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Abstract 
This paper is to study the unicity of transcendental meromorphic solutions to 
some nonlinear difference equations. Let { }2, 1,0m∈ ± ±  be a nonzero ra-
tional function. Consider the uniqueness of transcendental meromorphic so-
lutions to some nonlinear difference equations of the form  

( ) ( ) ( ) ( )1 1 mw z w z R z w z+ − = . For two finite order transcendental mero-
morphic solutions of the equation above, it shows that they are almost equal 
to each other except for a nonconstant factor, if they have the same zeros and 
poles counting multiplicities, when { }2, 1,0m∈ ± . Two relative results are 
proved, and examples to show sharpness of our results are provided. 
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1. Introduction 

It is well known that a given nonconstant monic polynomial is determined by its 
zeros. But it is not true for transcendental entire or meromorphic functions. 
Take ez  and e z−  for example, they are essentially different even have the 
same zeros, 1-value points and poles. This indicates that it is complex and inter-
esting to determine a transcendental meromorphic function uniquely. Nevan-
linna then proves his famous Nevanlinna’s 5 CM (4 IM) Theorem (see e.g. [1] 
[2]): 

Theorem A: Let w(z) and u(z) be two nonconstant meromorphic functions. If 
w(z) and u(z) share 5 values IM (4 values CM, respectively) in the extended 
complex plane, then ( ) ( ) ( ) ( )( )( )w z u z w z T u z≡ = , where T is a Möbius 
transformation, respectively). 

Here and in the following, for two nonconstant meromorphic functions w(z) 
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and u(z), and a complex constant a, we say w(z) and u(z) share a IM (CM), if 
w(z)-a and u(z)-a have the same zeros ignoring multiplicities (counting multip-
licities); and we say w(z) and u(z) share ∞ IM(CM), if they have the same poles 
ignoring multiplicities (counting multiplicities). 

Our aim is to study the unicity of meromorphic solutions to the nonlinear 
difference equation of the form 

( ) ( ) ( ) ( )1 1 mw z w z R z w z+ − = ,               (1.1) 

where R(z) is a nonzero rational function and { }2, 1,0m∈ ± ±  The Equation 
(1.1) comes from the family of Painlevé III equations which are given by Ron-
kainen in [3] when he classifies the difference equation 

( ) ( ) ( )1 1 , ,w z w z R z w+ − =  

where R(z, w) is irreducible and rational in w and meromorphic in z. This is a 
natural idea which comes from the topic on the growth, value distribution and 
unicity on the meromorphic solutions to difference equations (see e.g. [4] [5] [6] 
[7] [8]). The first result is as follows. 

Theorem 1.1. Let w(z) and u(z) be two finite order transcendental mero-
morphic solutions to the Equation (1.1), where { }2, 1,0m∈ ± . If w(z) and u(z) 
share 0, ∞ CM, then ( ) ( )w z u zλ≡ , where λ  is a constant such that 

2 1mλ − = . 
The following examples show that all cases in Theorem 1.1. can happen, and 

the “CM” cannot be relaxed to “IM”. 
Example 1. In the following examples, ( )jw z  and ( )ju z  share 0, ∞ CM, 

while ( )jw z  and ( )jv z  share 0, ∞ IM ( )1,2,3,4j = : 
1) ( ) ( ) ( )1 1 1tan ,

2
zu z w z iu zπ = = 

 
 and ( ) ( )2

1 1v z u z=  satisfy the difference 

equation 

( ) ( ) ( )21 1 .w z w z w z−+ − =  

here 2,m iλ= − =  such that ( )2 2 1λ − − = . 

2) ( ) ( ) ( ) ( )
2

2 2 5
2 2 2

2 1
tan tan , e

3 6
izzu z w z u z
π− π π = =  

   
 and ( ) ( )2

2 2v z u z=  

satisfy the difference equation 

( ) ( ) ( )11 1 .w z w z w z−+ − =  

here 
2
31, e

i

m λ
π

= − =  such that ( )2 1 1λ − − = . 

3) ( ) ( ) ( )3 3 3tan ,
4
zu z w z u zπ = = − 

 
 and ( ) ( )2

3 3v z iu z=  satisfy the differ-

ence equation 

( ) ( )1 1 1.w z w z+ − = −  

here 0, 1m λ= = −  such that 2 0 1λ − = . 

