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Abstract 

Using the fact that a multivariate random sample of n observations also ge-
nerates n nearest neighbour distance (NND) univariate observations and 
from these NND observations, a set of n auxiliary observations can be ob-
tained and with these auxiliary observations when combined with the original 
multivariate observations of the random sample, a class of pseudodistance 

hD  is allowed to be used and inference methods can be developed using this 
class of pseudodistances. The hD  estimators obtained from this class can 
achieve high efficiencies and have robustness properties. Model testing also 
can be handled in a unified way by means of goodness-of-fit tests statistics 
derived from this class which have an asymptotic normal distribution. These 
properties make the developed inference methods relatively simple to imple-
ment and appear to be suitable for analyzing multivariate data which are of-
ten encountered in applications. 
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1. Introduction 

For statistical inferences methods for continuous multivariate models, we often 
assume to have a random sample of size n of multivariate observations 

1, , nx x  which are independent and identically distributed as the 
d-dimensional vector of random variable x  with a d-dimensional density 
function ( )g x .  
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For the parametric set-up ( ) { } ( )1, , , mg f θ θ ′∈ =x θ θ  and let the vector 0θ  
denote the true vector of parameters, we would like to have statistical methods 
for estimating the vector 0θ  if the parametric model { }fθ  can be assumed 
and inference methods to validate the assumption of the model { }fθ  by means 
of various goodness-of-fit statistics. This leads to a composite null hypothesis 
and ideally we would like to use goodness-of-fit test statistics which follow a 
unique asymptotic distribution ∈Ωθ , Ω  assumed to be compact. 

The multidimensional model testing often poses difficulties as often good-
ness-of-fit test statistics used either have very complicated distributions such as 
the case of statistics which make use of multivariate empirical characteristic 
functions, see Csörgö [1] or for the classical chi-square tests where the asymp-
totic distributions for simple and composite hypotheses are simple but observa-
tions must be grouped into cells and there is some arbitrariness on choosing 
cells, see Moore [2], Klugman et al. [3] (pages 208-209) on extending chi-square 
tests for continuous multidimensional models. Goodness of fit test statistics us-
ing multivariate sample distribution function often has a very complicated null 
distribution, see Babu and Rao [4] and extensive simulations are needed to ob-
tain the p values of the tests. For applications in various fields, it appears that 
there is a need for developing goodness of fit tests statistics which are relatively 
simple to implement with the property of the tests based on such statistics which 
are consistent.  

Multivariate modelling is used in many fields which include actuarial sciences 
and finance. For financial applications, Moore [2] used the chi-square tests for 
testing whether the joint weekly returns of two assets follow a bivariate normal 
distribution but as mentioned earlier, for chi-square tests we need to partition 
the sample space into cells and the tests are not consistent despite the asymptotic 
null distributions of the statistics are simple.  

In this paper, we shall introduce a class of pseudodistance ( ),hD g f  con-
structed based on a class of convex functions ( )h x  which measures the discre-
pancy between the two density functions g and f, see details in Section 2.3. 
Goodness-of-fit test statistics for model testing based on hD  will preserve the 
property of having a simple asymptotic null distribution comparable to 
chi-square tests but unlike chi-square tests, the tests based on hD  are consistent 
for model testing. 

It is also interesting to note that within this class hD , the statistic based on 

hD  with ( ) ( )logh x x= −  can also accommodate parameters being estimated 
using maximum likelihood (ML) method for composite hypothesis. On the es-
timation side, estimators based on hD  will have the potential of having good 
efficiencies and robustness properties. Furthermore, estimation and model test-
ing can be handled in a unified way.  

The inference methods proposed extends previous methods for the univariate 
models to multivariate continuous models. This paper can be considered as a 
follow up of previous papers by Luong [5], Luong [6]. The neighbour distance 
(NND) notion is used in this paper to replace a similar notion of distance which 
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f was used when considering spacings and order statistics, see Ranneby et al. [7]. 
Order statistics are used for defining spacings for univariate models.  

