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Abstract 

The use of crop modelling in various cropping systems and environments to 
project and upscale agronomic decision-making under the facets of climate 
change has gained currency in recent years. This paper provides an evaluation 
of crop models that have been used by researchers to simulate maize growth 
and productivity. Through a systematic review approach, a comprehensive 
assessment of 186 published articles was carried out to establish the models 
and parameterization features, simulated impacts on maize yields and adap-
tation strategies in the last three decades. Of the 23 models identified, 
CERES-maize and APSIM models were the most dominant, representing 
49.7% of the studies undertaken between 1990 and 2018. Current research 
shows projected decline in maize yields of between 8% - 38% under RCP4.5 
and RCP8.5 scenarios by the end of the 21st century, and that adaptation is 
essential in alleviating the impacts of climate change. Major agro-adaptation 
options considered in most papers are changes in planting dates, cultivars 
and crop water management practices. The use of multiple crop models and 
multi-model ensembles from general circulation models (GCMs) is recom-
mended. As interest in crop modelling grows, future work should focus more 
on suitability of agricultural lands for maize production under climate scena-
rios. 
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1. Introduction 

There is an increasing recognition that climate change has led to intra-seasonal 
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yield variability and may also alter crop production in the 21st century (Basso, 
Cammarano, & Carfagna, 2013; Deb, Shrestha, & Babel, 2015; FAO, 2009). The 
most significant aspect of climate change is severity and occurrence of extreme 
weather events such as floods, drought and heat stress (Bassu et al., 2014; IPCC, 
2007; Stocker et al., 2013). Other factors that affect growth and productivity of 
crops include the crop agronomic management such as water application, tillage, 
fertilizer application and seasonal changes in the magnitude and trend of tem-
perature, precipitation and solar radiation (Ahmed et al., 2018; Kang, Khan, & 
Ma, 2009). The Intergovernmental Panel on Climate Change Special Report on 
Emissions Scenarios (IPCC, 2018) projected the possibility of regional differenc-
es in global production with the possibility of affecting over 5 million people 
who are likely to be at risk of hunger by 2100 (Stocker et al., 2013). According to 
IPCC (2018), the projected increase in global warming to 1.5˚C is likely to re-
duce productivity of key cereals including maize, rice and wheat in sub-Saharan 
Africa, Southeast Asia, and Central and South America.  

In order to ensure today’s food security and in the coming decades, efforts 
have been made on establishment of crop simulation models aimed at predicting 
growth, development and yield potential of a crop under certain environmental 
conditions (Basso et al., 2013; Wang et al., 2018; Xiao & Tao, 2016). Several dy-
namic crop simulations models (CSMs) have been developed and used widely to 
study physiological, physical and chemical processes of crop productivity under 
a changing climate (Kasampalis et al., 2018; Shi, Tao, & Zhang, 2013; White, 
Hoogenboom, Kimball, & Wall, 2011). The crop models and their outputs are 
then used to guide agronomic decision-making aimed at sustainable manage-
ment and development of adaptive strategies for responding to impacts of cli-
mate change (Basso et al., 2013). Optimum management practices that are either 
strategic or tactful including planting dates, selection of crop variety, fertilizer 
usage and water application can be analysed through proven models for plan-
ning purposes (Boote, Jones, & Pickering, 1996). Furthermore, crop simulation 
models can play a major role in evaluating the potential impacts of climate change 
on agricultural systems in the world (IPCC, 2007; Stocker et al., 2013). Likewise, 
CSMs have played a key role in interpretation of agronomic results and are in-
creasingly being used by farmers and policy-makers for decision-making in crop 
production. The differences in spatio-temporal scales and predicted changes in 
global climate and land use have led to development of several crop models by 
researchers for agronomic purposes. In addition, several general circulation 
models (GCMs) have also been developed for use in crop modelling and other 
related aspects (IPCC, 2007). Thus, the crop-modelling subject has attracted 
many researchers and policy makers and was one of the major issues discussed 
during the COP21 agreement in Paris in 2015.  

