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Abstract 
The purpose of this work is to identify the universality class of the nonequili-
brium phase transition in the two-dimensional kinetic Ising ferromagnet dri-
ven by propagating magnetic field wave. To address this issue, the finite size 
analysis of the nonequilibrium phase transition, in two-dimensional Ising 
ferromagnet driven by plane propagating magnetic wave, is studied by Monte 
Carlo simulation. It is observed that the system undergoes a nonequilibrium 
dynamic phase transition from a high temperature dynamically symmetric 
(propagating) phase to a low temperature dynamically symmetry-broken 
(pinned) phase as the system is cooled below the transition temperature. This 
transition temperature is determined precisely by studying the fourth-order 
Binder Cumulant of the dynamic order parameter as a function of tempera-
ture for different system sizes (L). From the finite size analysis of dynamic 

order parameter ( ~LQ L
β
ν

−
) and the dynamic susceptibility ( ~Q

L L
γ
νχ ), we 

have estimated the critical exponents 0.146 0.025β ν = ±  and 
1.869 0.135γ ν = ±  (measured from the data read at the critical temperature 

obtained from Binder cumulant), and 1.746 0.017γ ν = ±  (measured from 
the peak positions of dynamic susceptibility). Our results indicate that such 
driven Ising ferromagnet belongs to the same universality class of the 
two-dimensional equilibrium Ising ferromagnet (where 1 8β ν =  and 

7 4γ ν = ), within the limits of statistical errors.  
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1. Introduction 

The driven Ising ferromagnet shows interesting nonequilibrium phase 
transitions [1] [2]. This time dependent drive may be of two kinds: 1) an applied 
magnetic field which is oscillating in time and uniform over the space at any 
particular instant, 2) the applied magnetic field has a spatio-temporal variation 
which may be the type of propagating or standing magnetic field wave. The first 
kind of driving magnetic field has drawn much attention to the researchers and a 
considerable volume of studies is done in this direction, in last two decades. 
Here, a few of those may be mentioned as follows: 1) the critical slowing down 
and the divergence of the specific heat near the dynamic transition temperature 
[3], 2) the divergence of the fluctuations of the dynamic order parameter [4], 3) 
the growth of critical correlation near the dynamic transition temperature [5]. 
These studies are an integrated effort to establish that the nonequilibrium 
transition in kinetic Ising ferromagnet driven by oscillating magnetic field is 
indeed a thermodynamic phase transition. 

The nonequilibrium phase transitions in other magnetic models (e.g., Blume- 
Capel, Blume-Emery-Griffiths models etc.) driven by oscillating (in time but 
uniform over the space) magnetic field have been studied [6] [7] [8] also in last 
few years to present some interesting nonequilibrium behaviors. The nonequili- 
brium phase transitions were studied in [9] [10] [11] [12] [13] mixed spin 
systems driven by oscillating magnetic field, recently. 

The another kind of external drive may be the magnetic field with spatio- 
temporal variation. The prototypes of these spatio-temporal drives are propagating 
or standing magnetic field waves. In the last few years, a number of investigations, 
on the nonequilibrium phase transitions in Ising ferromagnet driven by 
propagating and standing magnetic field wave, are done [14] [15] [16] [17] [18] 
through Monte Carlo methods. Here, the essential findings are the nonequilibrium 
phase transitions between two phases, namely, the low temperature ordered 
pinned phase (where the spins do not flip) and a high temperature disordered 
phase where a coherent propagation (in the case of propagating magnetic field 
wave) or coherent oscillation (in the case of standing magnetic field wave) of 
spin bands are observed. The transitions are marked by the divergences of 
dynamic susceptibility near the transition point. 

However, the detailed finite size analyses were not yet performed to know the 
universality class of this nonequilibrium phase transition observed in Ising 
ferromagnet driven by propagating magnetic field wave. This is the key issue of 
the present study. 

