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Abstract 
The water pollution situation in Balihe Lake, the biggest tributary of Shaying 
River Basin in Anhui Province, China, has brought a huge pressure on the 
improvement of water quality in Huai River. On October 16th, 2017, 11 major 
pollution indexes were observed at 15 sampling points in Balihe Lake. Based 
on the data experimentally measured, the water quality in Balihe Lake was 
analyzed utilizing the Principal Component Analysis (PCA) of SPSS. The re-
sult suggested that the major components were oxygenated pollutants, water 
eutrophication pollutants and ammonia nitrogen, in which oxygenated pol-
lutants played a dominant role. In addition, the upper part of Balihe Lake 
suffered serious situation and needed a focus on oxygenated pollutants. 
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1. Introduction 

With the increasingly prominent problem of water environmental pollution, the 
research on the water quality comprehensive evaluation method becomes par-
ticularly important (Sina, 2017; Noori, et al., 2019). In the process of water qual-
ity comprehensive evaluation, complex and numerous environmental factors can 
make the research work heavy and the relevant data analysis difficult, moreover, 
and even may not find the root cause of water quality deterioration (Me-
na-Rivera, et al., 2017; Yang, 2010). 

At present, there are many commonly used water quality comprehensive 
evaluation methods, such as comprehensive index method, fuzzy evaluation 
method, neural network method, etc. (Deng & Li, 2010; Wong & Hu, 2013). Al-
though these methods may also make a good evaluation of water quality status, 
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it is impossible to determine the main factors affecting water quality (Chang et 
al., 2011). Principal Component Analysis (PCA) can put forward relevant factors 
from many variables, determine the main factors affecting water quality, and 
then get a reasonable explanation (Friedman, Hastie, & Tibshirani, 2010; Olsen, 
et al., 2012; Zhong, et al., 2018; Sun, et al., 2019). E.g., in Sun et al.’s research, the 
temporal and spatial patterns of river water quality were analyzed to evaluate the 
pollution status in a natural river based on PCA method (Sun et al., 2019). Simi-
lar studies can also be found for lake ecosystems (Zhong et al., 2018). 

In this study, a set of actual sampling data was observed in a freshwater lake 
and used to evaluate the water quality in the sampling area based on PCA me-
thod, in order to get the main factors affecting the water quality in the area, and 
provide guidance for water environmental governance and improvement. 

2. Materials and Method 
2.1. Study Area 

Balihe Lake is located at the intersection are of Huaihe River and Shaying River 
in Fuyang City, Anhui Province, P. R. China. As an artificially excavated lake, 
Balihe lake is originally the largest tributary of Shaying River Basin in Anhui 
Province. With the geographical coordinates of E116˚14'-116˚19' and 
N32˚33'-32˚36', it belongs to the semi-humid monsoon climate zone in subtrop-
ical and warm temperate zones. The total drainage area of Balihe Lake is about 
500 km2, accounting for about one-eighth of the total area of Anhui Section of 
Shaying River Basin. Besides, as can be seen in Figure 1, three rivers including 
Disanhugou River, Liugou River and Wulihugou River flows into the lake. 

Water pollution in the Balihe Lake Basin not only seriously affected the eco-
nomic development of the basin and the stability of the ecosystem, but also af-
fected the ecological environment and water quality of the Shaying River, bring-
ing tremendous pressure to the improvement of water quality in the Huaihe 
River Basin. Generally speaking, there were two main sources of water pollution 
in the lake drainage area: first, non-point source pollution along the lake coas-
tline along with rainfall runoff; second, pollutants from these rivers flowing into 
the lake. Therefore, the analysis of water quality at different locations in Balihe 
 

 

Figure 1. Balihe Lake and the distribution of sampling sites. 
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Lake is of great significance to the water pollution control work in Huaihe River 
Basin. In this study, PCA method was applied to the water quality comprehen-
sive evaluation of Balihe Lake. The water pollution status of Balihe Lake was 
then analyzed comprehensively, and the main pollution factors were identified, 
which may provide some guidance to the water pollution control of Balihe Lake 
and Huaihe River Basin. 

