test set has 2.9% fraud cases 
and 97.1% non-fraud cases. 

5. Conclusions 

We applied both parametric and non-parametric supervised classification mod-
els with various variable selection methods to identify the fraud from all the in-
surance claims. It can be seen from the results that the most effective method for 
classifying fraudulent automobile insurance claims is LASSO method with a set 
of eight variables selected by LASSO method. The LASSO model consistently has 
the highest accuracy, AUC, sensitivity and PPV of all the methods. A high per-
centage for sensitivity is very important since an insurance claim dataset in-
cludes significantly more non-fraudulent cases than fraudulent cases, which in-
creases the difficulty in identifying a fraudulent claim. Therefore, the model that 
produces the highest sensitivity, PPV and accuracy will be the best model to 
identify fraudulent claims. Sensitivity describes the probability that the model 
identities the claim as fraud among all fraud claims. The PPV describes the 
probability that the claim identified as fraud by the model is truly a fraud claim. 

In our study, since our whole data are heavily unbalanced with a very low 
proportion of 6.0% (923 cases out of 14,589 accounts) of all insurance claims 
being a fraudulent claim, the ability to accurately identify the fraudulent claims 
is more difficult. Achieving high sensitivities, accuracies and PPVs is more cru-
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cial. As shown in Table 2 and Table 3, the statistics show that LASSO model is 
the most effective model for fraudulent claim detection showing accuracy, AUC, 
sensitivity, specificity, PPV and NPV of 97.7%, 85.3%, 70.0%, 98.6%, 60.7% and 
97.9%, respectively. 

When comparing the individual logistic regression and LASSO models, 
LASSO showed better performance in all six performance measures. On the 
other hand, LASSO was very competitive to RF-MDI. Their sensitivities, speci-
ficities, PPV and NPV were almost the same. Accuracies of LASSO and RF-MDI 
were 97.7% and 97.0%, respectively. The AUCs of LASSO and RF-MDI were 
85.3% and 83.6%, respectively. When LASSO was compared to RF-MDA, 
LASSO was substantially better in accuracy of RF-MDA (91.4%) and AUC of 
RF-MDA (73.8%). 

Sets of selected variables from LR, LASSO, RF-MDI and RF-MDA were ap-
plied to SVM. Among these, SVM with RF-MDI had the best performance with 
accuracy of 96.7%, sensitivity of 72.1%, specificity of 98.3%, PPV of 56.0%, NPV 
of 97.9%, and AUC of 80.9%. When SVM via RF-MDI was compared to LASSO 
model in Table 2, sensitivity was improved, but PPV (56.0%) and AUC (80.9%) 
were decreased. 

Using 10-fold CV to determine variable importance and selection for individ-
ual models could result in an improvement in results. We compared several dif-
ferent variable importance and selection methods using a cross-validation me-
thod to find the best approach for variable selection for automobile insurance 
data. Even though the data were collected between the years 1994 to 1996, our 
methodology can be applied to any similar automobile insurance data. 

Our data were highly lopsided with about 6% of the claims in the dataset be-
ing fraudulent claims, thus it is a quite challenge to identify those claims. It 
means that the probability of coming across a fraudulent claim is drastically less 
than encountering a true claim. However, this research has successfully shown 
that between 70.0% and 72.1% sensitivities are achieved via LASSO, RF-MDI 
and SVM with RF-MDI variables. 

The goal of this paper is to propose a general statistical learning algorithm for 
fraud detection best suited especially for any highly lopsided data from an in-
surance company for a practical use rather than a data-driven algorithm. The 
first step of the algorithm is to screen the variables by checking VIF’s. The 
second step is to conduct variable importance ranking via a cross-validation. The 
third step is to build a classification model by conducting a statistical test for 
model improvement. The last step is to summarize and use the selected variables 
in the model to classify new cases of claims. 

With fraudulent insurance claims on the rise, it is more important than ever 
to be able to recognize which insurance claims are actually fraudulent. Accu-
rately identifying these fraudulent claims will help prevent the excessive mone-
tary waste within the insurance industry and provide financial relief to both the 
companies and their policyholders. It can be seen from this research that ex-
ploring different classification methods, other than the standard logistic regres-
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sion, can improve the rate at which fraudulent claims are detected. Utilizing dif-
ferent classification methods not only increases the chances of correctly identi-
fying fraudulent claims, but also sing amounts of data that is more available and 
accessible to analyze in practice, these classification techniques are becoming in-
creasingly important to sift out the non-fraudulent cases and hone in on the 
fraudulent ones. This research should provide some benefit to automobile in-
surance industry for their fraud detection helps filter out the obvious cases that 
are not fraudulent claims. With the increasing amount of data that is more 
available and accessible to analyze in practice, these classification techniques are 
becoming increasingly important to sift out the non-fraudulent cases and hone 
in on the fraudulent ones. This research should provide some benefit to auto-
mobile insurance industry for their fraud detection research in order to prevent 
insurance abuse from escalating any further. 
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