In this paper, we have investigated the nonequilibrium behaviour and the 

finite size effect of spin-
1
2

 Ising ferromagnet under the influence of propagating 

magnetic wave by Monte Carlo methods. The paper is organized as follows: The 
model and the MC simulation technique are discussed in Section II, the 
numerical results are reported in Section III and the paper ends with a summary 
in Section IV. 
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2. Model and Simulation 

The time dependent Hamiltonian of a two dimensional driven Ising ferromagnet 
is represented by,  

( ) ( ) ( ) ( ) ( ), , , , , , , , .z z z zH t J s x y t s x y t h x y t s x y t′ ′ ′= − ΣΣ −Σ        (1) 

Here ( ), , 1zs x y t = ± , is the Ising spin variable at lattice site ( ),x y  at time t. 
The summation ′Σ  extends over the nearest neighbour sites ( ),x y′ ′  of a given 
site ( ),x y . ( )0J >  is the ferromagnetic spin-spin interaction strength between 
the nearest neighbour pairs of Ising spins. For simplicity, we have considered the 
value of J to be uniform over the whole lattice. The externally applied driving 
magnetic field, is denoted by ( ), ,zh x y t , at site ( ),x y  at time t. ( ), ,zh x y t  
has the following form for propagating magnetic wave,  

( ) 0, , cos 2z xh x y t h ft
λ

  = π −  
  

                   (2) 

Here 0h  and f represent the field amplitude and the frequency respectively of 
the propagating magnetic wave, whereas λ  represents the wavelength of the 
wave. The wave propagates along the X-direction through the lattice. 

An L L×  square lattice of Ising spins is taken here as a model system. The 
boundary conditions applied at both directions are periodic which preserve the 
translational invariances in the system. Using Monte Carlo Metropolis single 
spin flip algorithm with parallel updating rule [19], the dynamics of the system 
are simulated. The initial state of the system is chosen as the high temperature 
random disordered phase, in which, at any lattice site, both the two states (±1) of 
the Ising spins have equal probabilities. The system is then slowly cooled down 
to any lower temperature T and the dynamical quantities are calculated. The 
Metropolis probability [19] of single spin flip at temperature T is given by,  

( ) ( )( ) min exp ,1z z

i f
B

EW s s
k T

  −∆
→ =   

   
              (3) 

where E∆  is the energy change due to spin flip from i-th state to f-th state and 

Bk  is the Boltzman constant. In a chosen configuration, the probability of 
flipping of each spin is calculated from the above rule. Then prepared a list of 

2L  such values of probability of flipping. On the other hand, a list of 2L  
random fraction (collected from a uniformly distributed random numbers) is 
prepared, keeping in mind that each random fraction is associated to the 
probability of flipping of each spin. The spins are flipped simultaneously where 
the probability of flipping exceeds (or equal to) the random fraction. This is so 
called parallel updating of spins. Such parallel updating of 2L  spin states in an 
L L×  square lattice constitute the unit time step and is called Monte Carlo Step 
per Spin (MCSS). The applied magnetic field and the temperature are measured 
in the units of J and BJ k  respectively. The choices of such units of applied 
magnetic field and the temperatures are very common in the literatures [19] of 
the simulation of the Statistical Mechanics of Ising ferromagnet in the presence 
of magnetic field. 
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3. Results 

The nonequilibrium behaviour of the two dimensional Ising ferromagnet is 
studied here in L L×  square lattices of different sizes (L) where a propagating 
magnetic wave is passing through the system. The frequency (f) of magnetic field 
oscillation, wavelength ( λ ) of the magnetic wave and the amplitude ( 0h ) of field 
strength are kept constant throughout the present study. These constant values 
are respectively ( ) 10.01 MCSSf −= , 16λ =  lattice units and 0 0.3h J= . For 

0.01f = , 100 MCSS is required for a complete time cycle. 
Since we have chosen the values of L in the multiple of 16, the wavelength 

16λ =  is a reasonable choice. In this case, the smallest system will contain a full 
wave. The frequency, 0.01f = , is chosen to have the adequate number of cycles, 
of the propagating magnetic field, to get a reasonable average value. The choice 
of the amplitude 0 0.3h J=  is just to keep the nonequilibrium phase transition 
in the higher temperature range. 