2.2. Sample Collection and Analysis 

In October 2017, a field sampling survey was carried out at 15 sampling sites in 
Balihe Lake (see Figure 1). Surface water samples were collected because the 
water depth of the survey was within 10 m. According to the most concerned in-
dicators of water environment monitoring in China, the water quality indicators 
including dissolved oxygen (DO), total nitrogen (TN), total dissolved nitrogen 
(TDN), ammonia nitrogen (NH3-N), nitrate nitrogen ( 3NO− -N), nitrous nitro-
gen ( 2NO− -N), total phosphorus (TP), total dissolved phosphorus (TDP), phos-
phate ( 3

4PO − ), chemical oxygen demand (COD) and chlorophyll a (Chl-a) were 
measured according to the national standard method (Environmental Protection 
Administration of People’s Republic of China, 2002, 2009). 

2.3. PCA Method 

Principal component analysis (PCA), also known as principal variable analysis, 
uses the idea of dimensionality reduction to transform multiple indicators into a 
few comprehensive indicators under the principle of minimizing the loss of data 
information (Debels, et al., 2005; Ouyang, 2005). In PCA, the comprehensive 
index of transformation analysis is usually called principal component. The 
principal component is a linear combination of the original variables and is not 
correlated with each other. Therefore, only a few principal components need to 
be considered to grasp the main contradictions and avoid the problem of colli-
nearity between variables in complex problems, while the main information of 
the original data is not lost. And as such, the analysis efficiency could be im-
proved significantly. Based on IBM SPSS Statistic 25.0 software, PCA was carried 
out on 11 water quality indicators of the 15 sampling sites mentioned above. 

3. Results and Discussion 
3.1. Standardization of the Experimental Data 

The original data of these 11 indexes was standardized to eliminate the influence 
of magnitude and dimension among different data. The standardized data ob-
tained obey the normal distribution with 0 as mean and 1 as standard deviation. 
Equation (1) is the calculation formula and the results were shown in Table 1.  
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Table 1. Standardized data. 

Site DO TN TDN NH3-N 3NO− -N 2NO− -N TP TDP 3
4PO −  COD Chl-a 

1 −1.238 −1.393 −0.019 −2.018 0.497 −0.952 −0.151 −0.712 −0.544 1.566 −1.196 

2 −1.295 −1.286 0.064 −1.604 0.462 −1.164 0.526 −0.18 0.034 1.659 −1.163 

3 −1.362 −1.128 0.072 −1.225 0.604 −1.336 0.935 0.375 0.558 1.694 −0.847 

4 −1.396 −0.016 1.127 −0.433 1.153 −0.316 2.169 2.254 2.129 1.209 −0.411 

5 0.309 0.376 1.048 −0.172 1.339 −1.667 1.8 1.19 1.31 0.226 0.674 

6 −0.126 1.81 1.619 0.443 0.994 −0.343 0.636 1.001 0.983 0.051 0.944 

7 0.556 1.995 1.604 0.549 1.02 0.386 −0.261 0.493 0.438 −0.038 0.898 

8 0.612 1.065 1.234 −0.22 0.923 0.598 −0.584 −0.298 −0.184 0.178 2.741 

9 0.331 0.622 −0.525 −0.113 −0.291 1.22 −0.599 −0.015 −0.086 −0.783 −0.473 

10 0.432 0.407 −0.608 0.123 −0.22 1.485 −0.764 −0.428 −0.522 −0.88 0.134 

11 1.38 −0.443 −0.923 −0.113 −0.486 1.459 −1.315 −1.633 −1.657 −0.892 −0.187 

12 1.171 −0.366 −0.938 0.467 −0.805 0.743 −1.11 −1.114 −1.155 −0.847 −0.226 

13 0.908 −0.483 −0.962 0.644 −1.053 0.399 −0.764 −0.771 −0.915 −0.765 0.237 

14 0.893 −0.359 −0.972 0.75 −1.045 0.439 −0.662 −0.747 −0.773 −0.824 0.372 

15 0.219 −0.537 −0.934 0.916 −1.248 −0.104 −0.182 −0.44 −0.544 −0.783 −0.631 

 
where m is the number of sampling sites, xi is the original index value, and Zi is 
the standardized value (Yang, 2010; Wu, 2019). 

