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Abstract 
Filamentous fungi can be used to form easily harvested pellets with microalgae 
(fungal-assisted algal harvesting) in order to advance the sustainability and 
economic feasibility of wastewater treatment using microalgae. In experiments 
employing the microalga Chlorella vulgaris and using the filamentous fungus 
Aspergillus niger for harvesting, this study investigated the effect on water 
quality and the quantity and quality of lipids in the biomass produced. Major 
reductions in the concentrations of total nitrogen, ammonium-nitrogen and 
total phosphorus were observed after addition of the fungal spores (day 5) 
and during fungal growth and entrapment of the algal cells. At harvest (day 
8), the decrease in total nitrogen was 47.4% ± 18.4% of the initial value, cor-
responding to a reduction of 41.9 ± 17.1 mg∙nitrogen∙L−1. For total phospho-
rus, the decrease was 94.4% ± 3.2%, corresponding to a reduction of 6.4 ± 0.2 
mg∙phosphorus∙L−1. A significant decrease in concentration of the micropol-
lutant diclofenac was observed at harvest, to 5.1 ± 4.0 µg∙L−1 compared with 
an initial concentration of 9.5 ± 0.6 µg∙L−1. A significant decrease in total lip-
ids in the biomass was observed after fungal-assisted algal harvesting, from 
58.7 ± 2.7 µg∙mg−1 at day 5 (algal biomass only) to 34.2 ± 2.7 µg∙mg−1 at day 8 
(fungal-algal biomass). However, because of high biomass production, the 
amount of lipids produced per litre of wastewater increased from 5.6 ± 0.9 mg 
on day 5 to 20.6 ± 4.9 mg on day 8. 
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1. Introduction 

Waste streams such as municipal wastewater are currently being produced at in-
creasing rates and quantities worldwide, due to rapid human population growth. 
Consequently, there has been a rise in the need for novel sustainable technolo-
gies for municipal wastewater treatment. Such technologies should be character-
ised by low energy demand and simultaneously allow for recirculation of re-
sources, such as nutrients for crop production. Algae-based technologies such as 
high-rate algal ponds offer one possibility to achieve sustainability within the 
wastewater treatment sector, since these systems are well-known for removal of 
inorganic nutrients from wastewater [1]. Another positive aspect of using mi-
croalgae for wastewater treatment is that the biomass obtained after treatment 
can be used within the emerging biofuel sector, with the quantity and quality of 
lipids produced being key factors [2]. 

However, the incentive for using microalgae for wastewater treatment and 
associated biofuel production is hampered by the high costs associated with 
the algal harvesting techniques currently in use, commonly filtration, chemi-
cal flocculation and centrifugation. These techniques are normally very en-
ergy-demanding, constituting 20% - 30% of the total costs for algal biomass 
production [3]. Research in the past few years has indicated that filamentous 
fungi may form pellets with microalgae (biopellets). During the pelletisation 
process, the microalgal cells become entrapped inside the fungal pellets and 
can then be removed from the wastewater by coarse filtration. Thus, the fun-
gal-assisted algal harvesting technique may lessen the costs associated with 
production of microalgal biomass in wastewater and associated biofuel produc-
tion [4] [5]. 

In the past decade, several studies have found that conventional wastewater 
treatment processes do not remove organic pollutants such as pesticides and 
pharmaceuticals to satisfactory levels [6]. Unsurprisingly, these substances are 
now regularly found in aquatic ecosystems and groundwater [7] [8]. Efficient 
but costly methods currently used for removal of organic pollutants in wastewa-
ter are ozonation and active carbon filtration [6]. In some situations, wastewater 
treatment techniques based on biological processes, e.g. bioremediation, could 
be a potential low-cost alternative. Microorganisms such as microalgae and 
fungi can achieve reductions in organic pollutant concentrations in water via 
initial and rapid biosorption onto their biomass and through biodegradation of 
the pollutant [9]. In fact, both microalgae and fungi have been demonstrated 
separately to remove organic pollutants from water [10] [11] [12]. 

Use of filamentous fungi for microalgae harvesting, through the formation of 
biopellets, is now an intensely researched area [5], due to its potential for devel-
opment into a sustainable wastewater treatment technology. The aim of the pre-
sent study was to increase knowledge of fungal-assisted algal harvesting from 
wastewater and to investigate its effect in reducing the concentrations in water of 
nutrients and the micropollutant diclofenac, which is included in the EU watch-
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list of priority substances [13]. Also biomass production and the quantity and 
quality of lipids accumulated in the biomass were evaluated. 

2. Material and Methods 
2.1. Microorganisms 

The microalgal species Chlorella vulgaris strain 211/11B was obtained from 
CCAP-SAMS (Culture Collection of Algae and Protozoa, Scottish Association 
for Marine Science), Scotland, and the filamentous fungus Aspergillus niger 
ATCC® 16888™ was obtained from the American Type Culture Collection, USA, 
for use in the study. 

