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Abstract 
A dynamic in-silico model captures the kinetics of 1-d gravity driven instabil-
ities, in gravity or centrifuge, of fluid-infiltrated poroelastic media in a partial 
differential equation (pde). The pde yields the porosity profile over height 
and time for the given initial and boundary conditions, during slow compac-
tion in counter-current fluid drainage. Processes captured are amongst others 
sedimentation, creaming and subsidence. The most important limiting pre-
requisite is that the incompressible dispersed medium is sufficiently struc-
tured and/or concentrated that it compacts during slow drainage, without se-
gregation in sizes or in components. For Unilever, modeling of gravitational 
instability of products is important to quantify or extrapolate long time 
behavior during shelf life or use centrifuge data to quickly predict long term 
shelf performance of products. 
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1. Introduction 

A dynamic in-silico model captures the kinetics of 1-d gravity driven instabili-
ties, in gravity or centrifuge, of fluid-infiltrated poroelastic media in a partial 
differential equation (pde). The pde yields the porosity profile over height and 
time for the given initial and boundary conditions, during slow isotropic iso-
thermal compaction in counter-current fluid drainage. 

Processes included are sedimentation, creaming, caking, synaeresis, (ultra) fil-
tration or settling of sludge, pulp, and slurry, washing, sand and ice cream 
sculpting, filter pressing, injection moulding, consolidation and subsidence in 
civil engineering, in gas and oil recovery and in carbon dioxide sequestration, 
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dynamics of biological tissue, etc. The dispersed medium can be anything from 
(even partially aerated) porous, fibrous, granular dispersions, suspensions, 
emulsions, fat crystal networks, clothes, soil, rock, or their mixes, and the fluid 
can be either oleic or aqueous. Typical products are pourable dressings, spreads, 
mayonnaise, jam, butter, margarine, ice cream, frozen drink, custard, mustard, 
cheese, ketchup, pudding, yogurt, rock, sand, soil, clothes, muscle tissue, sham-
poos, creams, soaps and gels, et cetera. 

The most important limiting prerequisite is that the incompressible dispersed 
medium is sufficiently structured and/or concentrated that it compacts isotropi-
cally during drainage, without segregation in sizes or in components. The flow 
rates are so slow that Darcy’s law applies for flow through the deforming porous 
media and the Newtonian fluid’s flow is Stokian. Carman-Kozeny’s equation ap-
plies for permeability. Van Wyk’s equation applies for elasticity. The pde uses 
four dimensionless Pi numbers. Two Pi numbers are proportional scaling of 
time and height, one is the initial porosity, and the last Pi number is the ratio of 
buoyancy and elastic force. 

For Unilever, modeling of gravitational instability of products is important to 
quantify or extrapolate long time behavior during shelf life or use centrifuge data 
to quickly predict long term shelf performance of products. 

For now, the profile is created in a 1-d vessel or reservoir, e.g. vessel or an 
aquifer, of fixed volume. The medium has initially constant composition and 
porosity, without gravity or centrifuge effects, as if the medium is freshly mixed or 
in zero gravity. The boundary conditions (bc) are no flow through the boundaries. 

After the compaction process starts, the vertical profile almost immediately 
converts into three zones separated by two fronts: a clear (depleted) supernatant 
fluid layer, which borders the initial mix centrally, which borders the caked 
(elastically or plastically compressed) layer at the other side of the vessel. On 
which side the fluid layer occurs, depends on the density difference between the 
fluid and dispersed particulates. In sedimentation, the dispersed solids are heavi-
er, causing the fluid layer to build on top; in creaming, the reverse occurs. The ini-
tial dispersive mix in the middle moves at constant speed and constant porosity, 
subject to buoyancy, and decreases in length as the clear fluid layer and caked layer 
increase in size. The cleared fluid layer height increases first linearly in time, until 
the two fronts merge into one front that slows in time due to the elastic force that 
builds on compaction and counteracts the buoyancy (see Figure 1), until a 
no-flow balance is reached at equilibrium. As fluid displaces dispersed material 
in pure counter-current flow, at each level the volume rate of fluid is equal to the 
volume rate of the dispersed material, but in opposite directions. 

Other boundary conditions will create different profiles, for example, during a 
clothes wash process, in synaeresis, or in filtering compaction, et cetera. 

1.1. Assumptions 

The continuous incompressible fluid (aqueous or oleic) is assumed Newtonian.  
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Figure 1. Mayonnaises after many weeks on the shelf. On the left an insufficient stabi-
lized product, creamed with a clear layer on the bottom. On the right a better stabilized 
product. 

 
The isotropic dispersed medium is concentrated or structured in such a way that 
all incompressible dispersed ingredients move together in the opposite direction 
of the fluid, while compacting during fluid drainage (counter-current flow). The 
dispersed medium can be any form, including dispersions, emulsions, clothes, 
soil, rock, or their mixes, and in any state (aerated, porous, fibrous, granular, et 
cetera). The fluid wets the dispersed medium. Flow can be driven by buoyancy, 
centrifuge, applied pressure, simple fall impact of a wetted cloth, et cetera. Tem-
perature is assumed constant. Coarsening (Ostwald ripening of dispersed ma-
terial and bubbles) is assumed absent. The flow rates are so slow that the fluid 
follows Stokes flow and Darcy’s law applies for the flow through the deforming 
porous media. As we are considering the flow in a vessel/reservoir with a closed 
bottom and closed top (which can be a meniscus), the total sample volume is 
conserved. The vessel is assumed “wide”, such that any potential side-wall drag 
is not interfering with the flow rates, and the pore averaged flow is therefore as-
sumed purely 1-dimensional in a vertical upward or downward direction. The 
total volume below any level does not change: the Darcy speed of particulate 
downward in sedimentation is therefore at any level exactly equal to the Darcy 
rate of fluid upward (or both zero). The same applies in reversed mode (e.g. 
creaming). For the small air bubbles, we assume that the bubble volumes are 
preserved, which is a simplifying approximation. Volume changes of bubbles are 
small anyway in the relatively small pressure gradients. The total gas volume 
fraction must also be constant, as all other ingredients are assumed incompressi-
ble and total volume is preserved. Whether the dispersed phase acts elastically or 
plastically is irrelevant in slow 1-d sustained compression: both for snow and 
cotton we feel in compression tension the reaction force, but on release of ten-
sion snow does not relax back (e.g. is plastically deformed), while cotton ex-
pands back (e.g. is elastically deformed). 
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1.2. Method 

The fluctuating pore-level Navier-Stokes equations for the fluid flow at sub-pore 
level are averaged to macroscopic flow using poroelastics. This leads to a Darcy 
type of fluid flow equation driven by buoyancy forces, slowed down by counte-
racting elastic forces when the deformable porous medium compacts. The flow 
equation, together with the volume balance, lead to the partial differential equa-
tion (pde), that needs to be solved numerically for the proper initial and boun-
dary conditions. Scaling relations are used to express the pde in scaled dimen-
sionless variables such that one solution actually covers a whole range of actual 
conditions, dimensions, timings, and variation in parameter values, which cover 
many processes in various formulations and products. 

The pde uses four Pi numbers, based on dimensionless combinations of one 
value of the seven relevant physical parameters (permeability, elasticity, density, 
viscosity, height of the vessel, acceleration of free fall, and initial porosity), to 
characterize any porosity profile as a function of height and time; from the ini-
tial waiting and transient to ultimate equilibrium. Two Pi numbers are scaling of 
time and height, one is the initial porosity, and the last Pi number is the ratio of 
buoyancy and elastic force. 

1.3. Nomenclature 

Symbol Dimension Description Formula 

A m2 Total area, often perpendicular to flow  

D m Width of vessel  

Ds m2/s Coefficient of consolidation 0 0 / (2 )sD k ε µ=  

( )D φ  - Dimensionless dispersion coefficient ( ) ( )1D φ φ φ= −  

E N/m2 Young’s elastic modulus for compression  

f Hz Frequency  

f - Fluid phase  

g m2/s Acceleration of free fall or radial acceleration in centrifuge ggrav or -ω2r 

ggrav m2/s Acceleration of free fall -9.8125 m/s2 

H m Height of vessel (along the flow direction)  

k m2 Permeability  

L m Length, often of the caked zone  

m kg Mass  

P,p N/m2 Pressure, pw in fluid, ps in solids phase  

q m3/(m2s) Volume displaced per unit time through a unit lateral area  

  Darcy’s law ( )d dw w wq k m P z= −  

qw m3/(m2s) Darcy speed of fluid phase  

qs m3/(m2s) Darcy speed of dispersed phase  

Q’ - Darcy speed of fluid scaled dimensionless ( )( )0 01wQ q Hτ φ φ′ = −  
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Continued 

r m Radial distance to rotation axis in centrifuge  

r  m Average radial distance in centrifuge  

r0 m Radial reference distance in centrifuge at z = 0 (base of sediment or top of cream)  

RGF - Relative Gravity Force = acceleration factor in centrifuge with respect to free fall 
(RGF = 1 in earth’s gravity) 

RGF gravg g=
 

s - Structured fabric phase containing dispersed solids and emulsion droplets  

t s Time  

T - Dimensionless time T t τ=  

v m/s Speed  

( )U φ  - Dimensionless fluid flow speed ( ) ( )2 1U φ δφ φ= − −  

V m3/(m2s) The volume per unit time per unit lateral area  

WE - whole egg  

x m Spatial coordinate, often horizontal  

z m Spatial coordinate, often vertical. Increases with height  

Z m Horizontal distance from bottom vessel in centrifuge 0Z r r= −  

δ - Dimensionless number for relative importance of gravity over elasticity in earth’s 
gravity (RGF = 1) and in centrifuge 

( )( )3 4
0 0 0RGF 1gravg Hδ ρ ε φ φ= − ∆ −

 

ε N/m2 Elasticity  

φ  - Porosity, here fractional volume available for fluid wφ φ=
 

sφ  - Volume fraction dispersed phase (solids, air, oil, and structurant)  

wφ  - Porosity = local fractional volume available for fluid 1w sφ φ+ =  

0φ  - Initial porosity, initial volume fraction available for fluid  

μ Pas Viscosity of a fluid, μw for aqueous phase  

π - pi π = 3.141592654 

Π - Dimensionless Pi number  

ρ kg/m3 Density, mass per unit volume; ρs for dispersed, ρw for fluid  

τ s Relaxation time ( )( ) ( )2
0 0 0 01 2 H kτ φ φ µ ε= −

 

ω rad/s Cyclic frequency 2πfω =  

ξ - Dimensionless vertical distance from bottom of vessel z Hξ =  

Θ - Dimensionless height of depleted zone HΘ = Ω  

Ω m Height of depleted zone  

Δρ kg/m3 Average density difference between dispersed and fluid phase, positive in sedimentation s wρ ρ ρ∆ = −  

2. Flow Averaging in Multiphase Flow 

The local balances of mass, volume and momentum of each phase, e.g. fluid phase 
and dispersed structured solid (fabric) phase, are spatially fluctuating functions on 
the sub-pore level. These equations are averaged to a larger volume, to damp out 
the local pore-level fluctuations, and find the equations for the mass balance and 
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flow at the pore-averaged level, as described in [1] [2] [3] [4] [5]. In our case, that 
is the averaged vertical flow of incompressible fluid in our sedimenting (or  

creaming) system, described by the local volume balance equation 0q
t z
φ∂ ∂
+ =

∂ ∂
 

and the local isothermal pore-average momentum balance for slow Darcy volume 
flow q of an incompressible fluid inside a structured porous medium, driven by 

buoyancy and elastic forces d
2 d
k Pq

zµ
= −  with ( )d 1

d
P g
z z

φρ φ ε ∂= ∆ − +
∂

, where  

k is permeability of the porous medium, μ the viscosity of the fluid, Δρ the aver-
aged density difference between the dispersed solids and the fluid, ( ),t zφ φ=  
the porosity, and ε the averaged elasticity (compression modulus) of the porous me-
dium under compression. The fluid flow q is the Darcy fluid volume flow per unit area 
per unit time into the fluid saturated structured dispersed porous medium. If needed, 
more details regarding derivation and implicit assumptions can be obtained from the  

author. Combining, we find the pde ( )1
2
k g

t z z
φ φρ φ ε

µ
 ∂ ∂ ∂ = − − ∆ − +  ∂ ∂ ∂  

. 