The finite size effect is studied by taking into account four different system 
sizes (within the limited computational facilities available) such as L = 16, 32, 
48 and 128. The system (for any fixed value of L) has been cooled down in 
small steps ( 0.005 BT J k∆ = ) from high temperature phase, i.e. the dynamical 
disordered phase, to reach any dynamical steady state at temperature T. The 
dynamical quantities are calculated when the system has achieved the 
nonequilibrium steady state. For this we have kept the system in constant 
temperature for a sufficiently long time; 12,000 (for 128L = ) to 32,000 (for 

16L = ) cycles of magnetic oscillations and discarding the initial (or transient) 
1000 cycles and taking average over the remaining cycles. We have detected a 
dynamical phase transition from high temperature symmetric propagating (spin 
bands) phase to low temperature symmetry-broken pinned phase. The dynamic 
Order parameter for the phase transition is defined as the average magnetisation 
per spin over a full cycle of external magnetic field, i.e.  

( )d ,Q f M t t= × ∫                        (4) 

where ( )M t  is the value of instantaneous magnetisation per spin at time t 
which can be obtained as  

( ) ( )
2

2
1

1 , ,
L

z

i
M t s x y t

L =

= ∑                     (5) 

At very high temperature, the flipping probability of the spin, is quite high 
alongwith the oscillation of the magnetic field. As a result the value of the 
instantaneous magnetisation is almost close to zero. Consequently, by definition, 
the value of the dynamic order parameter is very small, thus identifying the 
dynamically disordered propagating phase ( 0Q = ) (see Figure 1(b)). It may be 
noted here, that the instantaneous magnetisation fluctuates symmetrically about 
zero (see Figure 1(d)). Hence, this may be characterised as a dynamically 
symmetric phase. As the system is cooled down below the critical temperature, 
which depends on the value of magnetic field strength, the flipping probability of  
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Figure 1. The lattice morphologies of the (a) pinned phase and (b) propagating phase respectively at time 39937 MCSSt =  for 

64L = . The dynamical symmetry breaking (change in the value of average magnetisation per spin from non-zero to nearly zero 
value); (c) at temperature 1.8T =  and (d) at temperature 2.5T = . The value of the amplitude of the field is 0 0.3h =  in all 
cases. 

 
the spin gets reduced; also the magnetic field strength may not be adequate to 
flip the spins and the spins are locked or pinned in a particular orientation 
giving rise to a large and nearly steady value of average magnetisation. This 
phase is identified as the dynamically ordered or pinned phase ( 0Q ≠ ) (see 
Figure 1(a)). Unlike, the dynamically symmetric phase (mentioned above), 
here the instantaneous magnetisation varies asymmetrically about zero (see 
Figure 1(c)). So, this may be called a dynamically symmetry broken phase. The 
variation of the order parameter for the dynamic phase transition (DPT) for four 
different system sizes are shown in Figure 2(a). 

The dynamical critical point is determined with high precision by studying 

the thermal variation of fourth order Binder cumulant ( ( )
4

22
1

3
L

L

L

Q
U T

Q
= − ) of 

dynamic order parameter Q for different system sizes (L). Figure 2(b) shows the 
variation of the Binder Cumulant ( ( )LU T ) with temperature (T) for different 
values of L. From this figure we have determined the value of critical 
temperature as 2.011d BT J k= , which is the value of temperature where the  
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Figure 2. Temperature variation of different quantities for different values of linear 
system size L: (a) Order parameter Q; (b) Binder cumulant LU ; (c) scaled variance of 

order parameter varQ  or susceptibility Q
Lχ . 