Scientific research on climate and crop modelling in the last three decades has 
increased tremendously and it is of critical importance to have an overview of 
existing models and their use, including their outputs, to inform future investi-
gations. Such an assessment can help answer weighty questions such as: 1) What 
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models are being used in crop simulation? 2) What are the input data and 
processes simulated? 3) Where have these models been applied? and 4) What are 
the outputs and limitations. Previous work undertaken have mainly focused on 
impacts of climate change on crop production in certain regions, some on gene-
ralised crop models and others on certain features of crop modelling. For exam-
ple, Zinyengere et al. (2011) examined the impacts of climate change in South 
Africa with the main focus being adaptation and carbon dioxide fertilization. 
Webber, Gaiser, and Ewert (2014) reviewed the role and suitability of crop mod-
els in aiding adaptation decisions towards food security in sub-Saharan Africa. 
Boote et al. (1996) discussed the uses and limitations of crop models. In this 
study, we review papers published in journals for the past 28 years (from 1990 to 
2018) with the main objective of exploring the models that are specifically used 
to simulate the impact of climate change on maize growth and productivity. This 
review forms a beneficial reference by addressing the limitations that exist on 
identification of the available models, the parameterization requirements, and 
the regions where such models have been applied. In the paper, we consider ma-
ize (Zea mays L.) since it is a major crop grown in most parts of the world to 
provide food and nutritional security for the vulnerable populations (Tesfaye et 
al., 2015). Like other crops, the main challenge that affects maize growth and 
development is the changing weather pattern, leading to intra-seasonal changes 
in yield (Lin et al., 2017). Other factors are variable soil properties, crop agro-
nomic management practices including planting, fertilizer application, tillage 
among others (Ahmed et al., 2018; Lin et al., 2017; Ramirez-Cabral, Kumar, & 
Shabani, 2017; Tesfaye et al., 2015; Tesfaye et al., 2018). We believe that analys-
ing the performance of various maize simulation models is vital for addressing 
the challenges posed by climate change. 

The specific objectives of the review include: 1) identification of the various 
models and geographic locations used, including the input parameters and si-
mulated processes; 2) examination of the projected simulated yields from vari-
ous models and the adaptation measures applied; and 3) identification of limita-
tions and future perspectives in crop modelling. This paper is intended to pro-
vide a basis for researchers as well as agronomic decision-makers who are inter-
ested in understanding the available maize simulation models and devising suit-
able perspectives in crop modelling. 

This paper is organized as follows: Section 2 describes the methodology used 
in the identification of peer-reviewed articles of interest. The results are pre-
sented in Section 3 focusing on the models available and their features, summary 
of articles published in the review period and overview on model objectives. In 
Section 4, a detailed discussion of the models and an overview of simulated im-
pacts of climate change on maize are presented. Lastly, Section 5 is on conclu-
sion and recommendations. 

2. Methodology  

Our study adopted a systematic review process as described in the scheme of 
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Figure 1. We used ISI Web of Knowledge (IWK) as the main source for identi-
fication of relevant peer reviewed articles. IWK was selected because it is one of 
the oldest citation databases with wide coverage of high impact journals that are 
mostly written in English (Aghaei Chadegani et al., 2013; Levine-Clark & Gil, 
2008). The first inclusion criteria involved searching of articles with the title ma-
ize and topics that included climate change, model, yield and simulation. The 
second inclusion criteria limited results to journal articles that were specific to 
maize and climate change on their titles. Lastly, the list of papers was filtered to 
exclude articles whose objectives were not focused on maize production, the 
non-peer reviewed journal articles, those written in languages other than English 
and those not available through internet sources. With an addition of five more 
papers that were identified through cross-referencing, the ultimate sources of li-
terature for this study were 186 papers dating from 1990 to 2018. An excel 
spreadsheet was developed to enter specific information on location of the study 
areas, model used, objective of the study, input parameters and outputs. Sche-
matic representation of the systematic review process is presented in Figure 1.  

Following the screening process, the other steps were extraction of informa-
tion from the articles according to the following thematic areas: 
• The simulation model used in the study 
• Focus of the model, input data and processes simulated  
• General circulation model (GCM) applied  
• Geographic location of the study 
• Objectives of the research, simulated outputs and adaptation strategies  

 

 
Figure 1. Flowchart detailing the systematic review process. 
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3. Results  

3.1. Maize Simulation Models  

Based on the criteria we used in our assessment, we identified 23 models that 
have been developed to simulate the impacts of climate change on maize pro-
duction (Table 1). The dominant models identified were CERES Maize (59 ar-
ticles) and APSIM (30 articles).  