2.1. Darcy Equation 

The Darcy equation was derived originally for fluid flow in stagnant soil or rock 

as d
d

k Pq
zµ

= − . In our case both the fluid and dispersed material flow, hence  

Darcy’s equation must be adapted. For us, as a geostationary observer, the flows 
are counter-current with equal flow rates q. If we would be an observer traveling 
together with the dispersed solids, we would conclude that the material appears 
stagnant and that therefore Darcy applies exactly. For such an observer the fluid 
flows with twice the flow rate in apparently stagnant dispersed material, hence  

Darcy gives d2
d

k Pq
zµ

= − . This explains the factor 1/2 in front of Darcy in 

counter-current flow; e.g. d
2 d
k Pq

zµ
= − . NB. Both observers do not accelerate 

relative to each other, thus measure the same forces and pressures. 

2.2. Density, Permeability, and Elasticity Characterizations 

The fibrous network experiences a buoyancy force per unit volume that is a 
summation over all non-fluid ingredients moving together in the network with 
the same speed. The component averaged density difference is then:  

, ,

,

i s i si

i si

ρ φ
ρ

φ
∆

∆ = ∑
∑

, which is a constant during the compaction. Here, ,i sρ∆  is  

the density difference between the density of the particulate i and the density of 
the fluid (e.g. the buoyancy of the particulate), and ,s iφ  is the volume fraction 
of that particulate, and the summation i is over all the captured materials 
(structurant, solids, oil droplets, air bubbles, fibres, et cetera) in the fluid. If the 
non-fluid material is effectively heavier than water, sedimentation occurs, or 
creaming occurs if lighter. Both permeability k and elasticity ε are functions of 
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the porosity, thus vary over distance and time, and make this second order pde 
nonlinear and awkward to solve. Cleverer combinations of these two varying 
parameters can be derived to create better constants and make life easier. The 
permeability is a function of both porosity and surface area per unit volume. For 
sphere packings and less regular assemblies of granular media, Carman-Kozeny  

found a typical experimental correlation 
( )

3

22

2
1c

k
a

φ
α φ

=
−

, where a is the grain  

surface area per unit of grain volume and αc an experimental correlation coeffi-
cient [6] [7]. We may assume that the specific surface area a of the dispersed phase 
does not change significantly during compaction, e.g. during compressional porosity 
changes. This is a good approximation even for the lower porosities reached in a  

compacting porous cake, hence we may write 

3 23
0

02
0

1
1g

ck k
a

φφ φ
φ φ
  − 

= ≈    −  
, where  

k0 is the permeability at a reference porosity 0φ . The elasticity of a fibrous net-
work pack varies with compression. To describe the elasticity, we will use the 
Van Wyk’s heuristic equation [8]. For a fibrous fabric, it relates the applied 
pressure P to the inverse cube of the volume V, the intrinsic uncompressed vo-
lume V00, corrected for the incompressible (high pressure solid limit) volume  

Vs as follows [9] [10]: 
( ) ( )

3

3 3 3
00

1 1
c

s s

mP K E
V V V Vρ

 
 = −
 − − 

. The equation is  

independent of the fibre diameter or elasticity, but includes the Young’s mod-
ulus E, the mass of the fibres m and the bulk density ρ at low pressure. Further, 
the equation comprises a dimensionless constant Kc characterising the fibres, of 
order 0.01 that will vary with fibre orientation. Now, the overall elasticity  

of the gel network is defined by PV
V

ε ∂ = −  ∂ 
, thus using the modified Van 

Wyk’s equation 
( )

3

3 4

13 c
s

mVK E
V V

ε
ρ

 
 =
 − 

. The fluid-filled pore space is 

sV V Vφ− = . In vertical compression, the volume of particulates is conserved;  

( ) ( )00 001 1sV V Vφ φ= − = − . Thus,  
33 3

3 3 4 3 3 4
0000

1 1 1 13 3
1c c

m mK E K E
V V

φε
φρ φ ρ φ

   −
= =    −   

. So, between two states in 

compaction 

3 4
0

0
0

1
1

φφε ε
φ φ

   −
=    −   

. We selected the reference state as the porosity  

condition, where we can measure the value of porosity dependent physical pa-
rameters like k0 and ε0. In practice, this is the initial condition. In the uncom-
pressed state, the pressure is zero when no external forces, like gravity, are ap-
plied. In the initial condition, the pressure might not be zero, even without ex-
ternal forces. The material might tend to swell (if excess free fluid is available) or 
crimp in all directions, even without external force. 
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If the dispersed material swells initially in an exponentially decaying process, 
the initial fluid created by the gravitational compaction of the depleted layer is 
resorbed by the swelling, until the rate of swelling is lower than the compaction 
rate and the depletion layer starts to build. This leads to an effective extra wait-
ing time before the observable depletion layer (supernatant layer) starts to build. 
If the dispersed material crimps initially, this can be interpreted, and modeled, 
as a synaeresis process with an evenly distributed non-zero pressure initially. We 
will for now assume that sufficient concentration of dispersed material is present 
initially to avoid crimp. 

2.3. The Poroelastic PDE and Its Scaling 

For our pde we may write ( )0 0

0 0 0

1
2

k k g
t z k z

εφ ρ ε φφ
µ ε ε

   ∂ ∂ ∆ ∂ = − +   ∂ ∂ ∂     
, or us-

ing Carman-Kozeny and Van Wyk:  

( )
3 32 4

0 0 0 0
2

0 0 0

11 11
2 1 1

k gH
z zt H
H H

ε φ φφ φ ρ φ φφ
µ φ φ ε φ φ

  
     −   ∂ ∂ ∆ − ∂

= − +        ∂ − −        ∂ ∂
   

, 

where we introduced the height of the aquifer or vessel H as spatial scaling. If we 

now introduce a dimensionless scaling parameter ( )3
0

4
00

1 gHφ ρδ
εφ

− ∆
= , e.g. neg-

ative in sedimentation, a dimensionless time 0 0 0
2

0

1
2 1

ktT t
H

ε φ
τ µ φ

= =
−

, and a 

dimensionless scaled vertical spatial coordinate z
H

ξ =  with 0 1ξ≤ ≤ , then 

pde becomes fully dimensionless as 
3 1

1T
φ δφ φ φ

ξ φ φ ξ
  ∂ ∂ − ∂

= +  ∂ ∂ − ∂  
. If we define a 

dimensionless fluid flow rate Q′  as 
3 1

1
Q δφ φ φ

φ φ ξ
  − ∂′− = +  − ∂  

, the dimen-

sionless volume balance becomes Q
T
φ

ξ
′∂ ∂

= −
∂ ∂

, where Q q
H
τ′ = . We also define 

a dimensionless height of the supernatant Θ as Θ = Ω/H. 

2.4. Scaling Consistent with Buckingham Pi Theorem 

The dimensionless pde is consistent with the Buckingham Pi theorem. Next to 
the dimensionless dependent variable φ , we have 7 independent parameters 
[ 0φ , Δρ, g, H, k, ε, μ] that are functions of the three base units: length m; weight 
kg; and time s. Hence, we have 7 − 3 = 4 dimensionless relations between these 
parameters: in our case the four dimensionless numbers 1 0φΠ = , 

2 z HξΠ = = , 3 T t τΠ = =  and 4 δΠ =  determine the dependent variable 
φ . Because 0φ  is dimensionless, it is a Pi number in itself. As z and H have the 
same dimension, their ratio is a Pi number [11]. Thus, we need only one consis-
tent set of the 7 independent parameter values [ 0φ , Δρ, g, H, k, ε, μ] to deter-
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mine the value of the 4 independent dimensionless Pi numbers which character-
ize the porosity profile over time, from initial waiting, during linear growth and 
slow down of the clear layer height, to final equilibrium. Alternatively, these pa-
rameters like permeability and elasticity, can be determined indirectly from the 
experimentally characterized profile, for instance, by measuring the height Ω of 
the clear supernatant layer as a function of time. 

The Froude number F is the ratio of the inertia force over gravity force, for a sys-

tem characterized by a density ρ, a length L, and a speed v: 
2 2 2

2
3

L v vF
LgL g

ρ
ρ

= = . In 

the same way, the Cauchy number is the ratio of the inertia force over the elastic 

force 
2 2 2

2
2

L v vC
EEL

ρ ρ
= = . The F and C numbers are taken squared to linearize in v. 

Hence, the ratio of the Cauchy number over the Froude number gives the ratio of 

the buoyancy over the elastic forces: 
2 3

2 2

gravitational force
elastic force

C L g gL
EF EL

ρ ρ
= = = , or 

in our case more specifically 
0

gHρ
ε

∆ . This is proportional to our 

( )3
0

4
0 0

1gH φρδ
ε φ

−∆
= . The δ is therefore also a measure of the ratio of gravita-

tional and elastic force. For 0φ  = 0.3 we expect a balance when δ = 4.2. 

2.5. Initial and Boundary Conditions 

The initial condition is (for now) constant porosity 0φ  at t = 0. In practice, any 
monotonic porosity profile, constant or increasing towards the depletion side, 
can be taken as the initial start profile. The pertinent boundary conditions (bc) 
are no flow over the boundaries of the vessel Q = 0 at ξ = 0 and ξ = 1 at all times,  

hence conservation of dispersed material in the vessel: 
1

0
0

dφ ξ φ=∫ . Since flow 

over the boundaries is zero, there can only be a vertical redistribution of the po-
rosity profile internally in the vessel or reservoir. At the cake side boundary, the 

solid material accumulates, thus the porosity drops, e.g. 0
T
φ∂
≤

∂
, which means 

that in view of the volume conservation Q
T
φ

ξ
′∂ ∂

= −
∂ ∂

 that 0Q
ξ
′∂
≥

∂
 at that 

cake boundary. If the pde prevails up to the boundary, and φ  can be differen-

tiated twice, then at that no-flow boundary 
3 10

1bc
bc

Q δφ φ φ
φ φ ξ

  − ∂′ = = +  − ∂  
, or 

( )

4

21bc bc

φ δφ
ξ φ

  ∂  = −   
∂ −    

. This is certainly so at the cake side boundary. This is a 

nonlinear Robin type of boundary condition. At the depletion (supernatant) 
side, the porosity rises in the beginning from 0φ  towards φ  → 1, so there is 

0
T
φ∂
≥

∂
 and thus 0Q

ξ
′∂
≤

∂
. Thus, as long as the porosity function is not satu-
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rated (φ  < 1), the no-flow boundary condition at the depletion side is 
3 10

1bc
bc

Q δφ φ φ
φ φ ξ

  − ∂′ = = +  − ∂  
 and thus 

( )

4

21bc bc

φ δφ
ξ φ

  ∂ − =   
∂ −    

. This is the  

nonlinear Robin type of boundary condition again. In the experiment, the time 
needed for rising porosity to unity at the depletion side is an effective part of the 
waiting time: no real visible depletion (supernatant) layer is formed during that 
period of time. 

As long as there is no shock front formed ( 0 1φ< < ), the porosity obeys the 
pde over the entire range, hence  

( ) ( )
11 3

0 0

1d 0 1 0 0
1

Q Q
T

ξ

ξ

φ δφ φ φξ ξ ξ
φ φ ξ

=

=

  ∂ − ∂ ′ ′= = + = − = − = =     ∂ − ∂  
∫ , e.g.  