2.2. Experimental Design 

Four treatments were included in the study (Table 1). The process used for fun-
gal-assisted algal harvesting and the set-up for the sterile control treatments are 
described below. The pharmaceutical diclofenac (diclofenac sodium salt, Sigma 
D6899) was added from a methanol-based stock solution at the start of the ex-
periment. All replicates were stirred (100 rpm) and sampled 5 minutes after ad-
dition, to determine initial concentrations of biomass, pH, nutrients and di-
clofenac. 

In the biological treatment, the algal culture was started by inoculating syn-
thetic wastewater [14] with 20% (v/v) of a C. vulgaris culture taken from a 
5-day-old algal culture grown in BG-11 [4]. To prevent the algal cells from set-
tling and to allow gas exchange, the culture was stirred at a speed of 100 rpm. 
The culture was grown for 5 days at 24˚C and illumination of 30 µmol/m2 s 
(PAR) with a photoperiod of 16 h. Sterile control treatments consisting of 20% 
BG-11 and 80% synthetic wastewater were kept under the same conditions. After 
5 days, the number of algal cells was determined by counting in a Bürkner 
chamber and spores of A. niger were added to obtain an algal cell:fungal spore 
ratio of 50:1. For spore production, A. niger was cultivated on Petri plates of po-
tato dextrose agar at room temperature for 10 days. The spores were harvested 
by applying 2 × 10 mL of sterile distilled water directly onto the agar plate. The 
spore solution was filtered through a nylon filter (mesh size 100 µm) to remove 
mycelial fragments and the spore concentration was determined in a Bürkner 
chamber. After spore addition, the pH in each replicate was lowered to 4.0 with 
hydrochloric acid and glucose was added to reach a concentration of 3 g∙L−1. The 
controls were treated in the same way, but sterile distilled water was added in-
stead of the spore solution. 

The treatments were placed on a horizontal shaker (100 rpm) at room tem-
perature without additional light for 3 days (days 5 - 8) to allow formation of 
fungal pellets and thus entrapment of algal cells. On day 8, no algal cells were 
observed in the water phase when studied under a microscope, so the treatments 
were removed from the shaker and the fungal-algal pellets produced were col-
lected by filtration through a nylon filter (mesh size 100 µm). 
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2.3. Analysis 
2.3.1. Biomass Production 
At the beginning of the experiment (day 0), at day 5 of algal growth (before ad-
dition of the fungal spores) and at the end of the experiment (day 8), dry weight 
biomass in all treatments was determined. At day 0 and day 5, biomass was de-
termined by sampling 50 mL from each replicate and centrifuging it at 3000 g 
(MegaStar 600, VWR) for 10 min, after which the pellets obtained were washed 
once with an equal volume of distilled water and lyophilised. At day 8, the fun-
gal-algal pellets produced were removed by coarse filtration as described above, 
washed once with an equal volume of distilled water and lyophilised. 

2.3.2. Diclofenac Analysis 
Samples for analysis of diclofenac concentration were taken in parallel with 
biomass determination on day 0, day 5 and day 8. These water samples were 
stored at −20˚C before analysis, which was performed within two weeks. For 
analysis, the samples were filtered using a regenerated cellulose syringe filter 
(0.22 mm pores) and 1 mL of the filtered extract was placed in an autosampler 
vial with 10 ng of the internal standard (Diclofenac-13C6). The samples were 
analysed using a DIONEX UltiMate 3000 ultra-performance liquid chromatog-
raphy (UPLC) system coupled to a TSQ QUANTIVA triple quadrupole mass 
spectrometer (MS/MS) system (both Thermo Scientific, Waltham, MA, USA). 
An Acquity UPLC BEH-C18 column (100 mm × 2.1 i.d., 1.7 µm particle size, 
Waters Corporation, Manchester, UK) was used as an analytical column. Data 
were evaluated using TraceFinder™ 3.3 software (Thermo Fisher). Detailed in-
formation about the analytical method can be found in Gago-Ferrero et al. [15]. 

2.3.3. Nutrient Analysis 
To determine the effect of the treatment on total nitrogen (TN), ammo-
nium-nitrogen ( 4NH+ -N) and total phosphorus (TP), water samples were taken 
on day 0, day 3, day 4, day 5 and day 8. Biomass was removed as described above 
and concentration of TN was determined with Hach Lange LCK 338 (ISO 
11905-1), concentration of 4NH+ -N with Hach Lange LCK 303 (ISO 7150-1) 
and concentration of TP with Hach Lange LCK 350 and LCK 349 (ISO 6878). 