3.2. Maintaining the Integrity of the Specifications 

The standardized data are analyzed by PCA method. Table 2 shows that KMO 
statistic is 0.624 (>0.500), and the significance level of Bartlett’s test of sphericity 
is less than 0.001. It shows that independent variables are interrelated, and the 
data meet the basic requirements of PCA. 

Spearman correlation analysis was used to analyze the correlations between 
these 11 indicators. And the results of the correlation coefficients were shown in 
Table 3. The greater the absolute value of the correlation coefficient between 
two indicators, the stronger the correlation between these two indicators. There 
is a positive correlation between two different indicators if the correlation coeffi-
cient is positive and vice versa. As can be seen in Table 3, there are some strong 
correlations between some indicators. E.g., 7 indicators have negative correla-
tions with DO, which indicates that these indicators may be oxygen-consuming 
ones. Chl-a has a positive correlation with DO, which is consistent with the un-
derstanding that Chl-a is the main pigment for photosynthesis. Besides, there are 
strong positive correlations between TP, TDP and 3

4PO − , which indicates that 
the water quality information reflected by these indicators does overlap and is 
suitable for principal component analysis (Singh et al., 2004). 

https://doi.org/10.4236/gep.2019.78003


L. Zhang et al. 
 

 

DOI: 10.4236/gep.2019.78003 42 Journal of Geoscience and Environment Protection 
 

Table 2. KMO and Bartlett’s test results. 

KMO measure of sampling adequacy 0.624 

Bartlett’s test of sphericity 

Approximate Chi Square 278.493 

Freedom 55 

Significance 0.000 

 
Table 3. Correlation matrix. 

Indicator DO TN TDN NH3-N 3NO− -N 2NO− -N TP TDP 3
4PO −  COD Chl-a 

DO 1.000 0.362 −0.232 0.398 −0.241 0.726 −0.683 −0.590 −0.635 −0.754 0.532 

TN 0.362 1.000 0.627 0.408 0.374 0.325 0.003 0.349 0.310 −0.320 0.736 

TDN −0.232 0.627 1.000 −0.255 0.898 −0.334 0.574 0.644 0.679 0.504 0.520 

NH3-N 0.398 0.408 −0.255 1.000 −0.602 0.320 −0.237 0.072 −0.019 −0.813 0.253 

3NO− -N −0.241 0.374 0.898 −0.602 1.000 −0.333 0.564 0.483 0.544 0.670 0.353 

2NO− -N 0.726 0.325 −0.334 0.320 −0.333 1.000 −0.769 −0.531 −0.599 −0.700 0.302 

TP −0.683 0.003 0.574 −0.237 0.564 −0.769 1.000 0.887 0.916 0.631 −0.137 

TDP −0.590 0.349 0.644 0.072 0.483 −0.531 0.887 1.000 0.993 0.383 0.042 

3
4PO −  −0.635 0.310 0.679 −0.019 0.544 −0.599 0.916 0.993 1.000 0.470 0.036 

COD −0.754 −0.320 0.504 −0.813 0.670 −0.700 0.631 0.383 0.470 1.000 −0.253 

Chl-a 0.532 0.736 0.520 0.253 0.353 0.302 −0.137 0.042 0.036 −0.253 1.000 

 
Generally speaking, there are three principles to determine the number of 

principal components, they are: 1) the eigenvalue of the principal component λ 
should be larger than 1; 2) the cumulative variance percentage of the principal 
components larger than 80% - 85%; 3) the number of principal components 
should be determined by the mutation of the eigenvalue. Among these prin-
ciples, the eigenvalue represents the affecting degree of the principal component 
on the selected indicators, e.g. the explanation of the principal component is not 
enough if the eigenvalue is less than 1.  

According to the explanatory table of total variance (Table 4), λ1, λ2 and λ3 
corresponding to the 1st, 2nd and 3rd principal components are 5.4466 2.999 and 
1.657, respectively. The corresponding percentages of variance are 49.689%, 
27.265% and 15.062%. And the cumulative contribution of these three compo-
nents is up to 92.016%, which matches the first two extraction principles men-
tioned above. It can be considered that these three principal components in-
cluded all the information of these 11 environmental indicators. According to 
the scree plot of PCA eigenvalue curve (Figure 2), λ4 is less than 1 and the curve 
after this eigenvalue becomes gentler, which means that the explanatory power 
becomes smaller and the mutation occurs at the eigenvalue λ4. Above all, the 
number of principal components is determined at 3. 
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Figure 2. Scree plot of component variance eigenvalues. 
 