( ) ( )0 1 0Q Qξ ξ′ ′= = = = , confirming the Robin nonlinear boundary conditions 
at both sides. 

However, as the porosity reaches φ  = 1 at an infinite thin depletion/supernatant 
layer, the boundary condition is a no-flow condition 0Q′ =  at the bottom flank 
of the depletion layer of thickness Θ, where φ  = 1, while the flank forms a 
moving boundary (e.g. a type of Stefan problem), a sharp moving shock front, 
described by Rankine-Hugoniot shock conditions. In the depleted (supernatant) 
layer is φ  = 1 constantly. The lower boundary of the depleted layer is an al-
most vertical moving front ending in a sharp nick towards φ  = 1. We may in-
terpret this moving boundary as a space shifting of a Dirichlet boundary condi-
tion φ  = 1 (over a spatial range with an extend Θ from the top of the vessel). 

If we write the pde as ( ){ } ( )U D
T
φ φφ φ φ

ξ ξ ξ
 ∂ ∂ ∂ ∂

+ =  
∂ ∂ ∂ ∂ 

, we recognise the  

general shape of a nonlinear degenerate elliptic-parabolic pde, the Richards’ eq-
uation. The left-hand-side (LHS) is the hyperbolic sedimentation equation for 
the non-diffusive/non-dispersive sedimentation process. The settling velocity or  

conservative flux convection coefficient ( )
2

1
U δφφ

φ
−

=
−

 is an increasing function  

of φ . The LHS leads therefore to a shock front (kinematic wave) propagating 
with a speed U( 0φ ); the sharp front separates the homogeneous suspension of 
initial porosity 0φ  from the clear fluid (the depleted, supernatant layer). Hy-
drodynamic dispersion modifies the above picture and spreads out the front. 
The ultimate balance of self-sharpening and dispersion depends on δ, but is dif-
ficult to predict a priori, since the pde is nonlinear. The nonlinear nature rules 
out analytical techniques and consequently the equation can only be solved nu-
merically. See, for instance, the work of Concha and Bustos, and of Bürger, 
Karlsen, and Evje, on sedimentation and flocculation, around the turn of the 
century, that describe flocculated suspensions. 

One important characteristic is that the effective dispersion coefficient 

( ) 1D φφ
φ

 −
=  
 

 becomes infinitely small for high values of φ  approaching un-
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ity. This means that the dispersive broadening becomes very small for the higher 
porosity values near the start of the cleared zone. We know from the boundary 

condition 
( )

4

21bc bc

φ δφ
ξ φ

  ∂ − =   
∂ −    

 that the flank of the cleared zone is also very  

steep for high values of φ . This makes the flank sharp and steep, as observed 
experimentally. On the other end, near the base of the caked zone at ξ = 0, the 
porosities become small. This means that the caked porosity profile is reasonably 
flat according to the boundary condition, helped by the fact that the dispersion is 
large, mixing the porosities over a wide range of ξ (similar to a “random walk”). 
This flatness of the cake is also observed experimentally. 

Basically, sharpening and dispersion are opposing effects on the front, thus 
they can balance each other, leading to a stabilized dispersed profile that, after a 
transient time, will propagate with a constant velocity U, without changing its 
shape [12]. In the experiments, stable and sharp moving fronts were observed. 

Another important characteristic of the porosity profile in gravitation occurs, 
when starting with a profile that is monotone, neither decreasing (in sediment) 
nor increasing (in creaming), it will retain that same monotonic characteristic 
up to equilibrium. Any time or spatial oscillations indicate numerical instabili-
ties in the numerical procedure. 

One solution of the pde delivers a full set of curves that cover variations in all 
parameters for a given initial porosity 0φ  and for a given ratio δ of buoyancy and 
elastic force. Repeating the calculations for other values of 0φ  and δ give all poss-
ible solutions that exist in nature for slow counter-current compaction of incom-
pressible structured or concentrated particulates and small gas/air bubbles in an 
incompressible Newtonian fluid. For each scaled non-dimensional curve φ (T, ξ) 
determined by a combination ( 0φ , δ), there is in real space and time a fan of 
curves φ (t, z) as determined by the proportional scaling of time dimension t = τT 
and of space dimension z = Hξ. Sedimentation (δ < 0) and creaming δ > 0) are 
mirror images in vertical direction around the φ  = 0φ  value when acceleration 
g is a constant. 

2.6. Centrifuge: Radial-Symmetric Flow in Axial Rotation Symmetry 

We describe the flow in a centrifuge in time t and in cylindrical coordinates (r, θ, 
z). In a fast spinning centrifuge, the flow is radial symmetric in axial symmetry, 
hence flow and porosity are a function of time and of radial coordinate r. For flow in  

radial direction in radial symmetry d
2 d
k Pq

rµ
= −  with ( )d 1

d
P g
r r

φρ φ ε ∂= ∆ − +
∂

.  

In the gravitational field, the acceleration ˆzge=g , is practically constant (g = 
−9.8125 m/s2), but in a centrifuge the centripetal acceleration is a function of r: 

ˆrge=g , with 2g rω= , where ω the cyclic frequency. The buoyancy force in-
creases pressure with distance from the axis in radial flow for axial symmetry in 
the centrifuge. In this radial flow in axial symmetry, the volume balance becomes:  

( )1 rq
t r r
φ ∂∂
= −

∂ ∂
. For a small rectangular vessel at larger distance from the axis 
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(say 4 times its length), the volume balance equations can be approximated as 
( ) ( )1 1rq rq q q

t r r r r r Z
φ ∂ ∂∂ ∂ ∂
= − ≈ − = − =

∂ ∂ ∂ ∂ ∂
, where r  is an average value of the 

distance of the sample from the rotation axis. We define Z for the sedimentation 
of a small sample in the centrifuge as 0Z r r= − . In sedimentation, r0 is the outer 
radius of the sample and 0 2r r H= + . In creaming, r0 is the inner radius of the 
sample and 0 2r r H= −  and 0r r Z= + , with Δρ being negative. So, for such 

a small vessel spinning at large distances from the rotation axis wq
t Z
φ ∂∂
=

∂ ∂
 and 

( ) ( ) ( )2 2
0

d d 1 1
d d
P P r Z r
r Z Z Z

φ φρ φ ω ε ρ φ ω ε∂ ∂
= − = ∆ − − − ≈ ∆ − −

∂ ∂
. So 2rω−  has 

for the small sample in the centrifuge the same role as ggrav, but often represents a 
much larger gravity in fast spinning centrifuges:  

2
gravr RGF gω = − ⋅  where RGF a large positive number, or in such centrifuges:  

( )d 1
d grav

P RGF g
Z Z

φρ φ ε ∂≈ ∆ − ⋅ +
∂

. If we represent earth’s gravity data as a func-

tion of z and compare them with centrifuge data for small samples far from the 
axis as a function of Z, in for instance a sedimentation experiment, the graphs 
would be (nearly) identical at the same imposed gravity forces. This also applies 
when scaled dimensionless, using the same four Pi parameters H, τ, 0φ , and δ. 

2.7. Equilibrium Profile 
In the ultimate equilibrium, the fluid flow 0Q′ =  over the entire vessel, hence 

( )

4

2

d
d 1
φ δφ
ξ φ

−
=

−
. Integration yields the equilibrium profile  

( ) 3 2 3 2

1 1 1 1 1 1
3 3k

kk k

δ ξ ξ
φ φφ φ φ φ

 
− = − − + − + − + 

 
, where kφ  some reference 

point. If we take the reference point at the point 1 equilξ = −Θ  where 1φ →  in 

equilibrium: ( ) 3 2

1 1 1 1 11
33equilξ

δ φφ φ
 

− −Θ = − − + − + 
 

, so at the bottom ξ = 0 

where 0φ φ ∞= : 3 2
00 0

1 1 1 1 11
3 3equil δ φφ φ ∞∞ ∞

 
−Θ = − − + − + 

 
. The supernatant is a 

clear fluid layer with φ  = 1 over scaled distance equilΘ . 
In radial symmetry in equilibrium  

( ) ( )1 1 d 1 1 ( ) 0
2 d 2

rq k P kr r g r
t r r r r r r r r
φ φρ φ ε

µ µ
∂    ∂ ∂ ∂ ∂ = − = − − = ∆ − + =    ∂ ∂ ∂ ∂ ∂    

 

leads to ( ) ( ) d1 const
d

g r
r
φρ φ ε∆ − + = . At the axis r = 0, the porosity is (vir-

tually) maintained at the initial value 0φ φ=  as there is still the initial pressure 

irrespective of rotation speed, and 
0

d 0
d rr
φ

=

  ≡ 
 

 from the axial symmetry, hence 

const = 0, which leads to the same condition as in constant gravity, but now z is 

replaced by r:  ( ) d1 ( )
d

g r
r
φρ φ ε∆ − = −  e.g. at equilibrium, using Van Wijck in 
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axisymmetric counter-current flow of incompressible fluid and particulates in a 

closed vessel in the centrifuge: 
2

3 2 3 2
00 0

1
1 1 1 1 1 1 12

3 3

r

Hr δ φ φφ φ φ φ
 

= − − + − + − + 
 

. The  

equilibrium profile is over a finite part of the vessel: the rest is depleted zone (in 
the centrifuge at the inner part of the vessel in sedimentation, at the outer part in 
creaming), such that the particulate volume initially present over the entire ves-
sel is preserved and compacted over the shorter equilibrium profile in the caked 
compaction zone. In the strong gravity field of the centrifuge, there is significant 
compaction, even near the top of the cake, which seems counter intuitive, as 
there is no push from excess weight above. However, the buoyancy force is 
present, even at the top of the cake. 

2.8. Weak and Strong Form 

The strong form requires the function φ  to be continuous and at least twice 
differentiable over its domain. The solution of our pde:  

3 1
1

Q
T
φ δφ φ φ

ξ φ φ ξ ξ
  ′∂ ∂ − ∂ ∂

= + = − ∂ ∂ − ∂ ∂ 
 may contain discontinuous jumps, which 

are weak, around which the function remains continuous, twice differentiable 
and is therefore strong. If we integrate once over space:  

( ) ( )( )
22

1 1

3

2 1
1d , ,

1
Q T Q T

T

ξξ

ξ ξ

δφ φ φφ ξ ξ ξ
φ φ ξ

 ∂ − ∂ ′ ′= + = − − ∂ − ∂ 
∫ . This integral de-

scribes the same physics but needs to be only once differentiable. This is a weak 

formulation and is approximate. ( )
3

0 0

1d ,
1

Q T
T

ξξ δφ φ φφ ξ ξ
φ φ ξ

 ∂ − ∂ ′= + = − ∂ − ∂ 
∫ . A  

finite difference formulation is also an approximate and weak solution of the full 
equation and boundary conditions. When the spacing is smaller, the solution 
gets stronger. The position of the shock is described by the displacement from 
the flow from both the upstream and downstream sides, e.g. Rankine-Hugoniot 
jump conditions, as imposed by the requirement of conservation of energy, 
momentum, mass and volume. 

2.9. Initial Speed of Shock Front 

The volume balance Q
T
φ

ξ
′∂ ∂

= −
∂ ∂

 can be rewritten as a weak shock front speed 

d
d

Q
T φ

ξ
φ
′∆  = −  ∆ 
, where 

3 1
1

Q δφ φ φ
φ φ ξ

  − ∂′− = +  − ∂  
. Over a shock front the vo-

lume balance leads to Rankine-Hugoniot condition d
d

Q Q
T
ξ

φ φ
↓ ↑

↓ ↑

′ ′−
= −

−
. For the in-

itial linear displacement cleared front Θ between 0φ  and depleted layer with 1 

with respectively 
( )

3
0

0
01

Q Q
δφ
φ

−′ ′= =
−

 and 0Q′ = , we find 
( )

3
0

2
0

d
d 1T

δφξ
φ

= −
−

. 
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Since the dimensionless clear zone length in sedimentation is 1 ξΘ = − , is 

( )
( )3

00
2

0 00

1d
d 1

gH
T

φδφ ρ
ε φφ

−Θ ∆
= =

−
. As 0 0 0

2
0

1
2 1

ktT t
H

ε φ
τ µ φ

= =
−

 and HΩ = Θ , 

we find for the initial linear growth 0d 1
d 2

k
g

t
ρ

µ
Ω
= ∆  as long as the intermediate 

zone at 0φ φ=  is still present. 