4) ( ) ( ) ( ) ( )4 4 4

1
tan tan ,

6 6
zzu z w z u z

π − π = =  
   

 and ( ) ( )3
4 4v z u z=  satisfy 
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the difference equation 

( ) ( ) ( )1 1 .w z w z w z+ − = −  

here 1, 1m λ= =  such that 2 1 1λ − = . 
Theorem 1.2. Let w(z) and u(z) be two finite order transcendental mero-

morphic solutions to the Equation (1.1), where { }2, 1,0m∈ ± . If w(z) and u(z) 
share 0, ∞ CM, then 

( ) ( )
2

2 1 0e ,a z a z aw z u z+ +≡                    (1.2) 

where 0 1 2, ,a a a  are constants such that 22e 1a = . What is more, ( ) ( )w z u z≡  
if ( ) ( )w z u z−  has a zero 1z  of multiplicity 3≥  such that 
( ) ( )1 1 0w z u z c= = ≠ . 
The following example shows that all conclusions in Theorem 1.2 can happen, 

and the “CM” cannot be relaxed to “IM”. 
Example 2. Let ( ) ( ) ( ) ( )2tan ,u z z v z u z= π =  and ( ) ( )2

1 e izw z u zπ= , 
( ) ( )2 ezw z u z= , ( ) ( )3w z zu= . Then ( )jw z  and ( )u z  share 0, ∞ CM, while 
( )jw z  and ( )v z  share 0, ∞ IM (j = 1, 2, 3), and they solve the equation 

( ) ( ) ( )21 1 .w z w z w z+ − =  

Theorem 1.3. Let w(z) and u(z) be two finite order transcendental mero-
morphic solutions to the Equation (1.1), where { }1,0m∈ ± . If w(z) and u(z) 
share 1, ∞ CM, then 

( ) ( )( )1 01 e 1 ,a z aw z u z+− ≡ −                  (1.3) 

where 0 1,a a  are constants such that:  

1) 1
1 2

ka i= π , when 0m = ; 2) 2
1

2
3
ka i= π , when 1m = − ; (3) 3

1 3
k

a i= π , 

when 
1m = , where 1 2 3, ,k k k  are some integers. What is more, ( ) ( )w z u z≡  if 

one of the following additional condition holds: 
a) ( ) ( )w z u z−  has a zero 1z  of multiplicity 2≥  such that  
( ) ( )1 1 0w z u z= = ; 
b) there exist two constants 2 3,z z  such that ( ) ( ) ( )1 2,3j jw z u z j= ≠ =  

and 2 3z z− ∈/  . 
Remark 1. We have tried hard but failed to provide some similar results as 

Theorem 1.3 for the cases 2m = ±  so far. 

2. Proof of Theorem 1.1 

Since w(z) and u(z) are finite order transcendental meromorphic functions and 
share 0, ∞ CM, we see that 

( )
( )

( )e ,p zw z
u z

=  

where ( )p z  is a polynomial such that it is of degree  

( ) ( ) ( ){ }deg max , .p z p w uρ ρ= ≤  
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Next, we discuss case by case. 
Case 1: m = −2. From (1.1) and (2.1) we get 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

1 1 22

2 2

1 1 e

1 1 1 1 ,

p z p z p zu z u z u z

w z w z w z R z u z u z u z

+ + − ++ −

= + − = = + −
 

which gives 
( ) ( ) ( )( ) ( ) ( ) ( )1 1 2 2e 1 1 1 0.p z p z p z u z u z u z+ + − + − + − ≡  

Thus, we have 
( ) ( ) ( )1 1 2e 1.p z p z p z+ + − + ≡                     (2.2) 

Since 

( ) ( ) ( )( ) ( )deg 1 1 2 deg ,p z p z p z p z p+ + − + = =  

from (2.2), it is easy to find that p = 0. Therefore, there exists some constant 0p , 
such that ( ) 0p z p≡  and 

( ) ( ) ( )0 1 1 24e e 1.p z p z p zp + + − += ≡  

That is, for 0e pλ = , we have ( ) ( )w z u zλ≡  and 4 1λ = . 
Case 2: m = −1. Now, we obtain from (1.1) and (2.1) that 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

1 1 21 1 e

1 1 1 1 .

p z p z p zu z u z u z

w z w z w z R z u z u z u z

+ + − ++ −

= + − = = + −
 

With this equation and similar reasoning as in Case 1, we can deduce that  
( ) ( )w z u zλ≡  holds for some λ  such that 3 1λ = . 
Case 3: m = 0. From (1.1) and (2.1), we have 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 11 1 e 1 1 1 1 .p z p zu z u z w z w z R z u z u z+ + −+ − = + − = = + −  

Similarly, we can prove that ( ) ( )w z u zλ≡  holds for some λ  such that  
2 1λ = . 
Case 4: m = 1. Now (1.1) is of the form 

( ) ( ) ( ) ( )1 1 .w z w z R z w z+ − =                  (2.3) 

Thus, 

( ) ( ) ( ) ( )2 1 1 .w z w z R z w z+ = + +  

It follows from these two equations above and (2.1) that 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