The class of pseudo distances ( ),hD g f  is constructed using the following 
class of strictly convex functions ( )h x  with its second derivative ( ) 0h x′′ > . 
For each chosen ( )h x  we then have a corresponding pseudodistance 

( ),hD g f  and ( ),hD g f  is a discrepancy measure between density g and den-
sity f.  

Explicitly, the function ( )h x  takes the form  

( )h x xα= − ,                         (1) 

α  is a known constant with 0 1α< <  and in practice we choose α  near 0, 
and ( )h x  can also have the form 

( ) ( )logh x x= − .                      (2) 

Note that ( )1 logx x
α

α
−

− → −  as α  decreases to 0 and ( )h x  only needs  

to be defined up to an additive and a positive multiplicative constant and pro-
vided that these constants are known inference procedures based on hD  with 
( )h x  using α  decreasing to 0 have efficiencies very close to inference proce-

dures using hD  with ( ) ( )logh x x= − . 
Furthermore, if ( ) ( )logh x x= −  is used to construct the pseudo distance 

hD , estimation using this pseudo distance will give the maximum likelihood es-
timators. This hD  as a pseudodistance is up to a few terms which does not de-
pend on θ  the Kullback-Leibler (KL) distance used to generate ML estimators. 
These few terms without involving θ  do not affect estimation but they are very 
significant for construction of goodness-of-fit test statistics as goodness of fit test 
statistics constructed using hD  will have an asymptotic normal distribution for 
model testing meanwhile goodness-of-fit test statistics using the KL pseudodis-
tance do not have a simple asymptotic distribution especially for the composite 
null hypothesis case where parameters must be estimated using the ML estima-
tors. We shall give more discussions in Section 2.2. 

The paper is organized as follows. In Section 2, we introduce the auxiliary ob-
servations obtained from the NND observations. The class of pseudodistances 

hD  is also introduced in this section. Asymptotic properties of estimators based 
on hD  are considered in Section 3. Estimators obtained using hD  with 
( ) ( )logh x x= −  are identical to ML estimators which are fully efficient. If other 
( )h x  is used for hD , the corresponding estimators have the potential of good 

efficiencies and some robustness properties. These properties allow flexibility for 
balancing efficiency and robustness. In Section 4, goodness-of-fit statistics based 
on the class hD  are shown to have an asymptotic normal distribution and in 
Section 5 an example is provided for illustration of the proposed techniques. 

2. Pseudo Distances 

2.1. Nearest Neighbour Distance (NND) Observations 

For each vector of observation , 1, ,i i n=x   in the random sample, we define 
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ir  the nearest neighbour distance (NND) to ix  with 

min
j ii x x j ir ≠= −x x , 

 is the commonly used Euclidean distance 
and ir  clearly can be obtained using the sample of d-variate observations.  

In the literature, these ir ’s have been used to construct goodness of fit statis-
tics, see Bickel and Breiman [8], Zhou and Jammalamadaka [9] but often these 
statistics for multivariate models do not have a simple asymptotic distribution 
which might create difficulties for applications. Now, we can define iy  as given  
by proposition 2 by Ranneby et al. [7] (page 433) with i d iy nc r=  or equivalent-

ly , 2i
d i

y
c r d

n
= ≥ , 

2

1
2

d

dc
d
π

=
 Γ + 
 

, π  is the usual constant pi used in  

formulas to find volume or area and ( ).Γ  is the commonly used gamma func-
tion. 

Note that we have 1, , ny y  which are n univariate auxiliary observations 
obtained from NND observations. Therefore, from the original observations of 
the sample 1, , nx x  and using the n auxiliary observations, we can form the 
following 1d +  multivariate observations 

( ) ( )1 1, , , ,n ny yx x . 

