

Dynamics of 18 (*Sophora japonica*) Tree Community's Crown Volume along Elevation Gradient in *Ye County*

Binghua Liao^{1,2,3*}, Yingping Liu³, Hai Zuo³, Junrong Xia³, Zuyun Yu⁴, Changjian Song³, Xiaoguang Zhang³, Caige Jiang³, Yalong Xu³

¹Key Laboratory of Ecological Restoration in Hilly Areas, School of Chemical and Environmental Engineering, Pingdingshan University, Pingdingshan, China
²State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
³Seedling Station of Pingdingshan City, Pingdingshan, China
⁴Greening Office of Pingdingshan City, Pingdingshan, China

Email: *lbh@henu.edu.cn

How to cite this paper: Liao, B.H., Liu, Y.P., Zuo, H., Xia, J.R., Yu, Z.Y., Song, C.J., Zhang, X.G., Jiang, C.G. and Xu, Y.L. (2019) Dynamics of 18 (*Sophora japonica*) Tree Community's Crown Volume along Elevation Gradient in *Ye County. Open Journal of Ecology*, **9**, 209-215. https://doi.org/10.4236/oje.2019.97017

Received: May 24, 2019 **Accepted:** July 15, 2019 **Published:** July 18, 2019

Copyright © 2019 by author(s) and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

<u>()</u>

Open Access

Abstract

Applying plant community diversity techniques and SPSS statistic analysis, we quantified the relationship between crown volume of 18 (*Sophora japonica*) tree communities and elevation along different elevation gradient in *Ye County* in the study. We concluded that there was a significantly positive correlation between crown volume of 18 (*Sophora japonica*) tree communities and elevation gradient (P < 0.01). Elevation was the dominant environment driver crown volume of (*Sophora japonica*) tree communities increased along elevation from 50 m to 200 m in *Ye County* in 2018. Therefore, understanding dynamic connecting crown volume of 18 (*Sophora japonica*) communities and elevation can be not just applied to preserve of (*Sophora japonica*) tree communities, but also applied to sustainable of biodiversity and processes of tree community's crown volume along elevation.

Keywords

(*Sophora japonica*) Communities, Crown Volume, Elevation Gradient, Correlation, International Pharmaceutical Materials

1. Introduction

The correlations between tree community's structure and elevation include tree community traits [1], tree community structure [2], tree community growth [3],

tropical tree community growth [4], tree community [5], tree community's leaf structure [6], and community canopy structure [7] in the environmental (size-dependent changes [1], latitudinal [2], climate warming [3], elevation [4], climate variations [5], ecological environment [6] [7]) dynamics along elevation in the forestry ecosystems. However, there is the correlation between crown volume of (*Sophora japonica*) tree communities and elevation along elevation gradient in *Ye County*.

Unfortunately, the concept of different tree community's structure is used as a framework for investigating the linkages between (*Sophora japonica*) communities and elevation habitats in *Ye County* [7]. Moreover, more and more experiments or models have assessed the relationship between plant communities and elevation along elevation or environment or disturbance gradient [7]-[13]. For instance, Liao, *et al.* (2011; 2014) found that importance values of woody species's structure were significantly correlated with elevation along elevation gradient on the northern and southern slope of the *Fu-Niu* Mountain [10] [11]. Liao, *et al.* (2011) proposed that plant species biomass were significantly correlated with elevation gradient in the typical wetland area of *Yi-Luo* River watershed [12]. Liao, *et al.* (2014) suggested that biodiversity were significantly negatively correlated with disturbance gradient [13]. Meanwhile, *Sophora japonica* is an important international pharmaceutical material in *Ye County* in 2018.

2. The Physical Geographic Conditions

Ye County was an important county in *Pingdingshan Region*. The urbanization of ecosystem is results of the historical natural and anthropogenic activities in *Ye County*. It is regional urbanization mostly in the height of more than 600 m (**Figures 1-4**; **Table 1** and **Table 2**). Three fields of biodiversity of investigations were conducted in 2018, investigating the dynamics of biodiversity in *Ye County* (**Figures 1-4**; **Table 1** and **Table 2**).

Therefore, the objective of this research was to define the correlation between crown volume of (*Sophora japonica*) tree communities and elevation gradient at spiral-temporal-environmental scales in the forest ecosystem of *Ye County* in 2018.