2 12 1 e

2 1 1 2 1 ,

p z p zu z u z

w z w z R z R z u z u z

+ + −+ −

= + − = + = + −
 

with which we can show that ( ) ( )w z u zλ≡  holds for some λ  such that 
2 1λ = . However, if ( ) ( )w z u z≡ − , we find that 

( )( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 1 1 .w z w z u z u z R z u z R z w z− + − − = + − = = −   (2.4) 

Combining (2.3) and (2.4), we get ( ) ( ) 0R z w z ≡ , which is impossible. Thus, 
1λ = . 
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3. Proof of Theorem 1.2 

Notice that (2.1) still holds for this case. We can get from (1.1) and (2.1) that 

( ) ( ) ( ) ( )

( ) ( )
( ) ( )

( )
( ) ( ) ( )

( )

1 1

2 222

1 1 e 1 1 1 1
.

e

p z p z

p z

u z u z w z w z u z u z
R z

w z u zu z

+ + −+ − + − + −
= = =  

Thus, we have 
( ) ( ) ( )1 1 2e 1.p z p z p z+ + − + ≡                     (3.1) 

If 1p ≤ , then our conclusion holds for 2 0a = . If 2p ≥ , set 

( ) 1
1 1 0 ,p p

p pp z a z a z a z a−
−= + + + +              (3.2) 

where 1 1 00, , , ,p pa a a a−≠   are constants. 
From (3.2), we see that 

( ) ( ) ( ) ( ) ( )21 1 2 1 ,p
pp z p z p z p p a z q z−+ + − − = − +         (3.3) 

where q(z) is a polynomial such that ( ) 0q z ≡  when 2p = , or  
( )deg 2q z p< −  when 3p ≥ . 

Suppose that 3p ≥ , we obtain from (3.1) and (3.3) that 

( ) ( ) ( ) ( ) ( )211 1 21 e e ,
p

pp p a z q zp z p z p z −− ++ + − +≡ =  

which is impossible. Thus, 2p = , then from (3.1) and (3.3), we get 22e 1a =  
immediately. To sum up, we prove that (1.2) holds. 

Next, we use ( ) 2
2 1 0p z a z a z a= + +  and prove our additional conclusion. 

From (1.2), we see that ( )1e 1p z = . 
Differentiating both sides of (1.2), we can deduce that 

( ) ( ) ( ) ( ) ( ) ( )e ep z p zp z u z w z u z′ ′ ′= −  

and 

( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )2
e e e 2 e .p z p z p z p zp z u z w z u z p z u z p z u z′′ ′′ ′ ′ ′= = −  

By our assumption, (1.2}), (3.4) and the fact that ( )1e 1p z = , we have 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( )

1

1

1 1 1 1 1

1 1

1 1

e

e

0.

p z

p z

p z p z u z p z u z

w z u z

w z u z

′ ′ ′= =

′ ′= −

′ ′= − =

 

Therefore, similarly, it follows from (3.5) that 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

1

1 1 1

1 1 1

2
1 1 1 1 1 1

1 1

e

e e 2 e

0.

p z

p z p z p z

p z p z u z

w z u z p z u z p z u z

w z u z

′′ ′′=

′′ ′′ ′ ′ ′= − − −

′′ ′′= − =

 

As a result, we obtain 

( ) ( ) ( )2
12 1 0 1 02

2 1 2 1 1 12 0,2 0,e e 1,p za z a z aa p z a z a p z + +′′ ′= = + = = = =  

that is, 0
2 1 0,e 1aa a= = = . Hence, ( ) ( ) ( )

2
2 1 0ea z a z aw z u z u z+ +≡ = . 
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4. Proof of Theorem 1.3 

Here, we need the lemma below, where the case that R(z) is a nonzero constant 
has been proved by Zhang and Yang [7] and the case that R(z) is a nonconstant 
rational function by Lan and Chen [8]. 

Lemma 4.1. [7] [8] Let w(z) be a finite order transcendental meromorphic 
solution to 

the Equation (1.1), where { }2, 1,0m∈ − ±  and a be a constant. Then  

( ) ( ) ( )1 1.w a w wλ λ ρ− = = ≥  

Proof of Theorem 1.3. Since ( )w z  and ( )u z  are finite order transcen-
dental meromorphic functions and share 1, ∞ CM, we see that 

( )
( )

( )1
e ,

1
p zw z

u z
−

=
−

                      (4.1) 

where ( )p z  is a polynomial such that 

( ) 1
1 0 ,p p

p pp z a z a z a−
−= + + +                 (4.2) 

where 00, ,pa a≠   are constants and ( ) ( ) ( ){ }deg max ,p p z w uρ ρ= ≤ . 
Case 1: m = 0. From (1.1) and (4.1), we obtain 