These n observations for n →∞  are asymptotically independent and have a 
common density function given by the density of ( ),YX  below, 

( ) ( ) ( )2
0 , e gp y g −= xx x ,                    (3) 

see the end of Section 2 given by Kuljus and Ranneby [10], (p1094). In fact, the 
situation is similar to the univariate case where spacings were used, see Luong [5] 
(pages 619-620).  

Now we can consider the random criterion function  

( ) ( )( )1

1 nh
n i iiQ h y f

n =
= ∑ xθθ                   (4)  

for the class of function h defined by expressions (1) and (2), we shall see subse-
quently that inference methods based on the objective functions (4) are pseudo-
distance methods based on a class of pseudodistance ( ),hD g f  where g and f 
are density functions. 

Minimizing ( )h
nQ θ  with ( ) ( )logh x x= − , we obtain the pseudodistance 

hD  estimators which are identical to maximum likelihood (ML) estimators, ML 
estimators can be viewed as pseudodistance estimators based on the Kull-
back-Leibler (KL) distance but we shall see goodness-of-fit tests statistics are 
complicated with the use of the KL distance unlike the ones which are based on 

( )h
nQ θ  and consequently based on ( ),hD g fθ . The KL pseudodistance used to 

derive ML estimators will be discussed in Section 2.2 and the class of pseudodis-
tances will be introduced in Section 2.2.  
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Furthermore, if we use ( )h x xα= −  to construct hD  then α  should be set 
near 0 but within the range 0 1α< <  for robust estimation without relying on 
a, explicit multivariate density estimate which is needed for the minimum Hel-
linger method as proposed by Tamura and Boos [11]. Therefore, it appears that 
the class of pseudodistance methods being considered are very useful for appli-
cations and they are relatively simple to implement so that practitioners might 
want to use them for applied works.  

2.2. Kullback-Leibler (KL) Pseudo-Distance 

The negative of the log likelihood function can be expressed as 

( ) ( )1

1 lognML
n iiQ f x

n =
= −∑ θθ  

and ML estimators can be viewed as the values obtained by minimizing the ob-
served version which can also be called sample version of the Kullback-Leibler 
(KL) pseudo-distance ( KLD ), i.e., ( ),o

KLD g fθ  defined as 

( ) ( ) ( )( ) ( )1

1, log ,n po ML
KL n i KLiD g f Q g x D g f

n =
= + →∑θ θθ ,     (5) 

p→  denotes convergence in probability,  
and minimizing ( ),o

KLD g fθ  is equivalent to maximize the log of the likelihood 
function. 

The KL pseudo-distance is defined as ( ), logKL g
f

D g f E
g

  
= −   

  
θ

θ , is the 

KL pseudo-distance. 

Howewer, for testing the validity of the model with the null composite hypo-
thesis given by 

( ) { }0 : ,H g f∈ ∈Ωx θ θ  

and since ( )g x  appears in the LHS of expression (5), it must be estimated and 
replacing ( )g x  say by a multivariate density estimate ( )ĝ x  will make the 
distribution of the LHS of expression (5) complicated despite that we can replace 
θ  by ˆ

MLθ . This might explain the limited use of the KL pseudo-distance for 
construction of statistics for model testing with the use of ˆ

MLθ . 

2.3. The Class of Pseudo-Distances Dh 

We shall focus on pseudo-distance methods based on ( ),hD g fθ  for parame-
tric model with emphasis on continuous multivariate models but some of the 
previous univariate results which are scattered can also be unified by viewing 
them as pseudo distance methods. 

In general for pseudodistances we require the following property: 

( ), 0hD g f >  if g f≠ , ( ), 0hD g f =  if and only if g f= ,    (6) 

g and f are density functions. The property given by (6) are needed for estab-
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lishing consistency of estimation and for consitency goodness of fit tests, see 
Broniatowski et al. [12] for more notions and properties of pseudodistances. 