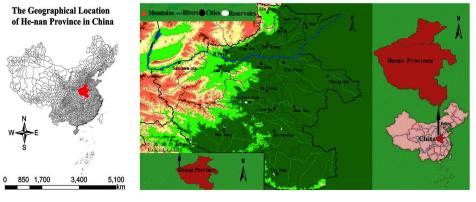
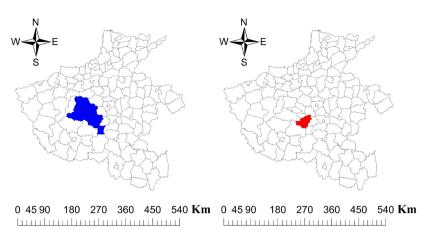



Figure 1. A digital cadastre map of location of *Henan Province* in China.

The Geographical Location of *Ping-ding-shan Region* in *Henan Province*

The Geographical Location of *Ye County* in *Henan Province*

Figure 2. The geographical location of *Pingdingshan Region* in *Henan Province* and the Geographical Location of *Ye County* in *Henan Province*. Note: Pingdingshan Region Ye County.

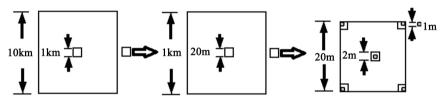
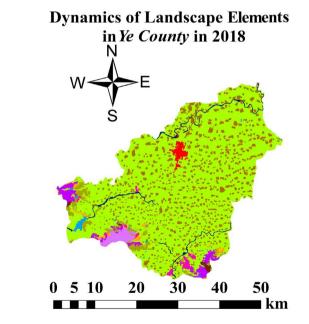



Figure 3. Quadrate settings.

Figure 4. Dynamics of different landscape areas and landscape perimeters and landscape patch numbers in *Ye County* in 2018. Note: Urbanization of Land Use Farm-lands of Land Use Rural Settlements of Land Use Reservoirs Rivers and Wetland Plantation of Land Use Ratio Vatural Forest of Land Use Grassland of Coverage Ratio during 20% - 50% Grassland of Coverage Ratio > 50%.

Location and Elevation	Climatic/Area	Vegetation (Plant Functional Groups)	
Latitude (°): 33.42 - 33.68	Precipitation (mm): 724	Trees: Ulmaceae/Cupressaceae/Moraceae/Moraceae/Platanaceae, <i>Sophora japonica</i> , <i>et al.</i>	
Longitude (°):	Temperature(°C)	Shrubs: Rhamnaceae/Verbenaceae/Buxaceae/Oleaceae/Rosaceae/Vitaceae/	
113.27 - 113.46	(Mean): 15.2	Bignoniacea/Cornaceae, <i>et al.</i>	
Elevation (m)†:	Sunlight: 2230 h	Herbs: Compositae/Leguminosae/Urticaceae/Gramineae/Convolvulaceae/	
50 - 650	Area (km²): 1387	Cyperaceae/Liliaceae/Umbellferae, <i>et al.</i>	

Table 1. The natural-physical geographic conditions and vegetation in Ye County.

†Above sea level.

Table 2. Investigation index along the elevation and disturbance gradient variable.

Investigation	Disturbance Types/ Intensity/Frequency	Layer	Community	Species	Height	Crow	Diameter
Different plant	Differential	Trees/	Coverage/	Species/	Different	Crow	Different
community	Artificial disturbance/	Shrubs/	Community's	Individual	layer's	height/	basal
investigation	Natural disturbance	Herbs	age structure	number	height	Width	diameter

3. Study Methods

A field investigation was conducted in 2018, to study the dynamics of crown volume of (*Sophora japonica*) tree communities and elevation along elevation in *Ye County*. The (*Sophora japonica*) tree community's ecosystem of *Ye County* is the dominated by natural ecosystem with tree communities from 50 m to 650 m. Possessing steep environmental gradients along elevation gradient, this area is idea for studying (*Sophora japonica*) tree communities and species (**Figures 1-4**; **Table 1** and **Table 2**).

Applying plant community ecology techniques, GIS of techniques, a number of landscape maps, SPSS statistic analysis, we investigated all plant species (dominant and companion communities) on the southern, southeastern, western, eastern, northern, southwestern, northeastern, and northwestern at spiral-temporal-environmental scales along elevation gradient in *Ye County* in 2018 (Figures 1-4; Table 1 and Table 2).

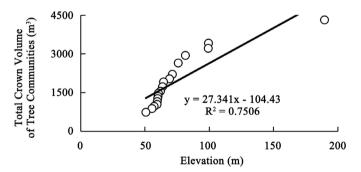
There are 8 study plots establishing in per 10 m elevation by different azimuth and direction (East, West, South, Southeast, Southwest, North, Northeast, and Northwest) in 2018. A total of 60 plots were set in three times investigating. Each study plot (**Figures 1-4**), consisted of one 20×20 m tree layer quadrate, five (the center and four corners of the study plot) 2×2 m shrub layer quadrates and 1×1 m herb layer quadrates. Thus, there were 180 tree layer, 900 shrub layer, and 900 herbaceous layer quadrates (**Figures 1-3**; **Table 2** and **Table 3**). Moreover, different plant species identified during this investigation were assigned into three communities according to plant life form: 1) tree communities; 2) shrub communities; 3) herb communities [10] [11] [12] [13].