3.2. Publications and Geographic Locations of the Studies 

The counts of journal articles published within the review period (1990 to 2018) 
has increased significantly (Figure 2); the highest number being recorded in 
2015 and none in 2005. The highest number of studies on maize yield simulation 
under the impacts of climate change has been undertaken in Asia, and the least 
in Australia, of all countries where models have been applied. The geographic 
distribution of the models in the various continents is presented in Figure 3.  

3.3. Focus of the Model, Input Data and Processes Simulated  

In terms of the selected features, the 21 models mainly focused on simulation of 
maize growth and yields, with the exception of CLIMEX and MaxEnt models 
whose focus was on predicting geographic distribution of maize under climate 
change scenarios. The GCMs that dominated in most articles were ECHAM5, 
CCSM, HadCM3, CSIRO-MK3, CGCM3.1, UKLO and MIROC3.2. The input 
parameters that were established to be common in most models were: 1) weather 
data including temperature, daily rainfall and solar radiation; 2) soil data in-
cluding soil type, soil depth, soil texture, soil organic carbon, bulk density, soil ni-
trogen; 3) crop information and management of crop species, planting date, row 
space, plant density; 4) field management practices such as water management, 
irrigation usage including scheduling, method and amount applied, fertilizer  
 
Table 1. Models used to simulate maize production under climate change.  

Model No. of Articles Model No. of Articles Model No. of Articles 

CERES-Maize 59 CROPWAT 2 SPACSYS 1 

APSIM 30 ISAREG 2 FASSET 1 

statistical 12 MAISPROQ 2 SICTOD 1 

Cropyst 10 MaxEnt 2 LINTUL5 1 

WOFOST 9 4M crop 1 WINISAREG 1 

AquaCrop 8 Agro-IBIS 1 GAEZ 1 

DSSAT 8 AgroMetShell 1 MCWLA 1 

InfoCrop 8 AirMS 1 SuperEPPS 1 

EPIC 4 ARMOSA 1 SIMETAW 1 

GLAM 3 BISM 1 CLIMEX 1 

CMSM 3 WHCNS 1   
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Figure 2. Absolute number of published papers on maize simulation models (extracted 
from ISI Web of Knowledge). 
 

 
Figure 3. Distribution of the major maize simulation models in the world. The major maize 
growing areas shown in the figure was extracted from http://www.fao.org/geonetwork, ac-
cessed on 2nd March 2019.  
 
usage and type, pesticide application and tillage practices. The physiological 
process simulated by most models are phenology, biomass and evapotranspira-
tion. Specific input parameters for the models and processes simulated are pre-
sented in Table 2.   

3.4. Objectives of the Papers  

The objectives presented in different papers ranged from analysing the maize 
yields under the impacts of climate change, to adaptation strategies and model 
suitability (Table 3). From the findings, most (46.6%) of the papers investigated 
the impacts of climate change on maize production in terms of yields.  

4. Discussion and Synthesis 

4.1. Model Evaluation 

From the assessment, a total of 23 different simulation models were identified 
from the articles (Table 1). Of these, CERES-maize and APSIM models were the  
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Table 2. Detailed evaluation of the models.  

Model Focus of model Input parameters for model Physiological process simulated Sample References 

Crop-Environment  
Resource Synthesis 
(CERES)-Maize 

Simulate growth and 
yield 

Weather, crop, soil 
and management 

Phenology, photoperiod, biomass,  
canopy development, water and nitrogen 
dynamics 

(Araya et al., 2015; 
Araya et al., 2017) 

Agricultural Production 
Systems Simulator 
(APSIM) 

Simulate growth and 
yield 

Temperature, soil,  
precipitation and  
solarradiation 

Phenology, biomass, canopy, root  
system, senescence pools, water, nitrogen 
and phosphorus 

(Araya et al., 2015; Kim, 
Myoung, Stack, Kim, & 
Kafatos, 2016; Xiao et 

al., 2016) 

Statistical crop yield 
model 

Yield estimation 
Radiation, water deficit,  
average temperature, frost, 
and heat stress. 