2.10. Initial Shape of Shock Front 

We may now calculate the (stronger) shape of the stable linear displacing 
shock front that is expected to retain its shape as long as the intermediate layer and 
the supernatant layer are present, e.g. as long as shock’s rate of displacement  

( )

3
0

2
0

d
d 1

U
T

δφξ
φ

−
= =

−
 is constant. In the shock, between 0φ φ=  and 1φ = , the 

porosity ( ) ( )UTφ ξ φ ξ= +  is only a function of u UTξ= + , thus φ  in our 

pde 
3 1

1
Q

T
φ δφ φ φ

ξ φ φ ξ ξ
  ′∂ ∂ − ∂ ∂

= + = − ∂ ∂ − ∂ ∂ 
 is only a function of u, e.g. φ (u): Hence 

d
d

u U
T u T u
φ φ φ∂ ∂ ∂
= =

∂ ∂ ∂
 and 

d
d

u
u u

φ φ φ
ξ ξ
∂ ∂ ∂

= =
∂ ∂ ∂

. Thus, our pde is then only a func-

tion of u: 
3d d 1 d

d d 1 d
U

u u u
φ δφ φ φ

φ φ
 −

= + − 
. Integration once:  

3

1 1
1 d

1 d
U c Q c

u
δφ φ φφ
φ φ

 − ′= + + = − + − 
, where c1 is an integration constant. But we 

know that for 0φ φ=  that 
3
0

01
Q

δφ
φ

−′− =
−

 or 
( )

3 3
0 0

0 12
00

11
c

δφ δφ
φ

φφ
− = +

−−
, so 

( ) ( )

3 33
0 0

2 2
0 0

1 d
1 d1 1u

δφ δφδφ φ φφ
φ φφ φ

 −
− = + − −− − 

. Integrating once more  

( ) ( )

3 33
0 0

2 2
0 0

1

d

11 1

u UT

φ
φξ φ

δφ δφδφφ
φφ φ

−

= + =
− − +

−− −

∫  for 0 1φ φ< < , as long as the in-

termediate zone and a supernatant zone are present, where 
( )

3
0

2
01

u T
δφ

ξ
φ

−
= +

−
 and 

( )
( )

( )

( ) ( ) ( ) ( )

2 2
0 0 0

02
0 00

3
0 0 0

22 2 2
0 0 0 00 0

2
0 0

2 1 2
2 arctanh

4 31
ln

3 4 3

ln 1 21 ln
3 3

u

c

φ φ φ φ
φ

φ φφ
φ

δφ φ φ

φ φ φ φ φ φφ φ φ
φ φ

  − + −
  

−  −   = − +
− −





  − + + −− −  − + +

− − 


.  
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As the wave travels with constant shape, we may shift to pass at T = 0 the value 
φ  = 1 at ξ = 1 and follow the curve:  

( )( )

( )
( )

( ) ( )

1 1

3 33 4
0 0

2 2 2
0 0

1
1 11 d d

1
1 11 1

φ φ

φ
φξ φ φ φ

δ φ φ φφ φφ
φ φφ φ

−

− = =
− − −

− −− −

∫ ∫ . The wave 

shape scales inversely proportional to δ. The flank is steeper when δ has a larger 
absolute value. For a sedimentation process at 0φ  = 0.3 and δ = −30, we obtain 
Table 1 and Figure 2. 

So, for 30δ = − , ( )0.50 0.988ξ φ = =  and ( )0.301 0.34ξ φ = =  when 
( )1 1ξ φ = = . 
These parameter choices will be shown later to represent a virtual “sedimenta-

tion”, e.g. inverse of the actual experimentally observed creaming, of a Hellmann’s 
mayonnaise sample structured with whole egg (WE 6.2%) in a centrifuge at 1000 

 
Table 1. The constant shape of the intermediate/supernatant boundary in linear dis-
placement for 0φ  = 0.3. 

φ  ( )( )1δ ξ φ− −  (1 − ξ( φ )) at δ = −30 

1.00 0.0 0 

0.99 3.44 × 10−7 1.15 × 10−8 

0.90 4.57 × 10−4 1.52 × 10−6 

0.70 2.65 × 10−2 8.83 × 10−4 

0.50 3.55 × 10−1 0.012 

0.40 1.37 0.046 

0.35 3.16 0.105 

0.31 9.31 0.31 

0.301 19.8 0.658 

 

 
Figure 2. Shape of moving shock front at δ = −30 and 0φ  = 0.3. 
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rpm. For this small sample rotating at large distance from the axis centripedal 
force can be considered constant, hence sedimentation and creaming are mirror 
images when density differences only differ in sign. 

The slope of the wave front is indeed very steep over a large range of higher 
φ  values, and there is a sharp nick towards the supernatant. Later, when the 
middle layer has disappeared, the porosity drops at the shock front 0φ φ<  and  

0φ
ξ
∂

>
∂

: hence 
d
d

Q
T φ

ξ
φ
′∆  = −  ∆ 
 or  

( )

3

3

2

10
1d 1

d 1 1

Q Q
T φ

δφ φ φ
φ φ ξξ δφ φ

φ φ φ φ ξφ
↓ ↑

↓ ↑

  − − ∂
− −  ′ ′ − ∂−  − ∂    = − = − = −    − − ∂  −  

. In sedi-

mentation 
( )

3

2

d d 1
d d 1T Tφ

ξ δφ φ
φ ξφ
 Θ ∂  = − = +    ∂  −  

 or  

( )
( ) ( )

3 3
00 0 0

2 4 2
0 00 at low side of shock

11 d 1 1
d 2 1 1

k gH
H t Hφ

φ φ

φε φ ρ φ φ
µ φ ε φ ξφ φ

=

 −  Ω ∆ ∂   = +    − ∂   −   
 

The height of the clear supernatant layer Ω is easily monitored in the product 
and is often used to experimentally measure compaction over time in earth’s 
gravity or centrifuge. In this subsequent slowdown from elastic counter forces, 
we expect a displacement characterized by ~ tΩ  from the similarity with the 
diffusion and heat transport equations. We may anticipate this from a simplified 
model. 

2.11. Simplified Model in Earth’s Gravity and/or at Small Density 
Differences in Limit δ → 0 

For small δ, like in earth’s gravity and or at small density differences, our pde is 

0 0 0

0

1
2 1
k

t z z
ε φφ φ φ
µ φ φ

   ∂ ∂ − ∂ ≈    ∂ ∂ − ∂    
. For small changes of φ , we have approx-

imately 
2

0 0
22

k
t z

εφ φ
µ

∂ ∂
≈

∂ ∂
. The major effect in the small earth’s gravity is therefore  

that a value of φ  will displace as square root of time ~z t , as observed in 
many other physical phenomena, like chemical diffusion, heat transport, et cetera. 

For the slow 1-dimensional poroelastic drainage in the earth’s gravity field 

there is a functional dependence or scaling with a dimensionless group 0 0
22

k t
z

ε
µ

.  

This is an important scaling number for counter-current compaction drainage 
processes in the earth’s gravity in poroelastic media and is the equivalent of the 
Fourier number for heat transport. 

A typical time for approach to equilibrium would be a displacement over 

height H, e.g. 
2

0 0

2 Ht
k
µ
ε

  or a typical dimensionless time T = 0.43 when 0φ  = 

0.3. Suppose that the coefficient of consolidation 0 0

2s
k

D
ε
µ

=  is indeed a constant  
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during the drainage process. Hence, the permeability reduction and the elasticity 
enhancement are assumed to be compensated by their multiplication. We take a 
fluid-filled poroelastic medium (like a gel, a porous or fibrous network, 
representing an emulsion and/or a particulate) that is compacted by drainage from 
one side (like pressing with an open filter that allows easy passage of fluid and does 
not allow any passage of the particulates). We may then solve the pde analytically. 
In the present case, we assume that: the initial condition is ( ) 0,0zφ φ=  for 
0 z< < ∞ ; boundary conditions ( )0, 0tφ =  for t>0 and 0zφ∂ ∂ →  for 
z →∞ . It is therefore assumed that the material drains from one side in a 
one-dimensional way and that the material is so thick, or times are so short, that the 
drainage disturbance does not reach the back of the fabric, within the time span of  

observation. Standard mathematics leads to a solution ( ) 0,
2 s

zz t erf
D t

φ φ
 

=   
 

. 

The amount of fluid flowing is ( ) 0,
2 s
k Pq z t D

z z
φ

µ
∂ ∂

= − = −
∂ ∂

. Liquid flows in the 

direction of lowest pressure and highest porosity. To make liquid flow out of the 
porous medium through z = 0, the pressure on the outside must be lower than 

inside. Then ( ) 0,
2s s

s

zq z t D D erf
z z D t
φ φ

  ∂ ∂  = − = −    ∂ ∂   
. Mass balance gives 

( )

2

4

0
0

0

2e 10, d d
π 2

s

z
t D t

s
s

z

q z t t D t
D t

φ
−

=

 
 

= = −  
 
  

∫ ∫  or  

( ) ( ) 0

0, 20 d
π s

Q z t
q z t D t

A
φ

=
= = = −∫ . The liquid continues to flow with  

time at a diminishing rate. This is the case because it was assumed that the dis-
turbance has not (yet) reached the other side of the medium. In our case, the 
production of fluid at z = 0 leads to a compaction shortening (e.g. depleted  

layer) of length ( ) ( ) 0
20, d
π sq z t t t D tφ= = Ω = −∫ , where Ω the compaction  

length. This simple model applies in processes like filtration compaction, ma-
chine and hand wash, et cetera. In this simplified gravity compaction model, the 
compaction shortening Ω is proportional to t  during the entire time span 
that the compaction disturbance has not reached the other side. 

3. Experiments 
3.1. Height of Supernatant during Creaming of a Fibrous Nata de 

Coco Gel Network 

The supernatant height Ω(t) = h(t) of an aqueous fibrous system of micro fibril-
lated bacterial cellulose (BC, Nata de Coco) and Carboxy Methyl Cellulose 
(CMC) at ratio 14/1, with captured soy bean oil (SB) droplets was followed in 
earth’s gravity as a function of time [13], see Figure 3. 

The volume of the sample is 20 ml, height ca. 42 mm. The experimental data 
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of the initial rate as function of BC and Oil concentration are shown in Table 2; 
The creaming data for 0.06 wt% BC/CMC with 1 wt% oil is reproduced in 

Figure 4 and Figure 5 (experiments in triplicate): 
The cake compacts proportionally to the square root of time: 
The linear slopes are given in Table 3. 

 

 
Figure 3. Creaming of Nata de Coco in water [13]. 

 
Table 2. Initial rate as function of BC concentration [13]. 

BC/CMC 
Wt% 

Oil SB 
Wt% 

Initial rate 
mm/h 

0.034 1 0.42 

0.042 1 0.175 

0.052 1 0.0808 

0.069 1 0.035 

0.043 1 0.183 

0.086 2 0.036 

0.129 3 0.0283 

0.172 4 0.01 
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Figure 4. Supernatant height Ω of a creaming fibrous network of BC/CMC with SB oil as 
function of time [13]. 

 

 
Figure 5. Supernatant height Ω of a creaming fibrous network of BC/CMC with SB oil as 
function of square root of time [13]. 

 
Table 3. Slope as function of BC/CMC concentration [13]. 

