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Abstract 
This study presents a parameter selection strategy developed for the 
Stretch-Blow Molding (SBM) process to minimize the weight of preforms 
used. The method is based on a predictive model developed using Neural 
Networks. The temperature distribution model of the preform was predicted 
using a 3-layer NN model with supervised backpropagation learning. In addi-
tion, the model was used to predict the uniform air pressure applied inside 
the preform, taking into account the relationship between the internal air 
pressure and the volume of the preform. Parameters were validated using in 
situ tests and measurements performed on several weights and lengths of a 
0.330 Liter Polyethylene Terephthalate (PET) bottles. Tests showed that the 
model adequately predicts both the blowing kinematics, mainly zone temper-
atures and blowing and stretching pressures along the walls of the bottle 
while maintaining the bottle strength and top load requirements. In the 
second step, the model was combined to automatically compute the lowest 
preform weight that can be used for a particular 330 ml bottle design provid-
ing a uniform wall thickness distribution. 
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1. Introduction 

The two-stage Stretch-Blow Molding (SBM) process is the most popular tech-
nique used for the manufacturing of Polyethylene Terephthalate (PET) bottles 
[1]. This process involves feeding a structurally amorphous semi-product, 
called preforms, made by injection molding of PET resin granules into the 
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blow-molding machine. A pre-heating step using a set of infrared (IR) emitting 
lamps conditions the preforms to the appropriate temperature distribution along 
the walls. In the second stage, the preforms are stretched axially by a cylindrical 
rod and blown using two levels of air pressure. Then, the bottles are cooled 
down by a mold whose temperature is regulated using cooling channels. Most 
bottles blown in this matter require a minimum blow air pressure of 35 bar with 
40 bar as a maximum. Compressed air takes up approximately 50% of bottle 
production energy cost and higher air pressure increases overall bottle cost. Re-
cycling high-pressure air for pre-blow pressure is now widely used to reduce 
energy and cut overall costs. 

To achieve the performance specifications defined by water, dairy and juice 
manufacturers, the bottles must satisfy a large number of performance criteria 
such as top load, thickness distribution, transparency and barrier properties. 
Several factors weigh in on the compromise between optimal bottle quality and 
economic considerations and they include blowing temperature, heat profile 
along the preform wall, stretch ratios, wall thickness distribution, and air blow 
timing. The parameters affecting the final properties of a bottle fall into two 
main categories; biaxial stretching, and process heating conditions. The preform 
distribution temperature controls the blowing kinematics (stretching and blow-
ing), and consequently the wall thickness distribution of the bottle. Numerical 
optimization methods for SBM have received more and more attention in the 
last decade in order to substitute the costly, time consuming and inefficient trial 
and error method used by operators and factories. There have seen several nu-
merical methods developed simulating the SBM heating and blowing processes. 
Researchers used the numerical models developed using available Finite Element 
(FE) packages [2] [3] [4] or have developed their own software [5] [6] [7] [8] in 
order to predict the process temperature distribution. Pham et al. [9] characte-
rized two grades of PET preforms using biaxial tests to determine the model pa-
rameters of a robust nonlinear curve-fitting program. The developed model 
adequately represented the stretching behavior of PET. Based on this model, a 
finite element formulation was developed to simulate the stretch blow molding 
process. In [10] Yang et al. carried out finite element analysis SBM process of 
polyethylene terephthalate (PET) bottles with a view to optimizing preform de-
signs and process conditions. Simulations with bottle thickness predictions were 
achieved. Bagherzadeh et al. [11] used finite element method model to predict an 
overall trend of thickness distribution. However, some differences can be seen in 
preform regions of 10 mm and 125 mm. The results were used for an overall 
prediction of bottle properties. In [5] Brovidal et al. presented an optimization 
strategy developed for the stretch-blow molding process. The method was based 
on a coupling between the Nelder-Mead optimization algorithm and Finite Ele-
ment (FE) simulations of the forming process developed and the temperature 
distribution of the perform was predicted using a 3D finite-volume software. In 
addition, a thermodynamic model was used to predict the air pressure applied 
inside the preform. Chettiar et al. [12] presented an investigation on the optimi-
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zation of the preform design to produce PET bottles with uniform thickness dis-
tribution using a blow molding simulation software. The bottle blown up using 
the new preform design had a better barrier property due to increased molecular 
orientation. Thibault et al. [13] developed a predictive preform geometry soft-
ware and optimal operating conditions for the stretch blow molding process. 
The numerical approach combined a constrained gradient-based optimization 
algorithm together with finite difference technique for operating condition op-
timization. Venkateswaran et al. [6] investigated the influence of nonuniform 
temperature distributions on preform sidewalls, in relation to their effects on 
functional properties of PET bottles. The study demonstrated that the optical 
anisotropy through the bottle wall thickness is minimal, when the inside surface 
is at a higher temperature than the outside surface. 