2.3.4. Fatty Acid Methyl Ester (FAME) Content Analysis 
The algal biomass collected on day 5 and the fungal-algal pellets collected on 
day 8 were used to determine the quantity and quality of lipids in the biomass. 
For this analysis, the lyophilised biomass was treated with methanolic H2SO4 
(2% v/v) for 60 minutes at 90˚C. Fatty acid methyl esters (FAME) were then 
extracted and analysed as described in Hultberg et al. [16]. For quantification, 
nonadecanoic acid (19:0) was added before esterification as an internal stan-
dard. 

2.3.5. Statistics 
The experiment was set up with three replicates in each treatment and the data 
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obtained were analysed statistically using Minitab 18 for Windows. All data were 
analysed using analysis of variance (ANOVA) and Fisher’s LSD with P < 0.05 
considered significant. 

3. Results 
3.1. Biomass Production 

For the algal biomass was harvested on day 5, a fivefold increase in the amount 
of biomass compared with the initial value on day 0 was observed in both the 
treatment exposed to diclofenac and the unexposed treatment. On day 8, similar 
biomass production was again observed in both treatments, with a sixfold in-
crease compared with the amount on day 5. As expected, the pH increased dur-
ing algal growth, to a value of 9.4 - 9.5 at day 5 in the algal treatments. At harvest 
(day 8), the pH in the algal-fungal treatments had decreased from the set value 
of 4.0 to 2.4 - 2.5. No biomass production or changes in the set pH were ob-
served in the sterile control treatments during the experiment (Table 1). 

3.2. Reduction in Nutrient and Diclofenac Concentrations 

Major reductions in TN, 4NH+ -N and TP concentrations were observed be-
tween day 5 and day 8 in the biological treatments (Figure 1). On day 5, the de-
crease in TN was 9.3% ± 3.1% of the initial value and on day 8 it was 47.4% ± 
18.4% of the initial value. The latter corresponded to removal of 41.9 ± 17.1 mg 
N∙L−1 since the start. For 4NH+ -N, an initial increase in concentration was ob-
served in both the biological treatment and the control, probably due to biotic 
and abiotic degradation of urea present in the synthetic wastewater medium 14. 
A steep decrease in 4NH+ -N concentration was observed after fungus addition 
on day 5 and a final reduction of 84.4% ± 2.9% compared with the initial value 
was recorded on day 8. For TP, a very steep decrease was observed between day 
5 and day 8, resulting in a decrease of 94.4% ± 3.2% at harvest compared with 
the initial value, corresponding to a reduction of 6.4 ± 0.2 mg∙P∙L−1. 

The fungal-algal treatment also had an effect on the concentration of di-
clofenac (Figure 2). Compared with the initial diclofenac concentration (9.5 ±  
 
Table 1. Dry weight biomass and pH in the different treatments during the experiment. 
Mean ± standard deviation is shown. 

Treatment Biomass (mg∙L−1, dwt) pH 

 Day 0 Day 5 Day 8 Day 0 Day 5 Day 8 

Algal-fungal+1 18.7 ± 3.1 95.3 ± 12.1 610.7 ± 191.3 7.8 ± 0.04 9.5 ± 0.1 2.5 ± 0.2 

Algal-fungal-2 18.0 ± 4.0 99.3 ± 15.1 649 ± 207.0 7.8 ± 0.1 9.4 ± 0.3 2.4 ± 0.2 

Control+ 0 0 0 7.4 ± 0.01 7.4 ± 0.1 4.2 ± 0.1 

Control- 0 0 0 7.4 ± 0.01 7.4 ± 0.2 4.3 ± 0.2 

1The micropollutant diclofenac was included in the experiment. 2The micropollutant diclofenac was not in-
cluded in the experiment. 
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Figure 1. Mean concentration of remaining total nitrogen (TN), ammonium-nitrogen 
(NH4+-N) and total phosphorus (TP) in synthetic wastewater over time. Bars show stan-
dard deviation. 

 

 

Figure 2. Mean concentration of diclofenac in the control treatment and in the al-
gal-fungal treatment on day 0, day 5 and day 8. Bars show standard deviation, *indicates a 
significant difference compared with initial concentration (P < 0.05, Fisher’s LSD). 

 
0.6 µg∙L−1), a significant decrease was observed on day 8 (5.1 ± 4.0 µg∙L−1) in the 
biological treatment. In the control treatment, no significant change in the di-
clofenac concentration was observed. 

3.3. Fatty Acid Methyl Ester Analysis 

Total lipid content, measured as sum of FAMEs, was significantly lower in the 
biomass harvested on day 8 than in the biomass harvested on day 5. This de-
crease, of approximately 40%, was consistent for both the treatment exposed to 
diclofenac and the unexposed treatment (Table 2). No significant effect on total 
lipid content due to exposure to diclofenac was observed. 
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Table 2. Total lipid content (µg∙mg−1, dwt) and relative proportions (% of total amount of 
fatty acids) of the major fatty acids in the biomass sampled on day 5 (A, algal biomass) 
and day 8 (B, algal-fungal pellets) in treatments exposed to diclofenac (+) or unexposed 
(−). 