 
Binder cumulants for different lattice sizes have a common intersection. Now it 
is known from the behaviour of the kinetic Ising model that the scaled variance 
of the dynamical order parameter may be regarded as the susceptibility of the 
system, which can be defined as follows:  

( )22 2 .Q
L L Q Qχ = −                        (6) 

Figure 2(c) shows the variation of the scaled variance with the temperature. 
As we see from the figure that the susceptibility gets peaked near the dynamical 
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transition temperature showing the tendency of divergence near dT , as the 
system size increases. Now we adopt the finite-size scaling analysis to determine 
the critical exponents for the two dimensional kinetic Ising ferromagnet driven 
by magnetic wave. For this reason we use the usual technique of expressing the 
measured quantities as a function of the system size. We assume the following 
scaling forms for the order parameter Q and susceptibility Qχ  at the critical 
temperature:  

LQ L β ν−∝                           (7) 

.Q
L Lγ νχ ∝                            (8) 

It has to be noted here that though we do not have any value measured at the 
critical temperature which has been determined (as common intersection) from 
the Binder cumulant versus temperature curves for different L, the values of Q & 

Qχ  have been read out from the respective graphs which represent the average 
values at any temperature. Moreover, the detailed investigations done previously 
[8], show that the above scaling forms are also applicable to classify the 
universality classes of the driven magnetic systems. Figure 3(a) shows the 
log-log plot of the dynamic order parameter LQ  as a function of the linear 
system size L at the dynamic transition temperature. The value of the critical 
exponent, as estimated from this simulational study, is 0.146 0.025β ν = ±  
for the dynamic order parameter. From the log-log plot Figure 3(b). of the 
susceptibility Q

Lχ  or the scaled variance of the order parameter Q
Lχ  as a 

function of linear system size L we obtained the estimate of the value of the 
critical exponent γ ν . The values are 1.869 0.135γ ν = ±  (using the data 
obtained at 2.011d BT J k=  from the respective graphs) and 1.746 0.017γ ν = ±  
(using the data obtained at the peak position of susceptibility). It is interesting to 
note that these estimated values of the critical exponents, for the two 
dimensional driven Ising ferromagnet, are very close to those of the two 
dimensional equilibrium Ising ferromagnet, which are 1 8 0.125β ν = =  and 

7 4 1.75γ ν = =  [20]. 

4. Summary 

In this study, we have mainly focused our attention on the finite size analysis 
and the critical aspects of the dynamic phase transition near the dynamic 
transition temperature of an L L×  square type Ising ferromagnet driven by 
propagating magnetic wave. We have taken four different sizes of square lattice 
(L = 16, 32, 64 and 128). We have simulated the results using Monte Carlo 
methods using the Metropolis single spin flip algorithm with parallel updating 
rules. Our findings suggest that, within the limits of statistical errors obtained in 
this study, the estimated values of the critical exponents near the dynamic 
transition temperature are very close to those for the two-dimensional equilibrium 
Ising ferromagnet. As concluding remarks, we state that the nonequilibrium  
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Figure 3. Log-log plot of (a) order parameter Q and (b) scaled variance varQ  or 
susceptibility Q

Lχ  as a function of linear system size L. In (b) red dots represent the value 
of susceptibility at dT  whereas blue triangles represent the same at peak positions. 

 
phase transition, observed in the two-dimensional Ising ferromagnet driven by 
magnetic field wave, belongs to the same universality class of equilibrium 
two-dimensional Ising equilibrium ferro-para phase transition. Recently, the 
nonequilibrium phase transition in the kinetic Ising model via the violation of 
principle of detailed balance was studied (Manoj Kumar and ChandanDasgupta, 
IISc, Bangalore) and estimated the exponents in close agreement with the 
present observations. 

Acknowledgements 

MA thanks Chandan Dasgupta for helpful discussion and acknowledges financial 

https://doi.org/10.4236/am.2019.107040


A. Halder, M. Acharyya 
 

 

DOI: 10.4236/am.2019.107040 576 Applied Mathematics 
 

support through FRPDF grant provided by Presidency University. 

Conflicts of Interest 

The authors declare no conflicts of interest regarding the publication of this 
paper. 

References 
[1] Chakrabarti, B.K. and Acharyya, M. (1999) Dynamic Transitions and Hysteresis. 