Conc BC-/CMC 
wt% 

Slope 
mm s  

Error slope 
mm s  

0.04 0.0346 0.001 

0.05 0.0358 0.005 

0.06 0.0163 0.0005 

0.075 0.0079 0.001 

0.08 0.0096 0.0009 

3.2. Creaming of Mayonnaise 

Dressings with different formulations and varying processing were tested in a 
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centrifuge to accelerate gravitational instabilities (sedimentation and creaming). 
These data are needed to predict the shelf life and to test structurants that allow 
the development of cheaper, lower carbon footprint, clean label, or better sus-
tainable dressings. The LumiFuge centrifuge accelerates the study of gravitation-
al instability behaviour of over a year into just 8 hours, due to a factor 1100 
magnified gravitational force used in the centrifuge compared to earth’s gravity. 
Such data is often difficult to obtain in real time as the mayonnaises/dressings 
might be attacked from bacteria and/or fungi, might become chemically instable, 
or might change consistency on a smaller time scale, not directly related to gra-
vitational instability during shelf life, but obscuring the results. 

As the centrifuge data for creaming of the dressings is rather complex, in-
cluding changing rate over time, changing rate with speed of revolution and with 
composition, it is difficult to pinpoint centrifuge conditions (time/speed) that 
can be directly related to the magnitude of the actual slow creaming in the 
earth’s gravitational field during shelf life. Therefore, a more elaborate analysis is 
warranted. 

Several experiments focussed on the creaming of a Hellmann’s Real mayon-
naise formulation WE 6.2%, both in earth’s gravity and in the LUMiFuge at 
1000, 2000, 3000, and 4000 rpm; physical characterisation as follows. 

3.2.1. Initial Porosity of WE 6.2% 
The 67.5 wt% bean oil in the WE 6.2wt% formulation has a density of 0.9192 at 
20˚C. Fresh whole egg consists typically of 74 wt% water, 11.8 wt% lipids and 
12.8 wt% protein, and 1.4 wt% dissolved material (carbohydrate and minerals). 
A fresh egg has therefore 75.4 wt% water phase and 24.6 wt% solids. Some 34% 
of egg weight is the yolk. A fresh egg has a density of 1.033 [14]. Therefore, 100 g 
of a WE 6.2wt% formulation consists of 6.2 g WE 6.2%, and contains 1.5 g eggs 
solids phase of density 1.132 g/cm3 and 4.7 g egg water of density 1.00. The rest 
of the WE 6.2% dressing is water plus dissolved solids = 100 − 67.5 − 6.2 = 26.3 
wt%, with density 1.00. If we assume 100 g formulation, we have 67.5 g bean oil 
and 1.5 g as egg dispersed material and 26.3 + 4.7 = 31 g water phase. The vo-
lume of the dispersed solid is 67.5/0.9192 + 1.5/1.132 = 73.43 + 1.325 = 74.76 
cm3 solids and 31/1.00cm3 water phase, thus in total 105.76 cm3. The initial vo-
lume percentage of dispersed material is therefore 74.76/105.76 = 70.7 vol%, 
hence 1 − 0φ  = 0.707, and the volume percentage of water phase is 29.3, hence 
the original homogeneously mixed WE 6.2% formulation has an initial porosity 
of 0φ  = 0.293. 

3.2.2. Densities of WE 6.2% 
The density of the aqueous fluid phase is around 1000 kg/m3, and the bean oil is 
919.2 kg/m3. The density difference is therefore  

( ) 31 0.9192 1000 80.8 kg mρ∆ = − = . We neglect the influence of the 1.5 wt% 
egg solids on the density difference, because the contribution is small and the 
egg white and yolk solids may redistribute between water and oil. 
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3.2.3. Viscosity of Fluid in WE 6.2% 
The viscosity of the aqueous fluid phase is close to water, e.g. μ = 1 mPas. 

3.2.4. Gravitation and LumiFuge 
In our LUMiFuge centrifuge experiments, RGF can be 6-4000, vessel height H 
typically 22 mm, and axis of gyration typically 131 mm at the vessel’s base, or on 
average 120 mmr = . We may assume that the LumiFuge’s centrifugal force 

2g rω=  is constant over the short height, which simplifies the mathematical 
analysis. When we assume an average radius of raver = 0.12 m and 3000 rpm leads 
to an average ( ) 211843 1207 m sgravg g= = × − , where 29.8125 m sgravg = − , 
then RGF = 1207 for WE 6.2% at 3000 rpm. 

3.2.5. LumiFuge 
The LUMiFuge (Figure 6) provides the objective classification and quantifica-
tion of de-mixing phenomena and fast determination of stability and shelf life of 
dispersions. Based on the patented STEP-Technology, the device determines si-
multaneously the de-mixing processes of 8 different dilute or concentrated sus-
pensions/emulsions. The multi-sample analytical centrifuge LUMiFuge accele-
rates the de-mixing process up to 2300 times compared to traditional test tube 
tests. Stability tests and shelf life determinations of original dispersions are up to 
2500 times faster than performed in a test tube under earth’s gravity. 

The LUMiFuge (type 110, year of build 2004, LUM GmbH) is an analytical 
centrifuge with an opto-electronic sensor system that measures near infrared 
NIR transmission profiles along horizontally inserted sample tubes [15]. Data is 
acquired according to the patented STEP (Space and Time resolved Extinction 
Profiles) procedure [16]. Flat transparent sample tubes (Figure 7, LUM 2 mm 
PC Rectangular Synthetic Cell 110-131XX; 0.5 ml) are filled with 0.4 ml of sam-
ple, placed in the rotor and 225 NIR transmission profiles are recorded for each  

 

 
Figure 6. The LUMiFuge centrifuge. 
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run. The tube’s base has a radius of about 131 mm, where the top of the evalua-
tion range is near 104 mm radius. See for schematics Figure 8. 

The LUMiFuge® software—SEPView V.6. (L.U.M. Ltd.)—calculates the space- 
and time-resolved transmission profiles. Standard front tracking analysis and 
instability index are tools to characterize sedimentation stability by the software, 
see for instance [16]. Creaming of a few prototype dressing formulations is fol-
lowed in the LUMiFuge at 1000, 2000, 3000, and 4000 rpm (experiments done in 
duplicate or even triplicate) as well as by observation in earth’s gravity during 
shelf life over a month. An example of the LUMiFuge centrifuge data for Hell-
mann’s Real mayonnaise sample WE 6.2% is in Figure 9: 

Each red curve is a transmission trace at a certain time, starting with the small 
nick curve on the right near 130 mm, progressing towards the green band near 
125 mm in 2 hours. The steep slopes of the red (and ultimately green) lines are 
the top of the cleared (supernatant) zone building from the bottom of the tube in 
time. The creaming height Ω is (arbitrarily) taken at the distance between the 
curves at 10% transmission (indicated by the red arrow) and the bottom of the 
tube (starting with practically zero creaming height at time zero). The sample 
height is approximately 22 mm. The top is the stationary flank near 108 mm po-
sition, where all red and green curves superimpose, and is the position of the  

 

 
Figure 7. The sample cells. 

 

 
Figure 8. The LUMiFuge schematics. Our unit reaches 4000 rpm and 2300 ggrav at the 
base of the sample. 
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meniscus, at the top surface of the sample. A typical collection of results for 
samples running at 4000 rpm for 24 h is given in Figure 10. 

Here we see the clear layer at the bottom of the sample. In some cases, here in 
the samples in the middle, we see a thin oil rim at the top of the sample. As these 
samples have been running for a long time (24 h), the clear layer has practically 
reached the maximum thickness. The clear basal layer indicates that even the ti-
niest particles are not only captured in the network but also move concurrently 
within it. When the water phase is not clear, the particles move more independently,  

 

 
Figure 9. A sample of the LUMiFuge optical transmission versus position for Hellmann’s 
Real WE 6.2 wt% at 3000 rpm during 2 hours. 

 

 
Figure 10. Samples that have run for 24 h at 4000 rpm. These samples showed the impact 
of varying structurants in some typical pourable dressings. 
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with small particles left behind: for example, the sample on the left. Such cases 
are not described by our modeling. 

Creaming is also observed in the earth’s gravitational field with new samples 
of Hellmann’s Real in test tubes shown in Figure 11. 

3.2.6. Experimental Data LumiFuge WE 6.2% at 3000 rpm 
In these centrifuge experiments, the measured creaming height is sometimes in-
dicated by h, but it actually always the height of the depleted layer Ω (in cream-
ing) of our previous modeling. The creaming data of WE 6.2% at 3000 rpm from 
Figure 9 is shown in Figure 12. 

For WE 6.2% at 3000 rpm, we see a linear slope ( )d d 16462 mm month
d d
R
t t

Ω
− = = ,  

 

 
1 ml = 50/8 mm height. Initial height in gravity drainage of 10 ml (62.5 mm). 

Figure 11. Test tubes used to measure creaming height in earth’s gravity. 
 

 
Figure 12. The creaming height Ω as a radial position of the top of the water layer as 

function of time for WE 6.2% at 3000 rpm, ( ) ( ) ( ) ( )0 0z t z t R t R− = = − −   . 
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e.g. 6.351 μm/s. From this initial slope 0d 1
d 2

k g
t

ρ
µ
∆Ω

= −  we estimate k0 = 13.27 

× 10−15 m2 (=13.27 mD), using Δρ = −80.8 kg/m3 and g = 11,843 m/s2, and μ = 1 mPas. 
The two traces of the creaming height as function of the square root of time 

for WE 6.2% at 3000 rpm are given in Figure 13 and Figure 14 (duplicate expe-
riments, axes reversed). 

The graph shows the linear part (right-hand side) and the reduction of speed 
when the creaming zone reaches the top of the sample (left-hand side). The li-
near part allows us to calculate the creaming speed. 

3.2.7. Experimental Data LumiFuge WE 6.2% at Several Speeds 
The experimental LumiFuge data for WE 6.2% at 1000, 2000, 3000, and 4000 
rpm are shown in Figure 15: 

We see that all curves have essentially the same slope 2 ~ RGFgravg Tξ ρ∆ . 
There is a scatter in the waiting time. probably due to differences in spin up 
timing of centrifuge. The square root linear parts of ~ RGFgravg Tξ ρ∆  are 

 

 
Figure 13. The creaming height Ω of WE 6.2% as function of square root of time for 3000 
rpm followed during 2 hours (experiments in duplicate). 

 

 
Figure 14. Fit of linear part of creaming height Ω of WE 6.2% as function of square root 
of time for 3000 rpm (experiments in duplicate). 
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fitted, where 
2

RGF
grav

R
g
ω

= . Data is collected in Table 4 and averaged in Table 5. 

Our data are thus averaged: 

3.2.8. Experimental Data WE 6.2% in Earth’s Gravity Field 
We may compare these data with the visual observation of the creaming height  

 

 
Figure 15. Log/log plot of WE 6.2% centrifuge data. 

 
Table 4. WE 6.2% The fitted diffusive part of centrifuge data. 

repeats 
ω 

rpm 
RGF gravg g=

 
- 

Slope d d tΩ  

mm time month  

Intercept 
mm 

1-st 1000 134 117.65 130.64 

1-st 2000 536 166.67 130.02 

1-st 3000 1207 250.00 131.75 

1-st 4000 2146 500.00 133.20 

2-nd 1000 134 78.74 130.71 

2-nd 2000 536 263.16 131.21 

2-nd 3000 1207 270.27 131.73 

2-nd 4000 2146 384.62 129.15 

3-th 2000 536 222.22 130.22 

 
Table 5. WE 6.2% The fitted diffusive part of centrifuge data. 

repeats 
ω 

rpm 
RGF gravg g=

 
- 

Slope ( )2d dtΩ  

m2/s 

sdev 
m2/s 

2 1000 134 3.87E−09 2.1E−09 

3 2000 536 1.88E−08 8.0E−09 

2 3000 1207 2.57E−08 3.1E−09 

2 4000 2146 7.68E−08 2.8E−08 
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Ω in a test tube as function of storage time (in earth’s gravitational field), see 
Table 6 and Figure 16. 