Simulate growth, development and yield, 
the soil and plant water, nitrogen and 
carbon Balances 

(Landman, Engelbrecht, 
Hewitson, Malherbe, & 
van der Merwe, 2018) 

Cropping Systems  
Simulation Model 
(CropSyst) 

Simulate growth and 
yield 

Daily weather, soil profile 
properties and crop  
management 

Daily biomass accumulation 
(Abraha & Savage, 

2006; Tingem,  
Rivington, & Colls, 2008) 

World Food Studies 
(WOFOST) crop model 

Simulate growth and 
yield 

Weather data, soil data, crop 
management data 

Light interception, photosynthesis 
and respiration, evapotranspiration, leaf 
area dynamics, phonology and root 
growth 

(Ceglar &  
Kajfez-Bogataj, 2012; 

Ogutu, Franssen, Supit, 
Omondi, & Hutjes, 

2018) 

AquaCrop Yield estimation 
Weather, crop and  
characteristics, management 
practices 

Effect of water stress on crop  
development, crop transpiration ground 
biomass and yield and water uptake 

(Zydelis, Weihermuller, 
Herbst, Klosterhalfen, 

& Lazauskas, 2018) 

Decision Support System 
for Agro-technology 
Transfer (DSSAT) 

Yield estimation 
Weather, soil data and crop 
management data. 

Growth, development and yield, the soil 
and plant water, nitrogen and carbon 
balances 

(Ngwira, Aune, & 
Thierfelder, 2014) 

InfoCrop Yield estimation 
Weather, cultivar, agronomic 
inputs, soil data 

Crop and development, effects of water, 
nitrogen, temperature, crop-pest  
interactions, soil water balance 

(Choudhary, Patel, 
Yadav, & Pandey, 2014) 

Environmental Policy 
Integrated Climate model 
(EPIC) 

Yield estimation 
Topography, land cover, 
weather, soil, management, 
and plant parameters 

Biomass to energy ratio, the harvest  
index, planting density, photosynthetic 
active radiation, radiation use efficiency 
factor, and vapor pressure deficit 

(Xiong et al., 2016) 

General Large Area 
Model (GLAM) 

Yield estimation 
Weather, crop parameters, 
soil properties, management 
practices 

Biomass, harvest index, nutrient  
deficiency 

(Waongo, Laux, & 
Kunstmann, 2015) 

CROPWAT 
Determine crop  
water requirements 

Temperature, wind speed, 
sun-shine hours, relative  
humidity and rainfall 

Crop water requirements (Diossy, 2008) 

Maximum Entropy 
(MaxEnt) model 

Geographical  
distribution and 
climate suitability of 
species 

Bioclimatic variables including 
annual precipitation, annual 
temperature 

Habitat suitability 
(Nabout, Caetano, 

Ferreira, Teixeira, & 
Alves, 2012) 

4M crop Yield estimation 
Solar radiation, temperature 
and precipitation 

Development and growth 
of plants and the heat, water and nutrient 
balance of the soil 

(Fogarasi et al., 2016) 

Agro-Integrated  
Biosphere Simulator 
(Agro-IBIS) 

Yield estimation 
solar radiation, temperature, 
precipitation, humidity, wind 
speed, and soil properties 

Leaf growth, and soil carbon storage and 
turnover 

(Xu, Twine, &  
Girvetz, 2016) 

AgroMetShell Yield simulation 
Precipitation, potential  
evapotranspiration 

total water requirement, excess soil  
water, soil water deficit and water  
satisfaction index 

(Crespo, Hachigonta, & 
Tadross, 2011) 
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Continued 

ARMOSA Yield estimates 

Weather, soil physical and 
chemical properties, crop and 
soil related variables (e.g. crop 
yield, crop nitrogen uptake, 
soil water content) 

the root elongation rate and maximum 
depth, stomatal resistance and actual 
transpiration estimation, and drought 
tolerance factor 

(Perego et al., 2014) 

Water Heat Carbon  
Nitrogen Simulator 
(WHCNS) 

Yield potential 
precipitation, temperature, 
humidity, solar radiation 

soil water movement, soil heat and N 
transport, and crop growth 

(He, Liang, Hu, Wang, 
& Hou, 2018) 