Temperature is considered one of the most important variables in SBM. 
However, its measurement and predictions remain a delicate task, especially in 
the wall thickness direction. Temperature affects the orientation induced by 
biaxial stretching, affects mechanical, optical, and barrier properties of bottles. 
Heating simulation of multilayer preforms, authors took into account the rela-
tionship between the scattering coefficient of PET and crystallization rate. 
Therefore, the simulation of the preform heating cannot be carried out ade-
quately without an understanding of the radiative heat transfer properties. 
Another aspect is the blowing and stretching pressures that could very well 
determine the full bottle strength. The internal pressure and the enclosed vo-
lume of the preform are fully coupled and applying the air pressure directly as 
a boundary condition could lead to unrealistic results [14] [15] [16]. These 
models are generally based on thermodynamic equations in order to automat-
ically compute the air pressure inside the preform, instead of applying the 
pressure directly as boundary conditions. Only a few studies have been re-
ported on this specific point, and the subject is still opened. The models pro-
posed in literature simulate the deformation process, and generally lead to ac-
curate predictions of bottle thickness distribution. However, even though ki-
nematics of blowing may be the criteria to test the accuracy of results, a lack of 
heat transfer modeling is also apparent due to high non-linearity and the tem-
perature distribution zones through the preform wall thickness. Moreover, 
heat transfer coefficients are generally estimated without reference to experi-
mental measurements. Finally, only a few studies have proposed cost reduction 
modeling of preform weight, a key to successful operation, and the resulting 
heating and the blowing parameters. 

In this work, we present Neural Networks (NN) approach to achieve a pre-
dictive model of the SBM process. The model is mainly based on a 
Least-Mean-Square (LMS) algorithm, also known as delta rule, trained with 
back-propagation to simulate the Infra-Red (IR) heating and blowing stages of 
the forming stage. Throughout the testing and simulation of neural network 
parameters, Swing Neural Networks [17] was used on a set of real-time data. 
This method provides a predictive approach for the relationship between the 
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internal temperature and air pressure and the enclosed parameters of the pre-
form. In a second step, we propose an optimization strategy for SBM of the 
lowest possible weight that can be used for the preform providing a uniform 
thickness for the bottle. For that, we developed an iterative procedure allowing 
to automatically compute the best temperature and pressure distribution along 
the preform length. To validate our approach, numerical and experimental 
temperature and pressure profiles were compared. Results were validated by 
careful in situ tests and measurements performed on various weights preforms 
of 330 ml PET bottles. 

2. Characteristics of PET 

The properties of the PET polymer are largely dependent upon the average mo-
lecular weight, which is usually determined by measurement of the Intrinsic 
Viscosity (IV). The higher the IV is, the higher the molecular weight is. The 
range of IVs used in preform injection molding is 0.72 to 0.88 depending on the 
size of the preform. The degree of crystallinity of the preform is determined by 
its density measurement. Amorphous PET has a density of 1.335 g/m3, the cal-
culated density of perfect PET crystal is 1.455 g/m3 at room temperature [18]. 
An increase in IV reduces the rate of crystallization making it more difficult for a 
given chain to separate from other chains and form an ordered crystal [19]. The 
Natural Stretch (NSR) or draw ratio of a polymer is the ratio of the resulting 
length (in the direction of applied stress) to its original length. The point at 
which the PET requires extra force to continue stretching is the NSR for a par-
ticular set of stretching conditions. A resin with a low IV has a higher NSR than 
a high IV resin since polymer chains in a low IV resin are shorter, and therefore, 
can be easily stretched more. Whereas, in high IV resin, chain entanglement 
limits the amount of stretching. For this reason, preform designs differ when 
considering low IV or high IV PET. The NSR is reached when strain hardening 
occurs on the stress-strain curve for materials. Stretching beyond the yield point 
results in permanent deformation of the bottle, and further stretching will result 
in fracture. The design of a PET preform for the optimum orientation is 
achieved when the stretching of the preform walls meets the mold boundaries. 
This point occurs beyond the NSR. Proper stretching results in longer shelf life, 
better top load performance and less gas permeability, for example, higher car-
bon dioxide retention for carbonated drinks. Overstretching results in excessive 
deformation of the bottle. Axial stretch ratio dividing the length of the bottle by 
the length of the preform as measured from underneath the neck support ring 
(NSR) to the end of bottle and preform. Hoop stretch ratios can be measured by 
dividing the average bottle diameter by the corresponding average preform di-
ameter. Stretch ratio calculations and typical values are as follows: 