Table 4. Total variance explained. 

Component 

Initial eigenvalue Extracted square sum of loads 

Total 
Percentage of 

variance 
Cumulative 
percentage 

Total 
Percentage of 

variance 
Cumulative 
percentage 

1 5.466 49.689 49.689 5.466 49.689 49.689 

2 2.999 27.265 76.954 2.999 27.265 76.954 

3 1.657 15.062 92.016 1.657 15.062 92.016 

4 0.416 3.777 95.793    

5 0.243 2.205 97.998    

6 0.159 1.445 99.443    

7 0.039 0.354 99.797    

8 0.012 0.109 99.905    

9 0.005 0.047 99.952    

10 0.005 0.042 99.994    

11 0.001 0.006 100.000    

 
The factorial load matrix (Table 5) is directly calculated by SPSS, in which, 

the values are the correlation coefficients between the principal components and 
the original variables. The absolute value of these coefficients represents the de-
gree of correlation for the relevant relationships, e.g., the greater the absolute 
value, the stronger the correlation and the closer the relationship. DO, TDN, 

3NO− -N, 2NO− -N, TP, TDP, 3
4PO −  and COD have high loads on the 1st prin-

cipal component, which indicates that this principal component reflects the in-
formation of these eight indicators comprehensively and can be interpreted as 
the level of oxygen-consuming pollutants in Balihe Lake. Similarly, the 2nd prin-
cipal component reflects the information of TN and Chl-a comprehensively and 
can explain the level of water eutrophication. The 3rd principal component 
mainly reflects the information of NH3-N. 
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The factorial load matrix is not the principal component coefficient matrix. By 
dividing the factor load matrix by the square root of the corresponding principal 
component eigenvalue, the principal component coefficient matrix (Table 6) 
can be calculated. By multiplying the obtained component coefficient matrix 
with the normalized data, the evaluation functions F1, F2, F3 corresponding to 
each principal component and the comprehensive evaluation function F can be 
obtained. Based on these evaluation functions, the water quality pollution score 
of each sampling site can be quantitatively described. The higher the score, the 
more serious the pollution is. The expressions of each function are as follows: 

 
Table 5. The factorial load matrix. 

Indicator 
Component 

1 2 3 

DO −0.762 0.489 −0.212 

TN 0.062 0.959 0.042 

TDN 0.737 0.597 −0.267 

NH3-N −0.453 0.435 0.755 

3NO− -N 0.743 0.361 −0.538 

2NO− -N −0.771 0.358 −0.160 

TP 0.924 −0.015 0.264 

TDP 0.825 0.288 0.457 

3
4PO −  0.879 0.249 0.386 

COD 0.820 −0.369 −0.400 

Chl-a −0.074 0.869 −0.259 

 
Table 6. The principal component coefficient matrix. 

Indicator 
Component 

1 2 3 

DO −0.181 0.171 −0.013 

TN 0.032 0.302 −0.105 

TDN 0.036 0.249 0.144 

NH3-N 0.172 0.013 −0.454 

3NO− -N −0.051 0.215 0.300 

2NO− -N −0.168 0.121 −0.027 

TP 0.227 −0.024 −0.042 

TDP 0.275 0.041 −0.175 

3
4PO −  0.261 0.041 −0.131 

COD −0.002 −0.038 0.307 

Chl-a −0.085 0.316 0.039 
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1 0.181 1 0.032 2 0.036 3 0.172 4 0.051 5 0.168 6
0.227 7 0.275 8 0.261 9 0.002 10 0.085 11

F ZX ZX ZX ZX ZX ZX
ZX ZX ZX ZX ZX

= − + + + − −
+ + + − −

(2) 

2 0.171 1 0.302 2 0.249 3 0.013 4 0.215 5 0.121 6
0.024 7 0.041 8 0.041 9 0.038 10 0.316 11

F ZX ZX ZX ZX ZX ZX
ZX ZX ZX ZX ZX

= + + + + +
− + + − +

(3) 

3 0.013 1 0.015 2 0.144 3 0.454 4 0.300 5 0.027 6
0.042 7 0.175 8 0.131 9 0.307 11 0.039 11