4. Results

The study showed three rules of the correlation between (*Sophora japonica*) tree communities and elevation along different elevation gradients (**Figure 5**; **Table**

3).

Firstly, these show that there is crown volume of 18 (*Sophora japonica*) tree communities along differential elevation between 50 and 200 m in *Ye County*.


Secondly, this study shows that crown volume of 18 (*Sophora japonica*) tree communities increased along elevation gradients. Meanwhile, the study analyzed the relationship between crown volume of 18 (*Sophora japonica*) communities and elevation in *Ye County*. Regression equation is "y = 27.341x - 104.43, (R² = 0.7506)".

Thirdly, there is a significantly positive correlation between crown volume of 18 (*Sophora japonica*) tree communities and elevation (P < 0.01) in this paper.

5. Discussion

In resent years, more and more researches explained the correlation between tree community's crown volume and elevation [7]-[13]. These researches include dynamics of community's crown volume traits [1], tree community's crown volume structure [2], tree community's crown volume growth [3] [4] [5], tree leaf structure of community's crown volume [6], community canopy crown volume and structure [7]-[11] along elevation gradient.

Thus, the results indicate that elevation was the dominant environment driver of crown volume of 18 (*Sophora japonica*) tree communities increased along elevation gradient. This study supported the experiments or models that elevation gradient is an important environmental factor affecting dynamics of tree communities distribution [14], tree community variation [15], composition and biomass of tree community [16], dynamics of tree communities (structure and composition and diversity of tree community) [17] [18] [19] along elevation gradient at spatial-temporal-environmental scales in the future.

Figure 5. Dynamics of crown volume of 18tree communities along elevation gradient.

Table 3. Correlating to crown volume of tree communities and elevation gradient.

Correlation between crown volume of 18 (<i>Sophora japonica</i>) tree communities and elevation			
0.866**			

DOI: 10.4236/oje.2019.97017

6. Conclusion

In this paper, the study explained that there was a significantly positive correlation between crown volume of 18 (*Sophora japonica*) tree communities and elevation gradient (P < 0.01). This study explained that elevation was the key environmental factor driver of crown volume of 18 (*Sophora japonica*) tree communities of international pharmaceutical materials increased along elevation gradient from 50 m to 200 m in *Ye County* in 2018. Therefore, understanding dynamic connecting crown volume of 18 (*Sophora japonica*) tree communities and elevation can be not just applied to preserve of (*Sophora japonica*) tree communities, but also applied to sustainable of biodiversity and processes crown volume of (*Sophora japonica*) tree communities along elevation at spatial-temporal-environmental scales in *Ye County* in the future.

Acknowledgements

This work was supported by A Grade of Key Disciplines of Environmental Science Foundation of *Pingdingshan* University, B Grade of Key Disciplines of Materials Science of *Pingdingshan* University, Science and Technology Department of *Henan* Province Foundation of China (KJT-17202310242), The Contracts of the Agreement on the Census of Forest Germplasm Resources in *Pingdingshan City* (PXY-HX-2017008, KY-2017103101), Science and Technology Department of *Henan* Province Foundation of China (KJT-092102110165).

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this paper.

References

- He, D. and Yan, E.R. (2018) Size-Dependent Variations in Individual Traits and Trait Scaling Relationships within a Shade-Tolerant Evergreen Tree Species. *America Journal of Botany*, **105**, 1165-1174. <u>https://doi.org/10.1002/ajb2.1132</u>
- [2] Pandey, A., Badola, H.K., Rai, S., *et al.* (2018) Timberline Structure and Woody Taxa Regeneration towards Treeline along Latitudinal Gradients in Khangchendzonga National Park, Eastern Himalaya. *PLoS ONE*, **13**, e207762. <u>https://doi.org/10.1371/journal.pone.0207762</u>
- [3] Li, Y., Zhou, G. and Liu, J. (2017) Different Growth and Physiological Responses of Six Subtropical Tree Species to Warming. *Frontiers in Plant Science*, 8, 1511. <u>https://doi.org/10.3389/fpls.2017.01511</u>
- [4] Caughlin, T.T., Graves, S.J., Asner, G.P., et al. (2016) A Hyperspectral Image Can Predict Tropical Tree Growth Rates in Single-Species Stands. Ecological Applications, 26, 2367-2373. <u>https://doi.org/10.1002/eap.1436</u>
- [5] Pompa-García, M. and Venegas-González, A. (2016) Temporal Variation of Wood Density and Carbon in Two Elevational Sites of *Pinus cooperi* in Relation to Climate Response in Northern Mexico. *PLoS ONE*, **11**, e156782. https://doi.org/10.1371/journal.pone.0156782
- [6] Ichie, T., Inoue, Y., Takahashi, N., et al. (2016) Ecological Distribution of Leaf Sto-

mata and Trichomes among Tree Species in a Malaysian Lowland Tropical Rain Forest. *Journal of Plant Research*, **129**, 625-635. https://doi.org/10.1007/s10265-016-0795-2