Soil-Plant-Atmosphere 
Continuum System 
(SPACSYS) 

Yield potential 
Weather, CO2, precipitation, 
crop management, soil  
properties 

Plant growth and development, root 
system and processes associated with soil 
C and N cycle 

(Liang et al., 2018) 

Farm Assessment Tool 
(FASSET) 

Yield potential 
Temperature, precipitation, 
soil data, Crop management 

crop growth dry matter production and 
N content of vegetative, storage and root 
organs 

(Ozturk, Kristensen, & 
Baby, 2018) 

Global Agro-Ecological 
Zones (GAEZ) model 

Yield potential 
solar radiation, air  
temperature, and crop  
characteristics 

Crop growth 
(Xu, Wang, Sun, Liu, & 

Banson, 2017) 

Crop-Weather  
relationship over a Large 
Area (MCWLA) 

Adaptation of maize 
production 

crop growth and  
development, canopy  
development, flowering, and 
maturity 

Mean temperature, precipitation, vapour 
pressure, and fractional sunshine hours. 

(Tao & Zhang, 2010) 

Simulation of  
evapotranspiration of 
applied water 
(SIMETAW) model 

Yield estimates 

Maximum, minimum, and 
dew point temperature,  
precipitation, wind speed and 
soil data 

effective rooting depths and ETc 
(Yang, Gao, Shi, Chen, 

& Chu, 2013) 

CLIMEX 

Geographical  
distribution and 
climate suitability of 
species 

Temperature, average  
precipitation, relative humid-
ity, soil moisture data 

Crop phenology and stress indices 
(Ramirez-Cabral et al., 

2017) 

 
Table 3. Objectives of the selected crop modelling papers published between 1990 and 
2018. 

Objective of the paper No. of papers (%) 

Adaptation 25.2 

Impact on maize yields 46.6 

Impacts and adaptation 23.8 

Model suitability, impact and adaptation 1.9 

Model suitability 2.4 

 
most dominant, representing 49.7% of the models. The models identified were 
majorly process-based that have been developed to compute crop dynamics 
based on deterministic equations and simulation of underlying processes at par-
ticular time scales (Roberts, Braun, Sinclair, Lobell, & Schlenker, 2017). To give 
an insight into the distribution of the studies, the geographic locations were 
dominated by Asia (35% of the articles) and Europe (26% of the articles) that 
researched on impacts of climate change on maize production. In particular, 
North China and France were the major areas where several studies have been 
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undertaken. Fewer studies were observed in Brazil, and East and South Africa, 
which are among the major maize producers in the world. This observation is an 
indicator of the limitation in the developing countries (especially Africa) where 
minimal studies have been undertaken, despite the challenge of climate change 
and the lack of adequate adaptation strategies to sustainably manage crop pro-
duction (IPCC, 2014). The major uncertainties in undertaking studies in these 
countries could be associated with inadequate information, lack of continuous 
long-term crop data and facilities that can play a great role in defining research 
priorities on crop modelling with an aim of understanding plant responses to the 
changing environment (Di Paola, Valentini, & Santini, 2016). As a result of this, 
there is inadequate information that can be passed to stakeholders and farmers 
due to minimal research, lack of access and uncertainties associated with data 
used (Whitfield, 2013). Therefore, it is imperative that governments in develop-
ing countries or regions with limited data prioritise collection of weather data 
and support more research on modelling in order to plan strategies for adapting 
to the impacts of climate change on crop productivity.  

Of the 186 articles, only 7.5% simulated maize growth with more than one 
crop model. Those that simulated results with more than one GCM were ap-
proximately 17.2%. This then points to a possibility of uncertainties in results 
obtained from several studies using single crop models and GCMs. In line with 
this, Zhang, Zhao, and Feng (2018) in their study, observed that GCMs contri-
buted more uncertainties to maize-yield simulations compared to crop simula-
tion models that use observed environmental data. Therefore, the use of more 
than one model is encouraged in analysing the impact of climate change on 
crops in order to compare results which may vary due to the structure and mod-
el parameters (Shi et al., 2013; Tao, Zhang, Liu, & Yokozawa, 2009). In line with 
this, Semenov and Stratonovitch (2010), Bassu et al. (2014) and Zhang et al. 
(2018) noted that the use of multiple crop models is imperative in accounting for 
uncertainties in simulated results from individual predictions. Shi et al. (2013) 
recommended the combination of crop and statistical models in order to achieve 
better results on response of crop yields to climate change.  