The first data points are tricky as the tube had a V-shaped base (first few mm), 
so the early rates are difficult to read. 

3.2.9. Extrapolation Centrifuge Data of WE 6.2%  
to Reveal Shelf Life Stability 

Combining the gravity and centrifuge rates versus square root of time in one 
graph, for WE 6.2%, we obtain Figure 17: 

This graph shows that we cannot use a linear extrapolation to predict the 
creaming in the earth’s gravity field. But if we plot the data on a log/log plot, see 
Figure 18, we find surprisingly: 

So, for WE 6.2% ( )
2

248.3 mm month RGF
t
Ω

≈ ⋅ . In SI units  

( ) ( ) ( ) ( )10 0.5 10log m s 5.36 0.08 0.528 0.03 log RGFt Ω = − ± + ±   with r2 =  

0.978 and sdev = 0.084. At each experiment, there is a definite scaling of Ω2/t 
proportional to RGF which becomes identical with earth’s gravity data at RGF = 
1. When RGF increases, we would expect the experiment to go faster as we exert 
a larger force ω2R. It is therefore not unlikely that Ω2/t is some function of RGF, 
e.g. even appearing to be directly proportional to RGF. We expect similar res-
ponses for other structurants than whole egg at 6.2 wt%, with a different propor-
tionality constant. 

This equation already allows us to predict the (square root of time) rate in 
earth’s gravity (RGF = 1) from the rates measured in centrifuge by a simple  

 
Table 6. Creaming of WE 6.2% in earth’s gravity field. 

WE 6.2% week 1 week 2 week 3 week 4 week 5 week 6 week 7 week 8 

Height Ω/ml 0.5 1 1.1 1.1 1.2 1.3 1.4 1.5 

time/month 0.25 0.5 0.75 1 1.25 1.5 1.75 2 

Height Ω/mm 3.125 6.25 6.875 7 7.1875 8.125 8.75 9.375 

time month  0.50 0.71 0.87 1.00 1.12 1.22 1.32 1.41 

 

 
Figure 16. Creaming position timeΩ  of WE 6.2% in earth’s gravity field. 
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Figure 17. Creaming slope position timeΩ  of WE 6.2% as function of RGF, the g-force 

relative to gravity acceleration (e.g. 9.812 m/s2): 
2

RGF
grav

R
g
ω

= . 

 

 

Figure 18. Log/log plot creaming slope timeΩ  of WE 6.2% as function of 
2

RGF
grav

R
g
ω

= . 

 
log/log extrapolation, e.g. from a linear fit on a log/log plot of Ω2/t versus RGF. 

For WE 6.2% at 3000 rpm, the linear part in square root of time quantified to 
d d 268.96h t =  and 247.12 mm month , on average 258 mm month  in 
these two repeat experiments. We use the average slope at 3000 rpm of 

258 mm monthtΩ = , e.g. 2 8 22.568 10 m st −Ω = × . The diffusive part is  

approximately 
2

0 0
22

k
t z

εφ φ
µ

∂ ∂
≈

∂ ∂
, hence for the diffusive/dispersive front 
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2 2
0 0

2
kz

t t
ε
µ

Ω
= ≈ . Using the known values 2 8 22.57 10 m st −Ω = × , k0 = 13.273 

mD and μ = 1 mPas, we estimate ε0 = 3870 N/m2. Thus, for creaming of WE 
6.2% at 3000 rpm, δ = 261. 

We may look at the equilibrium Θ of WE 6.2% at 3000 rpm:  

3 2
00 0

1 1 1 1 11
3 3equil δ φφ φ ∞∞ ∞

 
−Θ = − − + − + 

 
, where 0φ ∞  is the ultimate porosity at 

the entrance (ξ = 0). So, for δ = 261 (β = 5.44) and Θequil ∼ 5/22 = 0.2273 we find 

0φ ∞  ∼ 0.106. This is not far from the observed value. 

Using a stepwise integration of 
( )

4

21
δφφ ξ
φ

−
∆ = ∆

−
 with small steps Δξ = 0.01  

from ξ = 0 and φ  = 0φ ∞  = 0.107, we may calculate the equilibrium curves. 
This is done for δ = −261, δ = −30 (and 0φ  = 0.3) in Figure 19 and Figure 20: 

We may use k0 = 13.7 × 10−15 m2 and ε0 = 3870 N/m2 based on data at 3000 
rpm to predict the δ parameters for other gravities, as is done in Table 7: 

 

 
Figure 19. The predicted equilibrium curve for WE 6.2% at 3000 rpm. 

 
Likewise we find for 1000 rpm: 

 

 
Figure 20. The predicted equilibrium curve for WE 6.2% at 1000 rpm. 
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Table 7. Creaming Hellmann’s Real mayonnaise WE 6.2% at equilibrium prediction 
based on experimental data at 3000 rpm. 

rpm f(Hz) ω(Rad/s) g(m/s2) RGF δ 
τ(s) 

t = τT 0φ  
H(m) 

Z = Hξ 

86.35 1.4392 9.043 −9.8125 1 0.2159 45477 0.2930 0.022 

1000 16.67 104.7 1316 134 29.00 45477 0.2930 0.022 

2000 33.33 209.4 5264 536 115.95 45477 0.2930 0.022 

3000 50 314.16 11844 1207 260.9 45477 0.2930 0.022 

4000 66.67 418.9 21056 2146 463.8 45477 0.2930 0.022 

 
NB. In sedimentation, Δρ is positive and thus δ is just the negative value, and 

hence the porosity profile is the vertical mirror image, when the acceleration 
(buoyancy) can be considered constant (earth’s gravity field) or approximated to 
be constant (small sample in centrifuge). We may conclude that for the mayon-
naise centrifuge experiments with small H and Δρ and thus, small value of δ, the 
diffuse square root dependence dominates quickly in the response. 

3.2.10. Waiting Time 
In all experiments, we see some time has passed before the cleared layer becomes 
visible, e.g. the waiting time. Part of that is the short time needed to rise the po-
rosity to unity in the top of the vessel. In our experiments another part is the 
spin up time of the centrifuge. If a structured sample is slowly shaken just before 
the experiment to even out the porosity (or set up vertically after first slowly 
rolling horizontally), it might take some time before the firmed structure is de-
veloped, which might contribute to the waiting time. 

The waiting time can be prolonged in the experiment by adding hygroscopic 
ingredients, like starch, that adsorb the initial free water, by swelling the porous 
matrix. This adsorption technique is often applied to extend shelf life in 
mayonnaises. The swelling suppresses the build-up of a depleted layer until the 
diminishing rate of swelling is equal to the depletion rate, from which moment 
on, the depleted layer starts to build, quickly accelerating to a constant rate, as 
swelling is decaying exponentially in time. The swelling and prolonged waiting 
time is not in the model yet. 

3.3. Subsidence in the Groningen Gasfield, The Netherlands 

When we look at, for instance, subsidence in the earth’s gravity field, like Gro-
ningen’s gasfield [17], as shown in Figure 21: 

We see that the subsidence response Ω/t even after several years of constant 
gas production was still in its initial linear constant slope transient. Nowadays, 
the gas production has declined, so a new, smaller linear trend slope of constant 
Ω/t must have started, that will transform eventually in a dispersive trend Ω2/t 
before the equilibrium subsidence depth is approached after many years. An 
independent determined value of the average elasticity of the rock formation  
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Figure 21. Subsidence data for Groningen’s gasfield. 
 

might be used to predict this later time Ω2/t approach to equilibrium in the fu-
ture and thus predict the decay of subsidence in the far future. 

4. Numerical Simulation 

In our numerical simulations, we describe the centrifuge WE 6.2% creaming ex-
periments in the equivalent “sedimentation” mode by simulating with the oppo-
site (negative) value of δ, which means for the small samples in the centrifuge a 
simple reversal of the direction of the vertical axis, e.g. simulating the mirror 
image in vertical direction. 

Porosity condition 0 1φ≤ ≤ , spatial vertical height coordinate 0 1ξ≤ ≤ , time 
0 ≤ T. All symbols dimensionless. Initial condition (t = 0) for WE6% mayonnaise 
φ  constant, e.g. 0φ  = 0.293, boundary conditions no flow over boundary  

( )0 0Q ξ′ = =  and ( )1 0Q ξ′ = = , or 
( )

4

21bc

φ δφ
ξ φ

 ∂ −
= ∂ − 

 when φ  < 1. As a  

required Lipschitz continuous initial non-decreasing profile in sedimentation, 
the sedimentation process starts with a constant porosity, as conforms to the 
experiments. The solution is first constant and later in sedimentation either con-
stant or increasing, producing an upward curve from compacting cake on bottom 
(left) side to the top (right) side of the graph below. The porosity always increas-
es quickly towards φ  = 1 at the top of the vessel, with a steep wave slope at the 
boundary. The solution, when porosity has reached unity in the top of the vessel, 
continues moving in a sharp boundary front (Stefan condition) towards 
supernatant layer with φ  = 1. The front moves inward while the supernatant 
layer grows in height. A weak solution given as Rankine-Hugoniot conditions  

over the sharp front 
1

d
d 1

Q
T ξ

ξ
φ= −Θ

′  =  − 
 where Q′  and φ  the values at the top 

of the cake. Earlier, the front is towards the intermediate layer, hence is 
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0

1 0

d
d 1

Q
T ξ

ξ
φ= −Θ

′  =  − 
, e.g. a front displacing with a constant rate and supernatant  

thickness Θ  growing linearly. When the height of the intermediate layer has 
become zero, the supernatant grows gradually slower in height Θ  until the 
equilibrium porosity profile is reached, with a balance between gravity and elas-
tic forces. Typical values for δ in “sedimentation” of WE 6% mayonnaise are the 
negative of those given in Table 7 for several speeds. Scaling height H = 0.022 m, 
z = Hξ; scaling time τ = 45,477 s, t = Tτ. 

The first rise of porosity in the end plane from φ  = 0φ  to φ  = 1 over a 
short time can be generated as a strong solution (no jumps yet) in space fixed 
coordinates. The time involved is natural waiting time. An example calculated 
with COMSOL5.3a for δ = −30, 0φ  = 0.3, approximately equivalent to WE 6.2% 
at 1000 rpm, is shown in Figure 22. Four time-steps of 0.006 to dimensionless 
time T = 0.024 have just passed the φ  = 1 level in the exit plane, indicating that 
for this system the waiting time is just above T = 0.018: 

After the waiting time, the further build-up of the cake in the presence of an in-
termediate constant layer can be generated in space fixed coordinates as a strong 
solution in a virtually infinite vessel by assuming at the exit 0φ φ= . This works un-
til the loss of porosity in the cake compaction is equal to the gain of porosity in the 
supernatant, e.g. the point in time where the intermediate layer is eroded. During 
this erosion period, the growth of the supernatant thickness Θ at porosity 1φ =  
over length Θ  is linear in time, as generated by the Rankine-Hugoniot jump  

condition 
( )

3
0 0

2
0 0

d
d 1 1

Q
T

δφ
φ φ

′−Θ
= =

− −
, e.g. 

( )

3
0

2
01

T
δφ

φ

−
Θ =

−
. An example calculated  

with COMSOL5.3a for δ = −30, 0φ  = 0.3, approximately equivalent to WE 6.2%  
 

 
Figure 22. Comsol simulation of waiting time for δ = −30, 0φ  = 0.3 (equivalent to cen-
trifuge “sedimentation” experiment WE 6.2% 1000 rpm). No flow through boundaries. 
Four time-steps shown. 
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at 1000 rpm is shown in Figure 23. Ten time-steps of 0.01 to dimensionless time 
T = 0.1 are generated in a long vessel ξ = 5: 

We see that at T = 0.01 (end of first time-step), the cake has already reached 
the normal exit boundary at ξ = 1, indicating that in a normal vessel length ξ = 1 
the intermediate layer has eroded at T = 0.01 for WE 6.2% at 1000 rpm and the 
cake had already reached the thin supernatant layer. Hence, T = 0.01 is near the 
end of the linear growth period of the supernatant. 