Since ( ),hD g f  in general is not observable if g is unknown, we shall see at 
the end of this section that can define an observed version ( )0 ,hD g f  with the 
property ( ) ( )0 , ,p

h hD g f D g f→ . ( )0 ,hD g f  will satisfy the property given 
by expression (6) in probability which similar to ( ),o

KLD g fθ  with the property 
( ) ( ), ,po

KL KLD g f D g f→θ θ  for the KL distance. 
Now we work with following pair of observations to develop hD  methods, 

( ) ( )1 1, , , ,n nY Y ′′X X . 

For this sample, the observations are asymptotically independent using Pro-
postion 3 by Ranneby et al. [7] (p413) and as n →∞ , the distribution of 
( ),i iYX  tends to a common distribution, i.e., the common distribution is the 
distribution of the random vector ( ),YX  with joint density function given by 

( ) ( ) ( )2, e ygp y g −= xx x , 

see Kuljus and Ranneby [10] (p1101). 
Therefore, the results are very similar to the univariate case with the interpre-

tation ( )g x  being a multivariate density here instead of a univariate density, 
the results given by Luong [5] (page 624) continue to hold and we also have: 

1) ( )Z Yg= X  follows a standard exponential distribution with density 
( ) e , 0zf z z−= > . 
2) Z and X are independent. 
If we use Jensen’s inequality it follows that 

( )( )( ) ( ) ( )
( ) ( ) ( )

( ) ( )( )| |Z Z z

f x f x
E h yf x E E h z Z E h z E Z E h z

g x g x
      

= > =                  
 

for f g≠ , since ( )
( )

( )
( )

| 1
f x f x

E Z E
g x g x

   
= =      

   
 

and ( )( )( ) ( )( )zE h yf x E h z=  for f g= . 
Now, we can define  

( ) ( )( )( ) ( )( ),h zD g f E h yf x E h z= −  

and ( )( )zE h z  is a known constant which does not depend on the parameters 
given by the vector θ . 

Under the parametric model, if we consider to minimize ( ),hD g fθ  but g is 
unknown, it leads to consider the observed objective function ( ),o

hD g fθ  de-
fined below which is based on ( ),hD g fθ  with  

( ) ( )( )( ) ( )( )1

1, no
h i i ziD g f h y f x E h z

n =
= −∑θ θ , 

note that we have 

( ) ( ), ,po
h hD g f D g f→θ θ . 
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The pseudodistance hD  estimators given by the vector θ̂  based on 
( ),hD g fθ  is obtained by minimizing ( ),o

hD g fθ . Equivalently, it is obtained 
by minimizing  

( ) ( )( )1

1 nh
n i iiQ h y f x

n =
= ∑ θθ  

which is expression (4).  

3. Asymptotic Properties of Dh estimators 

3.1. Consistency 

It is not difficult to see that the hD  estimators given by the vector θ̂  which 
minimizes expression (4) is consistent by defining ( )( ) ( )( ),i i ih z n h y f= xθθ  
and by using assumptions and results of Section 3.1 as given by Luong [5] (pages 
622-624). 

The limit laws like uniform weak law of large numbers UWLLN and Central 
limit Theorem (CLT) are applicable by using the property of ( ){ },iz nθ  being a 
mixing sequence which is due to ( ), , 1, ,i iY i n=X   are asymptotically inde-
pendent with a common distribution as n →∞ . Therefore, 0

ˆ p→θ θ . 

3.2. Asymptotic Normality 

Using CLT and results given by Section 2 in Luong [5] (pages 626-631), we can 
conclude that 

( ) ( )( )12
0 0

ˆ L
hn N σ

−
 − →  Iθ θ θ , L→  denotes convergence in law, 

( ) ( )
0

2
0

0

ln ;f x
Eθ

 ∂
= −   ′∂ ∂ 

I
θ

θ
θ θ

 is the commonly used information matrix with 

2 1hσ = , if the function ( ) ( )logh x x= −  is used to define hD  and 0
hD  and 

( )( )

( )( )

2 2

2
22

Z

h

Z

E h Z Z

E Z h Z
σ

 ′  =
 ′′ 

 if the function ( ) ,0 1h x xα α= − < <  is used to define 

hD  and 0
hD  with the first and second derivatives of h denoted respectively by 

h′  and h′′ . The random variable Z follows a standard exponential distribution 
as given by expression 25 in Luong [5] (page 631) and from the standard expo-

nential distribution, we also have ( ) ( ) 1 , 1k
ZE Z k k= Γ + > −  and note that 

2 1hσ →  as 0α → .  