- [7] Liao, B.H., Liu, Y.P., Zuo, H., et al. (2019) Elevation Dynamics of (Sophora japonica) Community's Height in Ye County. International Journal of Research Pharmaceutical and Nano Sciences, 8, 48-54.
- [8] Asbeck, T., Pyttel, P., Frey, J. and Bauhus, J. (2019) Predicting Abundance and Diversity of Tree-Related Microhabitats in Central European Montane Forests from Common Forest Attributes. *Forest Ecology and Management*, 432, 400-408. https://doi.org/10.1016/j.foreco.2018.09.043
- [9] Liao, B.H. and Wang, X.H. (2010) Plant Functional Group Classifications and a Generalized Hierarchical Framework of Plant Functional Traits. *African Journal of Biotechnology*, 9, 9208-9213.
- [10] Liao, B.H., Ding, S.Y., Hu, N., et al. (2011) Dynamics of Environmental Gradients on Plant Functional Groups Composition on the Northern Slope of the Fu-Niu Mountain Nature Reserve. African Journal of Biotechnology, 10, 18939-18947. https://doi.org/10.5897/AJB11.1734
- [11] Liao, B.H., Liu, Q.F., Lu, D., *et al.* (2014) Dynamics of Environmental Gradients on Plant Functional Groups Composition Species in Near-Natural Community Ecological Restoration on the Southern Slope of the Fu-Niu Mountain Nature Reserve. *Journal of Science*, **4**, 306-312.
- [12] Liao, B.H., Ding, S.Y., Liang, G.F., et al. (2011) Dynamics of Plant Functional Groups Composition along Environmental Gradients in the Typical Area of Yi-Luo River Watershed. African Journal of Biotechnology, 10, 14485-14492. https://doi.org/10.5897/AJB11.1667
- [13] Liao, B.H. (2014) A New Model of Dynamic of Plant Diversity in Changing Farmlands, Implications for the Management of Plant Biodiversity along Differential Environmental Gradient in the Spring. *African Journal of Environmental Science and Technology*, 8, 171-177. <u>https://doi.org/10.5897/AJEST11.185</u>
- [14] Bates, J.D. and Davies, K.W. (2018) Quaking Aspen Woodland after Conifer Control: Tree and Shrub Dynamics. *Forest Ecology and Management*, 409, 233-240. <u>https://doi.org/10.1016/j.foreco.2017.11.019</u>
- [15] Nettesheim, F.C., Garbin, M.L., Pereira, M.G., Araujo, D.S.D. and Grelle, C.E.V. (2018) Local-Scale Elevation Patterns of Atlantic Forest Tree Community Variation and Assembly Drivers in a Conservation Hotspot in Southeastern Brazil. *Flora*, 248, 61-69. https://doi.org/10.1016/j.flora.2018.08.016
- [16] Zahawi, R.A., Oviedo-Brenes, F. and Peterson, C.J. (2017) A Degradation Debt? Large-Scale Shifts in Community Composition and Loss of Biomass in a Tropical Forest Fragment after 40 Years of Isolation. *PLoS ONE*, **12**, e183133. https://doi.org/10.1371/journal.pone.0183133
- [17] Acebey, A.R., Krömer, T. and Kessler, M. (2017) Species Richness and Vertical Distribution of Ferns and Lycophytes along an Elevational Gradient in Los Tuxtlas, Veracruz, Mexico. *Flora*, 235, 83-91. <u>https://doi.org/10.1016/j.flora.2017.08.003</u>
- [18] Ndiribe, C., Pellissier, L., Antonelli, S., *et al.* (2013) Phylogenetic Plant Community Structure along Elevation Is Lineage Specific. *Ecology and Evolution*, 3, 4925-4939. https://doi.org/10.1002/ece3.868
- [19] Bai, K., He, C., Wan, X. and Jiang, D. (2016) Leaf Economics of Evergreen and Deciduous Tree Species along an Elevational Gradient in a Subtropical Mountain. *AoB Plants*, 7, plv064. <u>https://doi.org/10.1093/aobpla/plv064</u>