F ZX ZX ZX ZX ZX ZX
ZX ZX ZX ZX ZX

= − − + − + −
− − − + +

(4) 

( ) ( )
( )

1 1 2 3 1 2 1 2 3 2

3 1 2 3 3

0.540 1 0.296 2 0.164 3

F F F

F

F F F

λ λ λ λ λ λ λ λ

λ λ λ λ

     = + + + 
 

+ +

+ + +

=


+ +

          (5) 

3.3. Comprehensive Water Quality Evaluation 

The scores and ranks of the principal components 1, 2, 3 and the comprehensive 
principal component were calculated and shown in Table 7. As can be found in 
the table, 1) according to the ranks for the 1st principal component, the top five 
sampling sites are 4, 5, 6, 3 and 2 indicating that the oxygen-consuming pollu-
tion is relatively serious at three places, and the site 4 is highest one; 2) for the 
principal component 2, the top five sites are 8, 7, 6, 5 and 10, which means that 
the eutrophication pollution may be more serious in comparison to the other 
places; 3) the top five sites for principal component 3 are 1, 2, 3, 8 and 4 where 
ammonia nitrogen pollution may be serious; 4) the top five places 4, 5, 6, 7, 3 for 
the comprehensive principal component are similar to that of the 1st principal 
component. Considering the items 1) and 4) together, it can be concluded that 
the upper part of the Balihe Lake should be polluted seriously by the oxy-
gen-consuming pollution and should be treated adequately. In addition, the 
main treatment measures should be oriented to the oxygen-consuming pollu-
tions like living sources, non-point sources, etc. The lower ranks of sites 11, 12, 
13, 14 and 15 indicate that the water quality of the lower part of the lake is better 
and conservative measures may be taken to this area. 

4. Conclusion 

Based on the field measurements of 11 environmental factors at 15 sampling 
sites, the water quality in Balihe Lake was evaluated utilizing PCA method. The 
following conclusions can be drawn. 

1) There are obvious correlations between some of these 11 environmental 
factors. The 3 extracted principal components accounting for 92.016% of the to-
tal variance can well explain the water quality status in Balihe Lake. The 1st, 2nd 
and 3rd principal component represent the pollution of oxygen consuming pol-
lutants, eutrophication and ammonia nitrogen, correspondingly. 

2) The sampling sites 4, 5, 6, 7 and 3, which have relatively higher PCA scores, 
are all located in the upper part of the lake. The water quality in these places 
should be more serious and the main pollutants are oxygen-consuming. There-
fore, more attention should be paid to such areas in the future water quality 
prevention and treatment.  
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Table 7. Score and ranks of the principal components. 

Site F1 score F1 rank F2 score F2 rank F3 score F3 rank F score F rank 

1 −0.307 8 −1.159 15 1.761 1 −0.220 8 

2 0.266 5 −1.107 14 1.412 2 0.048 7 

3 0.725 4 −0.921 13 1.128 3 0.304 5 

4 1.913 1 0.193 6 0.322 5 1.143 1 

5 1.196 2 0.775 4 0.306 6 0.926 2 

6 0.818 3 1.469 3 0.036 8 0.882 3 

7 0.113 6 1.700 2 0.131 7 0.586 4 

8 −0.713 11 1.855 1 0.777 4 0.291 6 

9 −0.389 9 0.088 7 −0.378 11 −0.246 9 

10 −0.741 12 0.234 5 −0.351 10 −0.389 10 

11 −1.699 15 −0.186 8 −0.001 9 −0.973 15 

12 −1.100 14 −0.326 10 −0.494 12 −0.771 14 

13 −0.760 13 −0.346 11 −0.701 13 −0.628 13 

14 −0.687 10 −0.257 9 −0.791 14 −0.577 12 

15 −0.101 7 −0.831 12 −1.026 15 −0.469 11 

 
3) The water quality at sites 11, 12, 13, 14 and 15 concentrated in the lower 

part of the lake as the PCA scores are lower. According to the better water quali-
ty in this area, conservative measures may be taken to this area. 

Although the results of this study may provide some guidance or inspiration 
to the water pollution prevention and treatment of Balihe Lake, more research 
focusing on this topic based on some other methods are necessary in the future. 
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