The subsequent rate of cake formation Θ  slows, initially proportional to 
square root of time, and must probably be generated in material coordinates as a 
weak solution with a Stefan boundary condition. We tried a strong solution, but 
that is not stable in the supernatant layer. By mere luck we generated a solution 
that was reasonably stable for longer time. This example, calculated with 
COMSOL5.3a for δ = −30, 0φ  = 0.3, approximately equivalent to WE 6.2% at 
1000 rpm is shown in Figure 24. Ten time-steps of 0.005 to dimensionless time 
T = 0.05 remain reasonably stable: 

Here we see a build-up of the supernatant layer and a diminishing of the su-
pernatant depth growth rate at later time (T > 0.01). The supernatant porosities 
are fluctuating (φ  ≠ 1), and not reaching φ  = 1, with a steep slope and a sharp 
nick to steady φ  = 1 in the supernatant, indicating numerical instability. The 
later time displacements, and other simulation attempts, were not accurate due 
to the numerical errors in the supernatant range. 

During slow down, improving the accuracy of the simulations might confirm 
the expected Θ2 ∝ T, e.g. Ω2 ∝ t behaviour. Because the displacement profile up 
to equilibrium has some shape similarity, we might try a self-similar transforma-
tion to predict larger time behaviour. This is not yet done. 

 

 
Figure 23. Comsol simulation interim δ = −30, 0φ  = 0.3 (equivalent to centrifuge expe-
riment WE 6.2% 1000 rpm) Left bc no flow, right bc is Dirichlet φ  = 0.3. Ten time-steps 
shown. 
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Figure 24. Comsol simulation δ = -30, 0φ  = 0.3 (equivalent to centrifuge experiment 
WE 6.2% 1000 rpm) No flow through boundaries. Ten time-steps shown. 

Transformation to Material Coordinates 

A trick might be used to avoid the difficult Stefan moving boundary problem by 
stretching the caked layer to remove the supernatant layer from the domain of integra-
tion. We have a dispersed material volume balance such that any two material-bound  

spatial coordinates at a small distance dξ0 compact as 0
0

1
d d

1
φ

ξ ξ
φ

−
=

−
. We might 

therefore define new spatial coordinates 
0

1d d
1

φχ ξ
φ
−

=
−

 that would be invariant 

under the compaction: our pde is then for ( ),Tφ φ χ= , 0 < T:  
3

0 01 1
1 1T
φ φφ δφ φ
φ χ φ φ χ

 − − ∂ ∂ ∂
= +  ∂ − ∂ − ∂  

, with boundary conditions (bc) at χ = 0 

( )
4

01
1

φ δφφ
χ φ
∂ −

− =
∂ −

 and φ  = 1 at χ = 1, and initial condition T = 0, φ  = 0φ  

for 0 < χ < 1. Expressed in coordinate χ, the zone with dispersed material is vir-
tually stretched, such that the compaction is compensated to keep the total length 

of that zone constant. By rescaling ( )01u χ φ= − , such that ( ),T uφ φ= , 0 < T, 

with 
31 1

1 1T u u
φ δφ φ

φ φ φ
  ∂ ∂ ∂

= +  ∂ − ∂ − ∂  
 such that bc u = 0 is 

4

1u
φ δφ

φ
∂ −

=
∂ −

 and bc 

at ( )01 1u φ= −  is φ  = 1. Over domain (0<T<∞), ( )00 1 1u φ< < − , and Lip-
schitz condition 0 1φ≤ ≤ . 

Notably, at equilibrium 
3 1 0

1 u
δφ φ
φ φ

  ∂
+ = − ∂ 

, e.g. integrated  

3 2
0

1 1 1 1
1 6 3 2

uδ
φ φ φ

 
− − = + − − 

. At the entrance φ  = 0φ ∞  for u = 0 or  

3 2
0 0 0

1 1 1 1
1 6 3 2

0 δ
φ φ φ∞ ∞

 
− = + − − 

<  which can be solved for 0φ ∞ . For 0φ  = 0.3 
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and δ = −30 we find 0φ ∞  = 0.179, which is indeed close to the predicted equili-
brium curve (based on an estimated value of Θequil). We may now calculate Θequil 

accurately by using 
0

dd
1

u χ
φ

=
−

 and 
0

1d d
1

φχ ξ
φ
−

=
−

 to find 
( )2

0

1d d
1

u φ ξ
φ
−

=
−

, 

so ( ) ( ) ( )2 2 2
0 0 0

4 4

1 1 11 1d d d d
1 1

u
φ φ φφ φξ φ φ
φ φ δδφ φ

− − −− −
= = − =

− − −
, thus, at equilibrium: 

( ) ( )2
0

3 2
0 0

1 1 1 11 1
6 3 2flank equil

φ
ξ φ

δ φ φ∞ ∞

−  
= = −Θ = + − −  

. For 0φ ∞  = 0.179, 0φ  =  

0.3, δ = −30, we find ξflank = 0.70, e.g. Θequil = 0.30. Hence, we expect the experi-
mentally estimated (long time) “equilibrium” thickness of about 5.5 mm to grow 
to 6.6 mm at full equilibrium (H was 22 mm). The earlier estimate Θequil = 0.25 
was probably too short. There is no need to estimate that equilibrium superna-
tant length from the experiment, because it is determined by the 4 independent 
Pi parameters and can thus, together with the equilibrium intercept 0φ ∞ , be di-
rectly calculated from those parameters. 

Using solution profile φ (u, T) at any given T, we may re-tabulate the proper 

curve φ (ξ, T) by the transformation 
( )2

01
d d

1
u

φ
ξ

φ
−

=
−

. It is important to realize  

that we were indeed able to calculate all characteristics of the compaction curves 
from waiting, transient time, up to equilibrium, with only the 4 independent 
dimensionless groups (t/τ, z/H, δ, and 0φ ) as given by the Pi theorem. The pa-
rameters themselves were calculated using only one value of the seven physical 
parameters [ 0φ , Δρ, g, H, k, ε, μ] that appear in determining those 4 dimension-
less groups. The only two difficult physical parameters to determine indepen-
dently are permeability k and porosity ε. However, these can be determined us-
ing the experimental data, from the early linear slope of Θ vs t and later linear 
slope of Θ vs t  respectively. 

The simulation data in material height coordinates u for sedimentation WE 
6.2% at several rpm’s are given in Figure 25. These simulations are reasonably 
accurate but are also time consuming (several hours on a 64 bit W10 AMD 
FX-8150 Eight-Core 8 Gb ram 3.6 GHz bench top computer). An overview of 
several representative simulations (COMSOL5.3a): 

Apparently, the flank and slope become steeper and flatter for increasing δ , 
with both the value and trend in the porosity of the intercept at u = 0 agreeing 
with the experimental observations. As the vertical differences in subsequent 
time-steps rapidly diminish, at an order of half of the difference in the previous 
time-step, the equilibrium curve is expected to be lower, approximately less than 
or equal to the shift during the last recorded time-step, hence already very close 
to the last and lowest recorded curve. As noticed before, the proper curves φ (ξ,  

T) can be found by the transformation 
( )2

01
d d

1
u

φ
ξ

φ
−

=
−

 at any T. An example  

of this conversion is given in Figure 26 for WE6.2% at 3000 rpm, δ = −260 at  

https://doi.org/10.4236/ojpc.2019.93008


P. B. van der Weg (Peter) 
 

 

DOI: 10.4236/ojpc.2019.93008 161 Open Journal of Physical Chemistry 
 

 
Figure 25. Simulations δ = −10, −30, −60, and −260 at 0φ  = 0.3 of cake porosity profiles in u coordinates as function of dimen-
sionless time in steps ΔT. Here horizontal coordinate is material height coordinate u. 
 

 
Figure 26. The porosity φ (ξ,T) for δ = −260 and 0φ  = 0.3 for 10 steps ΔT = 0.005 to T = 0.05. 
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0φ  = 0.3 for T from 0 to 0.05 in steps of ΔT = 0.005: 
This gives an indirect way to resolve φ (ξ,T) without stepping into the intri-

cate Stefan moving boundary problem, and still find a rather strong solution. 
The physics of the moving boundary problem keeps the jump sharp even in 
these rather strong solutions, as was indeed observed in many experiments. NB. 
The initial flat profile was modified by a small upward curve near the vessel’s 
top, to suppress oscillations and blow-up at the start. 

5. Bead and Spring Model 

The poroelastic counter-current compaction can be seen as a porous elastic weak 
“Bead and Spring” model, subjected to a gravity field, with the coordinate system 
(e.g. coordinate z) attached to the dispersed medium (the bead and spring sys-
tem) of lateral area A, as shown in Figure 27. 

Rotate graph 90 degrees counter-clockwise for actual position in sedimenta-
tion, 90 degrees clockwise for creaming. The porous medium in the vessel is as-
sumed to consist of N cells filled with a (repeating bead and spring) elastic por-
ous medium. Initially, all cell “boundaries” are equidistant at distance Δz0 = H/N 
and porosity 0φ . The left side is the bottom wall attached to the first cell. The 
right-hand side N is initially a bead next to the other vessel wall, without being 
attached to the wall (or simply ending in a water-filled medium to the right of 
that point N). The clearing between the right-hand side wall and the right-hand 
side bead is the thickness Ω of the depletion layer (initially zero). 

When gravity is applied, the spring chain will fall (displace to the left on the 
graph) compressing the elastic springs (near the bottom wall) and pushing the fluid  

 

 
Figure 27. Bead and Spring Model in natural dimensions and scaled dimensionless. 
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inside the dispersed system to the right, displacing the coordinate zN, when the dis-
persed material of the last cell moves to the left (starting with the same fall displace-
ment rate as all other beads). The volume in each cell is initially 0cellV A z= ∆  where 

0A z AH N∆ =  with A area, H length of vessel, and N number of beads and 
springs, with dispersed volume [ ] [ ], 0 0 01 1cell dispersed cellV V A zφ φ= − = − ∆ . The fluid 
movement will displace cell j boundaries zj and zj−1, such that the same volume of 
dispersed material [ ], 0 01cell dispersedV A zφ= − ∆  stays in between the boundaries in 
the cell j, that has at any time a volume of ( ), 1cell j j jV A z z −= − . The coordinate 
zj is attached to the dispersed material and moves co-current with that dispersed 
material at the upper boundary of cell j. The porosity of cell j is thus at any time  

( ), , 0 0

, 1

1
1cell j cell dispersed

j
cell j j j

V V z
V z z

φ
φ

−

− − ∆
= = −

−
. The volume of dispersed material in a 

cell is conserved, hence the volume change in a cell is the volume of fluid that is 
pushed out of the cell. The difference of these flows through the cell boundaries 
compresses the cell fluid volume (per unit time), hence per unit area: 

1
, , 1

d d
d d

j j
w j w j

z z
q q

t t
−

−− = − + . Thus ,

d
d

j
w j

z
q

t
= −  and of course the solid is mov-

ing counter-currently: ,

d
d

j
s j

z
q

t
= + . Darcy has the factor 1/2 in this coun-

ter-current flow: ( )dd 1 d1
d 2 d 2 d

w
w

Pz k kq g
t z z

φρ φ ε
µ µ

 = − = − = − ∆ − + 
 

. Using 

Carman-Kozeny en Van Wyk and the dimensionless scaling as used before: 
3d 1 d

d 1 d
Q

T
ξ δφ φ φ

φ φ ξ
 −′− = = +  −  

. Therefore, our scaled pde has not changed: 

3 1
1

Q
T
φ δφ φ φ

ξ φ φ ξ ξ
  ′ ∂ ∂ − ∂ ∂

= + = −  ∂ ∂ − ∂ ∂  
. Rearranging is 

Q
T
ξ

φ
′∂ ∂

= −
∂ ∂

. We may 

therefore use a volume-conservative numerical scheme:  

( ) ( ) ( )

1
1 1

1 12 2
1 1

k k

j j k k
j j j jQ Q

T

φ φ
ξ ξ

+

− − + +
− −

 
−  

  ′ ′− = − +
∆

 for a time-step ΔT between Tk and 

Tk+1 for each spring element j = 1, N where ξ0 = 0 and initially springs equidis-
tant ζj = j/N. This procedure is often used in literature for this Richards’ type of 
equations [18]. 