The hD  estimators using ( ) ,0 1h x xα α= − < < , might have some robust-
ness property using M-estimation theory, see Luong [5] (page 632) and might be 
preferred over the ML estimators. 

From the fact that the proposed hD  methods are density based but without 
requiring an explicit density estimate to implement hence they appear to be 
simpler for practitioners and can be used as alternative to other robust methods 
such as the Hellinger methods as proposed by Tamura and Boos [11]. Besides, 
the observed pseudodistances o

hD  based on hD  can also be used for construc-
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tion of goodness-of-fit statistics and lead to statistics which are relatively simple 
to implemement. 

4. Goodness-of-Fit Tests Statistics Using hD0  

For model selection and model testing we are primary interested on testing the 
null composite hypothesis  

( ) { }0 : ,H g f∈ ∈Ωx θ θ . 

Howewer it might be easier to follow the procedure to construct test statistics 
by first consider the test based on 0

hD  which is also implicitly based on hD  for 
the simple hypothesis first where there is no unkown parameter.  

4.1. Simple Null Hypothesis 

For simple 0 :H g f= , 
A natural statistics to use can be based on  

( ) ( )( ) ( )( )( )0
1

1, n
h i i ziD g f h y f E h z

n =
= −∑ x  and since ( )( ){ }, 1, 2,i ih y f i =x 

 
forms a mixing sequence, CLT can be applied with the distribution of each 

( )( )ih y f ix  tends to a standard exponential random variable and Slutsky’s 
Theorem can also be used if needed. Therefore, the following test statistic 

( )0 ,hnD g f  can be used and ( ) ( )0 , 0,L h
h ZnD g f N v→  where h

Zv  is the 
variance of ( )h Z  where Z follows a standard exponential distribution. 

For an α  level test, we can reject 0H  if  

( )0

1

,h

h
Z

nD g f
z

v
α−>  

where 1z α−  is the ( )1 α−  the percentile of the standard normal distribution. 
Equivalently, we can reject 0H  if  

( )0 ,h

h
Z

nD g f
z

v
α− < .                      (7) 

Note that ( ) ( )( ) ( )( )( )0
1

1, n
h i i ziD g f h y f x E h z

n =
− = − − −∑  and h

Zv  is also 

the variance of ( ).h Z−  

Now if we use 0
hD  with ( ) ( )logh x x= − , ( )( ) ( )( )logz zE h z E Z− =  and 

using the moment generating function of log Z  which is given by  
( ) ( ) ( )log

log e 1t z
Z ZM t E t= = Γ +  with ( ).Γ  being the gamma function so that 

the cumulant generating function ( ) ( )loglog log 1ZM t t= Γ +  and by differen-
tiating it, we can obtain the first two cumulants which are given by 

( )( ) ( )log 1zE Z ψ= , ( )1h
Zv ψ ′= , ( ).ψ  and ( ).ψ ′  are respectively the digam-

ma function and the trigamma function and they are available in most of the sta-
tistical packages. 

The test statistic given by expression (7) can be expressed explicilty as 
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( ) ( )

( )

1 1

1 1 log 1

1

n n
i ii iy f n

n n
ψ

ψ

= =
+ −

′

∑ ∑ x
              (8) 

and reject the simple 0H  

if 
( ) ( )

( )

1 1

1 1 log 1
 

1

n n
i ii iy f n

n n zα
ψ

ψ

= =
+ −

<
′

∑ ∑ x
 for an α  level test, 

0 1α< < .  
Note that the test is consistent as ( )0 ,hnD g f →∞  as n →∞  if g f≠ , so 

we will reject 0H  with probability 1 should g f≠  but this property is not 
shared by chi-square tests. Also, there is also the difficulty of arbitrariness of 
grouping observations into cells for chi-square tests, see Bickel and Breiman [8] 
for more discussions.  