( )
( )

( )
( ) ( )1

4 3
:

1
u z R z

R z
u z R z
+ +

= =
+

                 (4.3) 

and 
( ) ( )( )

( ) ( )( )
( )
( )

( )
( ) ( )

4

1

e 4 1 1 4 3
,

1e 1 1

p z

p z

u z w z R z
R z

w z R zu z

+ + − + + +
= = =

+− +
       (4.4) 

where ( )1R z  is a rational function. Combining (4.1}), (4.3) and (4.4), we have 
( ) ( )( ) ( ) ( )( ) ( )( ) ( )( )4 4

1 1e e 1 1 e 1 .p z p z p zR z u z R z+ +− − = − −        (4.5) 

Now, if ( ) ( )4e ep z p z+ ≡/ , then 1p ≥  and it follows from (4.5) that 

( ) ( )
( )

( )

( ) ( )

4
1

4
1

1 1 e 1.
1 e

p z

p z p z

R z
u z

R z

− +

− +

− −
= +

−
               (4.6) 

Notice that ( ) ( )( )deg 4 1p z p z p− + ≤ − . From (4.6), we can find that 

( ) ( ) ( )( )4 11 1 1 e .p z p zu p p
u

λ ρ λ− +  − = > − ≥ − ≥  
 

 

This is a contradiction to the conclusion of Lemma 4.1. Thus, ( ) ( )4e ep z p z+ ≡ . 
From (4.2) there exists some integer 1k  such that 

( ) ( ) 1
12 4 4 ,p

pk i p z p z pa z −π = + − = +  

which yields obviously that 1p = . Therefore, we see that 
1

1 2p
ka a i= = π  and hence ( ) 1

02
kp z iz a= π +  for some constant 0a . 

Case 2: m = −1. Now (1.1) is of the form 

( ) ( ) ( ) ( )1 1 ,u z u z u z R z+ − =  
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which gives 

( )
( )

( )
( ) ( )2

3 2
: .

1
u z R z

R z
u z R z
+ +

= =
+

 

With this equation and a similar arguing as in Case 1, we can prove that  

( ) 2
0

2
3
kp z iz a= π +  for some integer 2k  and some constant 0a . 

Case 3: m = 1. Now (1.1) is of the form 

( ) ( ) ( ) ( )1 1 ,u z u z R z u z+ − =  

which gives 

( ) ( ) ( ) ( )3 2 1 .u z u z R z R z+ = + +  

And hence we have 

( )
( )

( ) ( )
( ) ( ) ( )3

6 5 4
: .

2 1
u z R z R z

R z
u z R z R z
+ + +

= =
+ +

 

It follows this equation that ( ) 3
03

k
p z iz a= π +  for some integer 3k  and some 

constant 0a , and (1.3) holds. 

Now, if ( ) ( )w z u z−  has a zero 1z  of multiplicity 2≥  such that ( )1 0w z = , 
then from (4.1), we see that ( )1e 1p z = . 

Rewrite (4.1) as the form 

( ) ( ) ( )( )1 e 1 .p zw z u z− = −  

Differentiating both sides of the equation above, we have 

( ) ( ) ( )( ) ( ) ( ) ( )e 1 e .p z p zp z u z u z w z′ ′ ′− = −  

Since 1z  is a zero of ( ) ( )w z u z−  with multiplicity 2≥  such that  
( ) ( )1 1 0w z u z= = , from the fact that ( )1e 1p z =  and (4.7), we find that 

( ) ( ) ( ) ( )( ) ( ) ( ) ( )1 1
1 1 1 1 1e 1 e 0.p z p zp z p z u z u z w z′ ′ ′ ′= − = − =  

Thus, ( )1 1 0a p z′= = , and hence ( ) ( )1e e 1p z p z≡ = . This implies that  
( ) ( )w z u z≡ . 
Finally, we discuss the Case 2). Since ( ) ( ) 1j jw z u z= ≠  and 2 3z z− ∈/  , 

then from (4.1), we can deduce that ( ) ( )32e 1 e p zp z = = . Therefore, there exists an 
integer 0k  such that 

( ) ( ) ( )1 2 3 2 3 02 .a z z p z p z k i− = − = π  

If 1 0a ≠ , from the equation above, considering each form of 1a  for  
1,0,1m = − , we can find that 2 3z z−  must be a nonzero rational number. This 

contradicts our assumption that 2 3z z− ∈/  . Thus 1 0a = , and hence ( )e 1p z ≡ . 
This gives ( ) ( )w z u z≡  again. 

5. Conclusion 

It is shown that the finite order transcendental meromorphic solution of the 
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Equation (1.1) is mainly determined by its zeros (or 1-value points) and poles. 
Examples are provided to show sharpness of our results. 
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