The bead and spring model is a weak solution with an infinitely sharp flank 
towards the supernatant. Therefore, the Rankine-Hugenoit jump condition at 
the flank towards the supernatant (with conditions 0Q′ =  and φ  = 1) applies:  

*d d d
d d d 1flank upstreamflank

Q Q Q
T T T

ξ ξ
φ φ φ
↓ ↑

↓ ↑

′ ′−  ′ Θ − = − = − = =     − −    
. Here, Q′  and φ  are  

taken at the top of the cake, e.g. the low porosity side of the vertical flank (the 
upstream side) and ξ* a coordinate attached to the material in the dispersed 
phase. 

We will try a different route to solve the pde using the weak bead and spring 
model. We had derived above that for a coordinate zj attached to the dispersed 
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material moving co-current with dispersed material at the upper cell wall of cell j  

that ,

d
d

j
w j

z
q

t
= −  or expressed in our scaled coordinates 

*d
d

j
jQ

T
ξ

′ = − . The flu-

id flow dQ T′  through a horizontal level in the cake must displace the dispersed 
material over a distance −dξ*. For a spring element therefore,  

( )* 1 * 1 * 1 *
1 1

k k k k
j j j j j jQ Q Tξ ξ ξ ξ+ + +

− −′ ′∆ = − = ∆ − − ∆ ,  where *
0 0jξ = =  and 0 0jQ =′ =  

and ΔT has a time-step k to k + 1. The flow rate jQ′  is calculated by 

1 1
2 2

3

1 1
12 2

1
'

1
j jj j

j
j f j j

Q
φ φδφ φ

φ φ ξ ξ
+ −

+

− −
= +   − ∆ + ∆ 

. The average porosity jφ  in the 

spring element j is given by 
( ), , 0 01

* 1
,

1
1cell j cell dispersedk

j k
cell j j

V V
V

φ ξ
φ

ξ

∗
+

+

− − ∆
= = −

∆
. If as-

suming that the flow rate Q′  changes approximately linear over each cell, the 
average porosity represents the middle value of the cell, e.g. 1

2
jj

φ φ
−

= . We need 

to interpolate these middle cell porosities at 1
2

j −  to the value at the upstream 

side cell boundary j, e.g. at the position of “the bead” at *
jξ . For cell wall j: 

* 1
1 1 1 1

1 1 1* 1 * 1
1 12 2 2

k
jk k k k

j k kj j j
j j

ξ
φ φ φ φ

ξ ξ

+
+ + + +

+ +− + −
+ −

∆  
= + −  ∆ + ∆  

. For the lower first cell boundary j = 0: 

* 1
1 1 1 11

0 1 3 1* 1 * 1
1 22 2 2

k
k k k k

k k

ξ
φ φ φ φ

ξ ξ

+
+ + + +

+ +

 ∆
= − −  ∆ + ∆  

. Extrapolating for the upper cell upper 

wall N: 
*

1 1 3* *
12 2 2

N
N N N N

N N

ξ
φ φ φ φ

ξ ξ− − −
−

 ∆
= + −  ∆ + ∆  

. The last grid point ξ*(N) coin-

cides continually with the start of the depletion layer at ξ = 1 − Θ in the original 
space fixed grid. The volume conservation of the fluid can be checked by 

( )*

1
1

N

j j
j
φ ξ

=

∆ + −Θ∑ , which always equals 0φ , whereby Q′  is non-negative and 

Θ increases in each step, otherwise, the simulation stops. An improvement 
might be to impose the required monotony in Q′  and φ , and require the 

( )

4

2

d
d 1
φ δφ
ξ φ

−
≤

−
, the maximum slope at equilibrium. This is not implemented yet.  

Even when starting with equidistant spatial mesh, the springs near the bottom 
wall compact quickly to create a non-equidistant mesh. The stable size of the 
time-step can be determined by the displacement rate  

( )
( )

23

2

3 2
1 1

U
T

δφ φξ δφ
φ φ φ

− ∂ ∂
= ≈ = 
∂ ∂ − − 

. For the cake with 0φ φ≤ , a maximum rate 

at 0φ φ=  or 
( )

( )

2
0 0

max 2
0

3 2

1
U

δφ φ

φ

−
=

−
 occurs. We expect sufficient small displacements  

to maintain sufficient stability if ΔT = 0.5Δξ/Umax. A Fortran simulation for the 
bead and spring model for sedimentation WE 6.2% in centrifuge for 0φ  = 0.293 
for δ = −0.22, −29, −115, −261 and −464, for N = 10 or 20, appears reproducibly  
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Figure 28. Dimensionless scaled supernatant height Θ(δ,N) = Ω/H where N is the number of di-
mensionless spatial steps (N = 10, 20) in the simulation as function of dimensionless scaled time T. 

 
consistent up to a reasonable time, as shown in Figure 28: 

The experimental data are scaled dimensionless by τ = 45,477 s and H = 0.022 
m. In comparing the simulation with the experimental data at 3000 rpm, it ap-
pears that most misfit is due to the uncertainty of the zero time: a small wait-
ing time is expected. The observed order of magnitude of 100 seconds seems 
rather large but not unrealistic considering the preparation and design of the 
centrifuge experiment where the centrifuge has to gain speed. The fit can be 
improved by adapting the roughly guessed simulation parameters τ, δ, and in-
corporating a waiting time, but this was not pursued further, since the repro-
ducibility of the experiments is low (see the experimental section, Figure 15). 
The detailed simulated profile for 3000 rpm is shown for δ = −261, N = 10 in 
Figure 29: 

The elementary bead and spring model is fast, but accuracy is uncertain, espe-
cially at longer time. 

6. Discussion 

The 1-dimensional consolidation theory in soil is often based on Terzaghi’s 
theory that assumes that the soil is fully saturated with water, that water and soil 
are incompressible, the effective stress is the sum of the total stress in the rock 
and the pore pressure, strains in soil are small, Darcy’s Law applies to hydraulic 
flow, permeability and volume compressibility are constant, and there is a 
unique relation between porosity and stress, independent of time. Our theory 
can cope with nonlinear changing of permeability and elasticity during the con-
solidation processes over larger, non-linear strains and stresses, and correctly 
incorporates the buoyancy force. 
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Figure 29. The porosity development of WE 6.2% in centrifuge (δ = −261 0φ  = 0.2983). 
 

Even the Terzaghi theory is better than expected from the small amplitude li-

nearization. When written as 
2

2

1
2

k
t z
φ ε φ

µ
∂ ∂
∂ ∂
 , the coefficient of consolidation 

1
2vc kε
µ

=  is a product of kε which is a better constant over a wider range of  

consolidation due to the compensating effects in the porosity dependence of the 
product of k and ε. 

The same pde equation applies in washing, when a falling cloth filled with 
washing liquid hits the rotating drum, creating on impact a pressure 1/2 ρv2 
from its fall speed v, or an article is squeezed, or hit by a stick, exerting again a 
pressure, such that the fluid in the pores moves suddenly with respect to the 
dispersed material that then compacts and builds an elastic counter force that 
slows the drainage. The initial fast drainage relative to the fibres gives the best 
wash action, dislodging dirt from the fibres. In partially aerated clothes, e.g. with 
foaming, the wash action on impact repeats—less efficiently—in subsequent 
patches of fluid. This explains why fully saturated clothes wash less efficiently. 
Not only is foam in washing liquor aesthetically pleasing, but the foam-inducing 
surfactant facilitates lowering of the interfacial tension which dislodges dirt, 
keeping it in suspension, and assists in the mechanics of the washing process by 
creating repeated air patches within the clothes. 

Another action is the permeable piston applying pressure on a fluid-infiltrated 
dispersed system (cake), such that it compacts in a filtration operation, draining 
fluid from dispersed material. Such processes are described by the same equa-
tion, with the appropriate adapted initial and boundary conditions. 

Even the reverse process, swelling of dehydrated cake, is a process that might 
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be described by the same type of equations and relations, at least when the 
process is slow and reversible (elastic). 

7. Impact and Outlook 

There is a wide range of measures to stabilize dispersions/emulsions based on 
experience in the field that can now be understood and quantified according to 
our model: make fluid viscous and turn fluid into a gel during storage; add 
structurants to liquids (starch, alginate, micro-fibrillated cellulose, gums like 
LBG and guar); add a hygroscopic material (starch) to absorb the first free liq-
uid; increase viscosity, decrease elasticity, permeability and density difference. 
We may now measure stability quickly in fast centrifuge and translate results 
straightforward into slow changes in shelf life in earth’s gravity. 

There are a large collection of models and literature on sedimentation, 
creaming and synaeresis in porous, granular, or fibrous media, for granulates, 
for suspensions, for dispersions, or for emulsions. The solutions presented there 
often apply to a smaller range and are usually based on semi-empirical interac-
tion parameters for particle-particle interactions between specific particles. Our 
model uses a trick to circumvent the specific disperse interaction and focus on 
the fluid flow in poroelastic media, using smart scaling relations that make the 
theory more universal and applicable in many different formulations. Pheno-
menological models for thickening during sedimentation of flocculated suspen-
sions are generally based on the Kynch model, where the compaction reaches a 
fixed lower porosity limit in the cake to avoid further compaction [19] [20] [21] 
[22]. In our model, that condition is reached by the local dynamic balance of 
buoyancy and elastic forces in the compaction drainage of porous media, using 
widely applicable smooth permeability and elasticity functions that at the same 
time determine the range of applicability, together with the simplifying assump-
tions mentioned in the introduction (§1.1). The counter-current flow without 
segregation requires initial porosities below say typically 45%, or small values of 
parameter δ. Discrete droplet aeration asks for an overrun below 50% - 150%, 
depending on level of air stabilizers. In soils, the residual gas saturations should 
be below typically 35% to trap the gas as discrete bubbles. 

Extending the model by additional physics, like starting with a particular 
monotone profile, adding compressibility of fluid or solids, anisotropy, solving 
the full centrifuge equations in cylindrical symmetry, seems straightforward. 
Even replacing the Carman-Kozeny or Van Wijk equations respectively by the 
permeability and elasticity characterisations using other dedicated equations as a 
function of porosity can easily be done. The reverse process of drainage compac-
tion, e.g. imbibition of fluid infiltrating into swelling porous media, is also im-
portant (in reservoir and civil engineering, like capturing rainfall), but is not 
modeled here, as plastic or elastic responses require different solutions. The re-
versible elastic mode of dynamic counter-current imbibition will resemble the 
reverse of our counter-current drainage compaction solutions. The extension to 
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more than one flowing (connected) fluid phase (aqueous, and/or oleic, and/or 
gaseous) requires extra physics (capillarity, hysteresis, relative permeability) and 
additional models (Van Genuchten, Corey, Brooks). In our model, additional 
fluids are only present as disconnected dispersed bubbles (overrun) or droplets 
(emulsions) that are trapped in the dispersed phase and flow co-current with 
that dispersed phase, and counter-current with the draining fluid. 
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