( )
( )

Hoop Stretch Ratio

Bottle diameter average preform diameter 2

HSR

D OD ID= +
    (1.1) 

( )Axial Stretch Ratio Bottle length preform body lengthASR =    (1.2) 
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HSR typical Figurers are 3 to 4 whereas ASR are 2.5 to 3 [1]. These values give 
a more uniform stretch distribution and top load strength to the bottle. Figure 1 
shows a combined 12-gram preform and bottle with IV of 0.738 dl/g used in 
stretching of a 330 ml bottle. 

PET has temperature process range from 90˚C - 115˚C which can be adjusted 
by the oven lamps voltage range of 0 - 220 V (a percentage setting of 0% - 99%). 
Higher temperatures cause the PET material to crystallize whereas temperatures 
below 85˚C causes microcracks in the PET structure. Conduction, convection 
and radiation are all present heat transfer mechanisms in the SBM process. 
Conduction occurs when two parts touch each other and heat flows from the 
colder to the warmer part. However, PET is a poor conductor and it is not suita-
ble to heat preforms this way. On the other hand, convection is done by heating 
up of air in the ovens of the blow machine takes place. Air heating is difficult to 
control and highly dependent on surrounding conditions and furthermore the 
outside walls of the preform heats up more than the inside as depicted in Figure 
2. Radiation occurs when the output of the oven lamps reaches the preforms in 
the form of waves. 

3. Neural Network Architecture 

Most physical systems have to be modelled separately due to complexity and 
presence of non-linear characteristics [20] [21]. Neural Networks (NN) have 
been used in a large number of applications and have proven to be effective in  
 

 
Figure 1. Bottle 330 ml and preform IV 0.738 dimensions and 
stretch ratios used. 
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Figure 2. Typical preform temperatures measured on outside and inside walls. 
 
performing complex functions in various fields. These include pattern recogni-
tion, classification, control systems, vision, and predictions [22]. NN accom-
plishes these tasks by learning from a series of data sets to the system, then ap-
plies what has learned to approximate or predict the corresponding output. The 
most successful modern network-learning model has been back-propagation. 
Based on Least Mean Square (LMS) algorithm, the back-propagation method 
has been widely used to solve a number of applications [23] [24] [25] [26]. Typ-
ically, neural networks consist of three layers linked together by a weighted con-
nection between neurons of different layers. Figure 3 shows a typical multi-layer 
neural network structure. 

The input layer receives information from the external sources and passes the 
information to the network for processing. The next layer consists of one or 
more hidden layers that receive information from the input layer and processes 
them to other layers within the system. The output layer receives processed in-
formation and sends output signals out of the system. Bias connections are off-
sets that provide a threshold for the activation of neurons. During learning 
phase, NN attempts to optimize the connection weights to give best approxima-
tion of the parameter in question. Once trained, NN can be used on line to esti-
mates output parameters of the non-linear system. The node’s internal threshold 

kθ  is the magnitude offset that affects the activation of the node output yk as 
follows: 

( )
1

n

k p kp k
i

y X W θ
=

= −∑                     (1.3) 

where Wkp is weight factors associated with each node to determine the strength 
of input row vector Xp. 

The transfer function is a non-linear activation function, which performs a 
mathematical operation on the output. Two examples of activation transfer 
function include sigmoidal transfer function of the form. 
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Figure 3. Typical back-propagation network. 