Reviews of Modern Physics, 71, 847-859.  
https://doi.org/10.1103/RevModPhys.71.847 
https://link.aps.org/doi/10.1103/RevModPhys.71.847  

[2] Acharyya, M. (2005) Nonequilibrium Phase Transitions in Model Ferromagnets: A 
Review. International Journal of Modern Physics C, 16, 1631-1670.  
https://doi.org/10.1142/S0129183105008266 
https://www.worldscientific.com/doi/abs/10.1142/S0129183105008266  

[3] Acharyya, M. (1997) Nonequilibrium Phase Transition in the Kinetic Ising Model: 
Critical Slowing Down and the Specific-Heat Singularity. Physical Review E, 56, 
2407. https://link.aps.org/doi/10.1103/PhysRevE.56.2407  
https://doi.org/10.1103/PhysRevE.56.2407 

[4] Acharyya, M. (1997) Nonequilibrium Phase Transition in the Kinetic Ising Model: 
Divergences of Fluctuations and Responses near the Transition Point. Physical Re-
view E, 56, 1234. https://doi.org/10.1103/PhysRevE.56.1234 

[5] Sides, S.W., Rikvold, P.A. and Novotny, M.A. (1998) Kinetic Ising Model in an Os-
cillating Field: Finite-Size Scaling at the Dynamic Phase Transition. Physical Review 
Letters, 81, 834-837. https://link.aps.org/doi/10.1103/PhysRevLett.81.834  
https://doi.org/10.1103/PhysRevLett.81.834 

[6] Keskin, M., Canko, O. and Deviren, B. (2006) Dynamic Phase Transition in the Ki-
netic Spin-3/2 Blume-Capel Model under a Time-Dependent Oscillating External 
Field. Physical Review E, 74, Article ID: 011110.  
https://doi.org/10.1103/PhysRevE.74.011110 

[7] Temizer, U., Kantar, E., Keskin, M. and Canko, O. (2008) Multicritical Dynamical 
Phase Diagrams of the Kinetic Blume-Emery-Griffiths Model with Repulsive Biqu-
adratic Coupling in an Oscillating Field. Journal of Magnetism and Magnetic Mate-
rials, 320, 1787-1801. https://doi.org/10.1016/j.jmmm.2008.02.107 

[8] Vatansever, E. and Fytas, N. (2018) Dynamic Phase Transition of the Blume-Capel 
Model in an Oscillating Magnetic Field. Physical Review E, 97, Article ID: 012122.  
https://link.aps.org/doi/10.1103/PhysRevE.97.012122  
https://doi.org/10.1103/PhysRevE.97.012122 

[9] Ertas, M., Deviren, B. and Keskin, M. (2012) Nonequilibrium Magnetic Properties 
in a Two-Dimensional Kinetic Mixed Ising System within the Effective-Field 
Theory and Glauber-Type Stochastic Dynamics Approach. Physical Review E, 86, 
Article ID: 051110. https://doi.org/10.1103/PhysRevE.86.051110 

[10] Temizer, U. (2014) Dynamic Magnetic Properties of the Mixed Spin-1 and Spin-3/2 
Ising System on a Two-Layer Square Lattice. Journal of Magnetism and Magnetic 
Materials, 372, 47-58. https://doi.org/10.1016/j.jmmm.2014.07.015 

[11] Vatansever, E., Akinci, A. and Polat, H. (2015) Non-Equilibrium Phase Transition 
Properties of Disordered Binary Ferromagnetic Alloy. Journal of Magnetism and 
Magnetic Materials, 389, 40-47. https://doi.org/10.1016/j.jmmm.2015.04.042 

https://doi.org/10.4236/am.2019.107040
https://doi.org/10.1103/RevModPhys.71.847
https://link.aps.org/doi/10.1103/RevModPhys.71.847
https://doi.org/10.1142/S0129183105008266
https://www.worldscientific.com/doi/abs/10.1142/S0129183105008266
https://link.aps.org/doi/10.1103/PhysRevE.56.2407
https://doi.org/10.1103/PhysRevE.56.2407
https://doi.org/10.1103/PhysRevE.56.1234
https://link.aps.org/doi/10.1103/PhysRevLett.81.834
https://doi.org/10.1103/PhysRevLett.81.834
https://doi.org/10.1103/PhysRevE.74.011110
https://doi.org/10.1016/j.jmmm.2008.02.107
https://link.aps.org/doi/10.1103/PhysRevE.97.012122
https://doi.org/10.1103/PhysRevE.97.012122
https://doi.org/10.1103/PhysRevE.86.051110
https://doi.org/10.1016/j.jmmm.2014.07.015
https://doi.org/10.1016/j.jmmm.2015.04.042