Furthermore, if we use 0
hD  with ( ) ,0 1h x xα α= − < < , ( ) ( )1ZE Zα α= Γ + , 

( ) ( )2 1 2ZE Z α α= Γ +  and ( ) ( ) 2
1 2 1h

Zv α α−= Γ + Γ +   . 

The corresponding test statistic given by expression (7) can be expressed ex-
plicitly as 

( )( ) ( )

( ) ( )

1

2

1 1

1 2 1

n
i ii y f x n

n
α

α

α α

=
− Γ +

Γ + − Γ +  

∑
                 (9) 

and reject the simple 0H  if 

( )( ) ( )

( ) ( )

1

2

1 1
 .

1 2 1

n
i ii

y f x n
n z

α

α

α

α α

=
− Γ +

<
Γ + − Γ +  

∑
 

4.2. Composite Null Hypothesis 

For model testing, we consider the composite ( ) { }0 : ,H g x f∈ ∈Ωθ θ , since 

0θ  is unknown, first we estimate 0θ  by θ̂  which minimizes ( )0 ,hD g fθ , then 
we can form the following statistic, ( )0

ˆ,hnD g f
θ  and we shall show that 

( ) ( )0
ˆ, 0,L h

h ZnD g f N v→
θ  which is similar to the statistic for the simple 0H  

and unlike other statistics when parameters are estimated lead to complicated 
null distribution, we shall show that the statistics behave like the one used for 
simple 0H  in Section 4.1 and the equivalent rejection rules are similar to the 
ones given by expression (8) and expression (9) depending on the choice of 
( )h x  used for 0 ,h hD D . 
In fact, these expressions remain valid for the composite 0H  provided that 

we replace ( )if x  by ( )ˆ , 1, ,if i n=x 

θ  when they appear in these expres-
sions. 

As we have seen by using a version of CLT for mixing sequences if needed, 

( ) ( )0

0 , 0,L h
h ZnD g f N v→θ , now if we can establish  
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( ) ( ) ( )
0

0 0
ˆ, , 1h h pnD g f nD g f o= +θθ

              (10) 

with ( )1po  being a term which converges to 0 in probability and by Slutzky 
theorem,  

( ) ( )0
ˆ, 0, .L h

h ZnD g f N v→
θ  

Now, we will proceed to establish the property by expression (10). Using the 
Mean Value Theorem and the following expansion around θ̂ , we have 

( ) ( ) ( ) ( ) ( )0

2 0
0 0

ˆ 0 0

,1 ˆ ˆ, ,
2

h
h h

D g f
nD g f nD g f n

∂′= + − −
′∂ ∂

θ
θ θ

θ θ θ θ
θ θ

 

with θ  lies on the line segment joining θ̂  and 0θ .  

Since 
( )0

ˆ,
0hD g f∂

=
∂

θ

θ
 and using 

( ) ( )( ) ( )
2 0

2
0

,h p
Z

D g f
E Z h Z I θ

∂
′′→

′∂ ∂
θ

θ θ
,  

see Luong [5] (page 630). Also, since ( )0I θ  is positive definite, 
( )( )2 0ZE Z h Z′′ >  and 0

ˆ p→θ θ , we then have the relation as given by ex-
pression (10). 

Furthermore, if we use ( ) ( )logh x x= −  for hD , ˆ ˆ
ML=θ θ , 

( ) ( ) ( )0 0
ˆ ˆ , , 0,
ML

L h
h h ZnD g f nD g f N v= →

θ θ
. 