 

( ) 1
1 xf x

e−=
+

  ( )0 1f x≤ ≤                   (1.4) 

And hyperbolic tangent transfer function of the form: 

( )
x x

x x

e ef x
e e

−

−

−
=

+
                     (1.5) 

4. Training the Neural Network 

The objective of training the network is to adjust the weights with a set of 
training data. The iterative process is designed to minimize the mean square 
error between the actual and desired output. Typically, new inputs will lead to 
outputs close to the desired output for input vectors used in training that are 
similar to the new input being presented. This property makes it possible to 
train a network on a representative set of input-output target pairs and get 
good results without training the network on all possible input/output pairs. A 
trained multi-layer perceptron can perform non-linear input-output mapping. 
In Least-Mean-Square (LMS) algorithm training method, it is based on estimates 
of the auto-correlation function ( ),xr i j  and estimate of the cross-correlation 
function ( ),dxr i j . These estimators are used to update the weight parameter 

( )1kW n +  in the steepest decent method calculations, the output function of the 
neuron is computed as: 

( ) ( )
1

n

k i
i

y n w n x
=

= ∑                         (1.6) 

A generalization of the LMS algorithm, known as backpropagation, is an er-
ror-correction learning rule, which is widely used to train multi-layer feed for-
ward networks. The iterative training process of the backpropagation network is 
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designed to minimize the LMS error E defined by: 

( )2
k k

n
d yΕ = −∑                         (1.7) 

where dk and yk are the desired and actual outputs respectively. Basic steps in-
volved in this procedure are the following: 

Step 1: The weights and offsets of different layers are initialized to small ran-
dom values within the interval [−1, 1]. 

Step 2: The input is presented and output of the first layer is calculated. The 
input can have a new value for each iteration, or it can be sampled from a train-
ing set. 

Step 3: The actual output is calculated using the non-linear activation func-
tion. 

Step 4: The weights are adapted and adjusted by the following equation, 

( ) ( ) ( ) ( )( )1 1ij ij i ij ijW t W t jX W t W tηδ α+ = + + − −          (1.8) 

where δj is the error term for node j, η is the gain term, and α is the momentum 
term. The momentum coefficient provides faster convergence and is usually set 
at a value in the interval of [0, 1]. This allows the network to respond to recent 
trends in the error gradient and therefore, the network will not get stuck in local 
minimum. The error reached by this local minimum does not represent the best 
set of weights. A too high momentum coefficient can cause instability, and will 
result in oscillation across the global minimum [27] [28] [29]. The learning rate 
setting is crucial in training, too small or too high values may lead to instabil-
ity. 

5. Model Development and Optimization—Backpropagation 

Throughout the back-propagation simulation presented, the network was initia-
lized based on the technique described by Nguyen and Widrow [29] [30]. To 
determine the number of layers and the corresponding number of hidden neu-
rons M, the criterion used is smallest number of neurons that yield a minimum 
RMS error with the least number of iterations. The values of the learning rate η 
and momentum coefficient α were arbitrary set at small values. The network was 
simulated on 800 training data set for various numbers of hidden neurons in 
each layer. Table 1 and Table 2 summarize the results of the simulation for var-
ious numbers of hidden neurons. 

The second run resulted in a considerable drop in the number of cycles. 
The third run did not significantly contribute to the MSE. Accordingly, the 
number of hidden neurons was held at 3 for the first layer, and 3 for the 
second layer. 

6. Cross-Validation Analysis 

When a training set is picked from the available data, there is a need to validate 
the model on a data set that is different from the training set. Over-fitting can  
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Table 1. Summary of Simulation Results for determination of number of hidden neurons. 

Run Number 
1st Layer  
Neurons 

2nd Layer Neurons 
Number 

of Epochs 
Mean-Squared 
Error (MSE) 

1 2 3 1135 0.030 

2 3 3 1375 0.023 

3 5 4 1323 0.024 

Learning rate parameter η = 0.7 and momentum coefficient α = 0.8 

 
Table 2. Optimal configuration of back-propagation network. 

Optimal Parameter Value 

Number of Hidden Neurons 6 

Learning Rate η 0.7 

Momentum Coefficient α 0.8 

 

occur when too many parameters are selected, while under-fitting can occur 
when few parameters are used. The particular model, which gives the best per-
formance, is then trained on the full training data set and generalization is then 
tested on the verification set. Cross-validation can give essential information that 
can help in network parameter selection such as size of training set and value of 
learning rate. The available data is partitioned to two sets, training and test set. 
The training set is further partitioned into two sets: training and validation. The 
network is then simulated with the selected training data set. Results of the 
cross-validation curves are shown in Figure 4. 

The results, in general, are satisfactory since the test and validation errors 
have similar characteristics. No over- or under-fitting is visible and therefore, we 
conclude that the training set and parameters chosen are adequate. 