A. Halder, M. Acharyya 
 

 

DOI: 10.4236/am.2019.107040 577 Applied Mathematics 
 

[12] Ertas, M. and Keskin, M. (2015) Dynamic Phase Diagrams of a Ferrimagnetic 
Mixed Spin (1/2, 1) Ising System within the Path Probability Method. Physica A, 
437, 430-436. https://doi.org/10.1016/j.physa.2015.05.110 

[13] Shi, X., Wang, L., Zhao, J. and Xu, X. (2016) Dynamic Phase Diagrams and Com-
pensation Behaviors in Molecular-Based Ferrimagnet under an Oscillating Magnet-
ic Field. Journal of Magnetism and Magnetic Materials, 410, 181-186.  
https://doi.org/10.1016/j.jmmm.2016.03.028 

[14] Acharyya, M. (2014) Polarised Electromagnetic Wave Propagation through the 
Ferromagnet: Phase Boundary of Dynamic Phase Transition Acta Physica Polonica 
B, 45, 1027. https://doi.org/10.5506/APhysPolB.45.1027 

[15] Acharyya, M. (2014) Dynamic-Symmetry-Breaking Breathing and Spreading Tran-
sitions in Ferromagnetic Film Irradiated by Spherical Electromagnetic Wave. Jour-
nal of Magnetism and Magnetic Materials, 354, 349-354.  
https://doi.org/10.1016/j.jmmm.2013.11.037 

[16] Halder, A. and Acharyy, M. (2016) Standing Magnetic Wave on Ising Ferromagnet: 
Nonequilibrium Phase Transition Journal of Magnetism and Magnetic Materials, 
420, 290-295. https://doi.org/10.1016/j.jmmm.2016.07.062 

[17] Halder, A. and Acharyya, M. (2017) Nonequilibrium Phase Transition in Spin-S Is-
ing Ferromagnet Driven by Propagating and Standing Magnetic Field Wave. Com-
munications in Theoretical Physics, 68, 600.  
https://doi.org/10.1088/0253-6102/68/5/600 

[18] Vatansever, E. (2017) Dynamic Phase Transition Features of the Cylindrical Nano-
wire Driven by a Propagating Magnetic Field. 

[19] Binder, K. and Heermann, D.W. (1997) Monte Carlo Simulation in Statistical Phys-
ics. Springer Series in Solid State Sciences, Springer, New York.  
https://doi.org/10.1007/978-3-662-03336-4 

[20] Huang, K. (2010) Onsager Solution. In: Statistical Mechanics, Second Edition, John 
Wiley & Sons Inc., Hoboken, Chapter 15.  

 

https://doi.org/10.4236/am.2019.107040
https://doi.org/10.1016/j.physa.2015.05.110
https://doi.org/10.1016/j.jmmm.2016.03.028
https://doi.org/10.5506/APhysPolB.45.1027
https://doi.org/10.1016/j.jmmm.2013.11.037
https://doi.org/10.1016/j.jmmm.2016.07.062
https://doi.org/10.1088/0253-6102/68/5/600
https://doi.org/10.1007/978-3-662-03336-4

	Universality Class of the Nonequilibrium Phase Transition in Two-Dimensional Ising Ferromagnet Driven by Propagating Magnetic Field Wave
	Abstract
	Keywords
	1. Introduction
	2. Model and Simulation
	3. Results
	4. Summary
	Acknowledgements
	Conflicts of Interest
	References