The use of the ML estimators ˆ
MLθ  for chi-square distance type statistics often 

create complications when comes to derive the asymptotic distributions of these 
statistics, see Chernoff and Lehmann [13] (p580), Luong and Thompson [14] 
(p249-251). 

For applications, it has been recognized that the maximum value attained by 
the log of the likelihood function can provide information on goodness-of-fit for 
the model being used, the test as given by expression (8) with ( )if x  replaced 
by ( )ˆ if x

θ
 formalizes the informal procedures on the use of the maximum 

value of the log likelihood function for assessing goodness-of-fit of the model, 
see Klugman et al. [15] but note that the condition of no tied observation is 
needed for the use of test based on the log of likelihood function as given by ex-
pression (8) with ( )if x  replaced by ( )ˆ if x

θ
, otherwise there are some values 

of 0iy =  and the log of these values are undefined meanwhile test based on 
o
hD  with ( ) ,0 1h x xα α= − < <  is well defined even with the presence of tied 

obsevations and in general we should fix a value for α  near 0 for balancing ef-
ficiency and robustness for the estimation procedures.  

5. Illustration 

For illustration of the proposed methods, we use the multivariate normal model 
with d dimension; its density function is often parameterized using the mean µ  
and the covariance matrix Σ  and it is given by 

( ) ( ) ( ) ( )1111
222; , 2π e , .d df R

−′− − Σ −−−= Σ ∈
x x

x x
µ µ

µ Σ          (11) 

Σ  is the determinant of the matrix Σ , see Anderson [16] (page 20). 
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There is redundancy when using elements of the matrix Σ  as parameters as 
Σ  being a covariance matrix; it is symmetric. 

We can eliminate the redundancy by defining the vector of parameters as θ  
with 

Vech
 

=  
 

µ
θ

Σ
. 

The Vech operator when applied to Σ  extracts the lower triangular elements 
of Σ  and stacks them in a vector. Equivalently, we can use the vector of para-
meters θ  instead of µ  and Σ  and express the multivariate normal density 
as ( );f x θ  to avoid redundancy of the previous parameterization. We assume 
that we have a random sample of size n which allows us to obtain the auxiliary 
univariate observations 1, , ny y  from NND observations and there is no tied 
observation so that 

0, 1, ,iy i n> =   

For illustration say we use 0
hD  with ( ) logh x x= − , the vector of estimators 

in this case coincides with maximum likelihood (ML) estimators, i.e., ˆ ˆ
ML=θ θ  

but for multivariate normal model, it is well known ˆ
MLθ  can be obtained expli-

citly, see Anderson [16] (page 112). 
Explicitly, 

ˆ ˆ
ML=θ θ , ˆ

ML Vech
 

=  
 

x
S

θ , 
1

1 n
iin =

= ∑x x , 

x  is the sample mean and S  is the sample covariance matrix which can al-
so be expressed as 

( )( )1

1 n
i iin =

′= − −∑S x x x x . 

For model testing then we can use the test statistic 

( ) ( )

( )

ˆ1 1

1 1 log 1

1

ML

n n
i ii iy f n

n n
ψ

ψ

= =
+ −

′

∑ ∑ x
θ

 

and reject the model if the statistics gives a value smaller than zα  for an α  
level test. 

As Tamura and Boos [11] have pointed out that, ˆ
MLθ  might not be robust 

and hence proposed multivariate Hellinger density estimators but a multivariate 
density estimate is needed for their procedures. For robust estimation or in case 
of having tied observation we might want to use 0

hD  with ( )h x xα= −  with 
α  being a positive number but near 0.  

In this paper, we focus on presentations of methodologies of hD , leaving si-
mulation studies for assessing power of the tests, the use of other distributions 
than the normal distribution for the null distribution of goodness-of-fit tests sta-
tistics and assessing efficiency when sample sizes are small or in finite samples 
for subsequent works. Practitioners might be encouraged to use these hD  me-
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thods.  
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