7. Simulation Results 

Based on plant experience we included 9 input variables in the training of the 
SBM networks. The following L2 and L∞  norms error criteria were used for 
comparison and error analysis. 

max
max

T Ann
T

ε∞
−

=                        (1.9) 

( )

( )

2

2 2

n

n

T Ann

T
ε

 −  =
∑

∑
                    (1.10) 

where T is the actual target value, n is the number of input-output input vectors, 
and Ann is the neural net predicted output. The SMB system is a two pre-
heat-stage COMBI SBO14 SIDEL system that is operated by New Technology 
Bottling Company, Kuwait Free Trade Zone, Kuwait. With 14 molds for PET  
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Figure 4. LMS and corresponding validation curves for selected values of learning rate. 

 

bottle, the system has a capacity of 28,000 bottles per hour (bph). Preforms used 
throughout the study were 30/25 neck finish clear with IV 0.747 dl/gram and has 
residual Acetaldehyde (AA) content of 0.670 ppm. The beating zones were po-
wered by six-zone IR tungsten lamps. The compressed air for stretch blow 
molding was powered by 40 bar Ateliers François compressor. The plant was 
operated and tested over a six-month period for the study, with data collection 
sampled every hour during the operation. In this example, 7 input variables were 
used in the input vector. 

8. Predictions 

The input variables used for the NN were preform weight, length, width, outside 
diameter, inner diameter, ASR, HSR and wall thickness. Figure 5 shows that 
preform weight, length and thickness at the top of the list as far as relative im-
portance to the output values. These three parameters are also the most 
cost-effective for risen converters and bottle manufacturers as well. Figure 6 
shows the training network used and heat zoning and pressure selection. We at-
tempt to predict the zone heating values, blowing and stretching pressures as our 
output variables. In addition, we investigated the lowest possible weight that can 
be used for a 330 ml bottle provided that the bottle maintains stability and ri-
gidness. The pressure and temperature profiles, scaled from 0 - 10 for different 
preform types and sizes, shown in Figures 7-9 and provided a prediction of the 
blowing kinematics. 
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Figure 5. Input variables relative importance. 

 

 
Figure 6. Training network used. 
 

 
Figure 7. Grid heating and blowing pressure set up. 
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Figure 8. Actual vs. estimated predicted blowing. 

 

 
Figure 9. Actual vs. estimated predicted temperature (˚C) for selected zone 3. 

 

9. Conclusion 

This work proposed a modeling of the full Stretch Blow Molding process. The IR 
heating, blow molding and stretch blow molding steps were simulated using 
Swing NN software. All the conditions required for the predictive simulations 
were carefully measured and calibrated. A major contribution of this work re-
mains the modeling of the air-barrier interaction existing between the outside 
of the preform and the air flow applied inside. A network validation has shown 
that the model successfully captures pressure and temperature profiles, scaled 
from 0 - 10 for different preform types and sizes, shown in Figure 8 and Figure 
9, and provided a prediction of the blowing kinematics. The model was also 
used to predict the parameters for a lower preform weight to 11.5 gram for the 
bottle, thereby reducing the cost per unit, the parameter results were tested 
and the produced bottles met the manufacturer specifications of strength and 
top load characteristics. Future work will aim to further improve the model by 
providing more data on different preforms’ weights and thickness, which 
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would account for the relationship between the temperature and the material 
orientation and crystallization. As for SBM optimization, we proposed a prac-
tical methodology to numerically optimize a lower weight of a PET preform for 
a particular 0.330 ml size bottle, while providing a uniform thickness alongside 
the bottle walls. Encouraging prediction results have shown the viability of NN 
approach. However, it would probably be more desirable to have the outer wall 
IR heat temperature, along with the inside wall, measured and used as an input 
for the NN model. But to do so, major blower modifications will have to be car-
ried out. Nevertheless, this approach would implicitly account for the influence 
of the temperature and pressure distributions through the preform weight, 
thickness, length, and stretch ratios. 

NN can be very effective in predicting non-linear behavior problems asso-
ciated with operational variables of SBM process. NN algorithms achieved an 
overall good generalization for predictions of blowing kinematics, mainly 
blowing pressure and zone temperatures. The prediction of the last zone tem-
perature resulted in overall lower accuracy due to the fact of the high 
non-linearity of hot air distribution between inner and outer preform walls and 
dependence on other factors such as distance, wall thickness, stretching ratios 
and inner- and outer-diameters. 
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