4.2. Impacts of Climate Change on Maize Productivity  

Most reviewed articles (81%) assessed the impacts of climate change on maize 
productivity. Others were on yield, biomass and leaf area index (14%), biomass 
(5%) and area suitability for maize production (1%). Based on this review, the 
variability in simulated maize yield under the climate change scenarios RCP4.5 
and RCP8.5 in several studies showed decreases in maize yield of between 8% to 
38%. A typical example is the finding of Haris, Biswas, Chhabra, Elanchezhian, 
and Bhatt (2013) and Ceglar and Kajfez-Bogataj (2012) on their study using 
WOFOST model in Central Europe that showed a decrease in maize yield of 
between 10% and 16% in the 2050s and between 27% and 34% in the 2090s un-
der HadCM3 and ECHAM5 scenario. Similarly, Lin et al. (2017), using CERES 
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maize in several sites in Northern China showed that the average maize yield 
would decrease by 2.1% in 2020s, 12.9% in 2050s and 22.7% in 2080s under 
RCP4.5. Moreover, they projected greater reduction of 6.3%, 18.4% and 47.5% in 
the respective periods under RCP 8.5 without considering the effects of CO2 fer-
tilization. Again, a study conducted by Choudhary et al. (2014) using InfoCrop 
model in India projected an increase of both maximum and minimum tempera-
ture by 4.3˚C and CO2 concentration by 0.24 ppm on annual basis between 2071 
and 2100 leading to reduction of total biomass by approximately 10% and LAI 
by 16%. In West Africa, Parkes, Sultan, and Ciais (2018), in their study using 
General Large Area Model (GLAM), projected a reduction of maize yields by 
5.95% with an increase of temperature. A study by Araya et al. (2015) in Ethiopia 
using APSIM and CERES maize models under 20 GCMs and RCP 4.5 and 8.5 
reported an increase in maize yields of between 1.7% and 4.2%. Araya et al. 
(2017) using multiple GCMs in western Kansas reported a decline of maize yield 
in the mid-21st century by 18% - 33% under RCP4.5 and 37% - 46% under RCP 
8.5. A study by H. Xu et al. (2016) in IOWA using Agri-IBIS model established 
that maize yields are projected to decreased by 10% - 20% by end of the 21st 
century even with sufficient amount of water and in the strongest climate forc-
ing scenario.  

Studies that considered the effect of carbon dioxide fertilization in the years 
2050 and 2070 reported that maize, being a C4 plant, is likely to decrease in 
yields, especially under increased water stress conditions. For example, Lin et al. 
(2017) forecasted a reduction of maize yield due to CO2 fertilization from 22.7 to 
19.5% under RCP4.5 and 47.5% to 44.1% under RCP 8.5. Z. Jin et al. (2017) re-
ported a mean decrease in yields of maize in the USA by 12% and 25% under 
RCP 4.5 and RCP 8.5 respectively, which are comparable to other studies that 
use multiple-process-based models under multiple GCMs (Ruane et al., 2013). 

In terms of area suitability for maize production, Ramirez-Cabral et al. (2017) in 
their study using CLIMEX distribution model with climate data CSIRO-Mk3.0 
and MIROC-H GCMs predicted high loss of climate suitability for maize pro-
duction between the tropics of Cancer and Capricorn (highest being in South 
America, followed by Africa and Oceania); whereas poleward regions (including 
Asia, Europe and North America) exhibit increase in suitability.  

In analysing the outputs of the simulated results from the models, one of the 
challenges in this review was to undertake an inter-comparison of the estimated 
yields, which in most cases differed in various studies. This is supported by the 
works of Bassu et al. (2014) who pointed out that different models produce dif-
ferent projected impacts of climate change due to variability in parameterization 
processes. In addition, model simulations vary due to differences in structure, 
processes considered and their relative importance depending on the region 
where the model was developed (Challinor, Ewert, Arnold, Simelton, & Fraser, 
2009). For instance, the parameters that influence crop yield could be different 
from those of temporal changes in various regions, therefore confirming the lack 
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of a modelling methodology that can perform equally well across the globe 
(Hansen & Jones, 2000; Reidsma, Ewert, Boogaard, & van Diepen, 2009).  

In general, most studies and models reviewed reported mainly on maize pro-
duction and yields compared to those that analysed variation in geographic sui-
tability and distribution of the crop as influenced by climate change. 

4.3. Adaptation Strategies and Their Implications 

While estimates using different maize simulation models project decline in 
yields, most studies emphasized that future maize production can benefit from 
various adaptation strategies aimed at offsetting the negative impacts of climate 
change on maize production. Some of the dominant adaptation measures consi-
dered in 44 studies shown in Table 3 (25 on adaptation and 19 on impact and 
adaptation) were change of sowing date, cultivars and crop water management, 
respectively represented by 47%, 31% and 3% of the studies under this review. 
The major adaptation strategies suggested for consideration on crop models in-
clude breeding new cultivars, proper irrigation and soil nutrient management 
(Bannayan, Paymard, & Ashraf, 2016; Lin et al., 2017; Moradi, Koocheki, Ma-
hallati, & Mansoori, 2013; Rurinda et al., 2015; Xiao & Tao, 2016).  

The study by Lana et al. (2016) is a notable example that reported how change 
of planting date impacted on maize yields. In their works, by using CERES-Maize 
model without factoring in adaptation strategies, showed reduction of 11.5% - 
13.5% in total maize production across the cultivars used. They also reported 
that by combining cultivar and the best planting date, they simulated an increase 
in production by 15%. Similarly, a study in Northern China by Lin et al. (2017) 
showed that maize yields would decrease by 6.9% and increase by 15.9% if 
planting days were advanced or delayed by 15 days respectively. Another notable 
example is by Parent et al. (2018) who, in their study using APSIM model and 
six field experiments in South and Northern Europe projected an increase of 4% 
- 7% in grain production through adaptation that involves genetic variability of 
flowering during the crop cycle. Rahimi-Moghaddam, Kambouzia, and Deihim-
fard (2018) found that, by combining early sowing and using cultivars which 
have high thermal time requirements in North Eastern, there is high likelihood 
of reducing the impact of climate change on maize productivity. Lashkari, Ali-
zadeh, Rezaei, and Bannayan (2012), Bannayan et al. (2016) and (Araya et al., 
2015; Araya et al., 2017; Reddy et al., 2016) in their studies also reported positive 
effects of early sowing dates as an adaptive strategy towards impact of climate 
change. D. P. Xiao et al. (2016) in their study in North China Plain using APSIM 
model concluded that cultivation of maize cultivars with longer growing periods 
and higher thermal requirements could be a potential adaptation measure to-
wards mitigating the impacts of climate change on crop production.  

Adequate polices on adapting agriculture to climate change have also been 
proposed. For example, Kang et al. (2009) in their study on climate variability 
and droughts in Australia proposed adjustments in allocation of surface and 
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ground water, improvements in water use efficiencies in agriculture and estab-
lishment of a legal framework towards management of water resources in line 
with anticipated impacts of climate change on water resources. Approaches such 
as these can be used to ensure integrated water resources management and allo-
cations that can also benefit crop production through irrigation.  

4.4. Limitations of Crop Modelling  

The limitations inherent in crop models include the input parameters, calibra-
tion, evaluation and validation procedures and methods of simulating crop res-
ponses to various environmental and management factors, leading to uncertain-
ties in prediction of crop yields and identification of appropriate measures to-
wards adaptation (Bassu et al., 2014; Moradi et al., 2013). Likewise, as the in-
tended objectives of various models differ, the structure of the model including 
the input parameters may result in differences in projected climatic impacts, 
which in most cases are based on estimations. The performance of models is also 
constrained by the accuracy and precision of the input data, which can be af-
fected by poor calibration of the sensors used in the research study before model 
applications (Boote et al., 1996). For example, most researchers use 
“above-ground” crop data as compared to data related to root growth and de-
velopment which are not extensive and with enormous sampling errors. In addi-
tion, very few studies accounted for important factors which play an important 
role in crop development, such as weeds, diseases, insects, cultivation and phos-
phorous. According to Basso et al. (2013), one of the challenges in crop model-
ling is the use of observed and simulated results to determine the cause of spatial 
and temporal crop variability and how to manage the crop from agronomic, en-
vironmental and economic perspectives. Other limitations associated with crop 
models are related to sensitivity to CO2, which has major influence on projected 
changes and remains an obstacle to the assessment of the impacts of climate 
change (Ruane et al., 2013).  

The use of GCMs provides reasonable accuracy on wide-scale assessments. 
However, their use for the prediction of climate scenarios is not without limita-
tions (Kang et al., 2009; Whitfield, 2013). These include systematic errors such as 
the tendency of northward displacement during winter in the northern hemis-
phere, too wet simulations in the middle latitudes of both hemispheres and un-
derestimation of clouds in the tropics (D’andrea & Vautard, 2000). Therefore, 
the use of GCMs with higher spatial resolutions is recommended in order to ac-
quire realistic projections on the impacts of climate change on crop production 
at a regional scale (Reddy & Hodges, 2000).  

Due to problems associated with field variabilities and challenges in the acqui-
sition of data, integration of remote sensing and crop modelling is important for 
in-season crop management (Moulin, Bondeau, & Delecolle, 1998). Under this 
approach, crop simulation models can offer a good understanding of temporal 
variability of crops and remote sensing images can be used to acquire informa-
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tion on actual variability and spatial distribution of crops during the growing 
season (Basso et al., 2013; Bastiaanssen, Molden, & Makin, 2000; Bayode, 2014; 
Kalian & Spannraft, 2010). This direction is supported by several experiments 
undertaken to monitor crop development in the field which have shown that 
remote sensing measurements in different wavelengths can provide information 
on crop activity and environmental conditions without undertaking actual field 
data collection. For instance, the major integration between remote sensing and 
crop simulation model is on adjusting the leaf area index (LAI) to model crop 
evapotranspiration, accumulation of biomass and estimation of yields (Dorigo et 
al., 2007; Jin et al., 2018; Jin et al., 2016; Strachan, Stewart, & Pattey, 2005). 
Though Basso et al. (2013) argued that remote sensing may not be suitable for 
use in mixed agricultural lands and small farm sizes, especially in developing 
countries where available satellite data is not of good quality, the future of crop 
modelling is more expected to integrate remote sensing.  

5. Conclusion and Future Work 

This paper presents the crops models that are used to simulate maize growth and 
development. Through a systematic review of literature, we identified 23 simula-
tion models from ISI Web of Knowledge that have been used to research and 
simulate maize productivity under the impact of climate variability. For the last 
two decades, these models have played a significant role in research, farm-level 
management and agronomic decision-making. To emphasize our findings, the 
following points briefly summarize our review and the future perspectives 
drawn:  
• Most articles have focused on projecting impact of climate change on maize 

production compared to adaptation and suitability of the geographic area for 
maize production. It is clear that with the anticipated effects of climate 
change, adaptation of maize production systems is essential.  

• The process-based models that are used in maize simulation vary in their 
complexity but share some inter-comparable input parameters and plant 
processes that include phenology, canopy and biomass establishment. Com-
parability of the input parameters in the models is relevant for climate 
change studies where results can inform decision-making and policy direc-
tion.  

• With the broadening of crop simulation models, concerns include the relia-
bility of outcomes from a single simulation model that may not adequately 
factor in all the pertinent processes. To address this challenge, the use of 
multiple crop models and GCMs to simulate crop growth remains a major 
consideration in future crop modelling in order to minimize uncertainties in 
simulated results that can be linked with individual predictions. 

• Integration of remote sensing and crop models presents feasible agronomic 
consideration for monitoring of crop growth and yield forecasting. 

• As interest in crop modelling continues to grow, future research should focus 
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on modelling the spatial and temporal variability and suitability of agricul-
tural lands for maize production, which is currently under-researched.  

Though there could be some research gap regarding the criteria used in this 
systematic review and in analysing the large amount of diverse peer-reviewed ar-
ticles, the results of this study provide not only important insights on the diver-
sified maize simulation models and projected outputs, but also provide better 
understanding of the projected impacts, adaptations and future works towards 
sustainable maize production under the adverse impacts of climate change. 
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