Lipid Content 
A (−) A (+) B (−) B (+) 

58.7 ± 2.7a* 58.5 ± 7.1a 34.2 ± 2.7b 33.5 ± 2.0b 

Fatty Acid     

14:0 0.1a 0.2a 0.5a 0.3a 

15:0 0.6a 1.5b 0.7a 0.7a 

16:0 21.1a 20.7a 18.9a 18.5a 

16:1 1.9a 1.7a 0.7b 0.4b 

16:2 7.4a 6.9a 0.8b 0.7b 

16:3 14.2a 14.8a 0.9b 0.7b 

17:0 0.2a 1.1a 5.0b 3.6b 

18:0 0.9a 0.4a 9.0b 7.8b 

18:1 10.7a 4.7a 3.7a 16.8a 

18:2 13.0a 12.8a 29.2b 19.9ab 

18:3 29.9a 35.2a 30.5a 30.5a 

ƩSFA 22.9a 23.9a 34.1b 30.9b 

ƩUFA 77.1a 76.1a 65.8b 69.0b 

*Values within rows followed by different letters are significantly different (P < 0.05, Fisher’s LSD). 

 
Comparison of the fatty acid profile in the biomass harvested on day 5 and the 

biomass harvested on day 8 revealed a significant difference (Table 2). The most 
pronounced change was an increase in the proportion of the saturated octa-
decanoic acid (18:0) and a decrease in unsaturated hexadecatrienoic acid (16:3) 
and hexadecadienoic acid (16:2) on day 8. Lower amounts of the unsaturated li-
noleic acid (18:2) were observed on day 5 compared with day 8. However, in to-
tal a significant increase in sum of saturated fatty acids was observed in the bio-
mass harvested on day 8 compared with the biomass harvested on day 5 (Table 
2). 

Low amounts of the odd-chain fatty acids 15:0 and 17:0, indicating bacterial 
contamination, were detected, with higher levels of 17:0 in the biomass har-
vested on day 8. Also, low amounts, approximately 0.1% of total lipid content, of 
the long-chain fatty acids 20:0 and 22:0 were detected in the biomass harvested 
on day 8. 

4. Discussion 

The use of microalgae for treatment of wastewater, followed by a deliberate 
strategy to use the biomass produced, provides substantial benefits in terms of 
sustainability, but the cost of microalgae harvesting is a major issue hampering 
development of this technique. Due to the formation of large, easily harvested 
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algal pellets, bioflocculation by various methods has been suggested as an effi-
cient low-cost technology for this purpose [17]. In the present study, flocculation 
was obtained by formation of fungal-algal pellets. Complete removal of algal 
cells from the water phase was observed after three days of fungal growth and 
high efficiency in algal harvesting was achieved, which is well in line with previ-
ous findings on the use of A. niger for this purpose [4]. A recent study suggests 
that specific surface proteins in the hyphae of fungi are important for achieving 
algal pelleting [18]. 

The pelleting process used in the present study was based on fungal spore ad-
dition, accompanied by addition of glucose as a carbon source. This approach 
resulted in a strong increase in biomass production between day 5 and day 8, as 
can be seen in Table 1. In parallel with the increase in biomass production, a 
major increase in nutrient removal from wastewater was also observed (Figure 
1). A particularly notable finding was a steep decrease in the concentration of 
total phosphorus. In general, the rate of removal of phosphorus from wastewater 
by algal treatment is reported to be high, commonly between 60% - 100% [19]. 
This removal effect is attributable to assimilation into the biomass and precipita-
tion of phosphorus. The main factors inducing phosphorus precipitation are in-
creased pH due to algal growth, assimilation of dissolved carbon dioxide during 
algal photosynthesis and the concentration of calcium and magnesium ions [19].  

However, in the present study the main reduction in phosphorus concentra-
tions was observed under the acidic conditions that prevailed between day 5 and 
day 8. Aspergillus niger is well-known for production of citric acid [20], which 
explains this decrease in pH during its growth (Table 1). As discussed above, 
phosphorus precipitation is more likely to occur at alkaline pH, so cellular up-
take is a possible explanation for the observed decrease. In a recent study on 
carbon:nitrogen:phosphorus ratio in fungal biomass, variations were observed 
between different phyla, but on an average the stoichiometry was similar to the 
Redfield value, with an atomic nitrogen:phosphorus ratio of 16:1 [21]. This value 
is close to the 14.2:1 atomic ratio of reduced nitrogen:reduced phosphorus ob-
served in the present study, further supporting cellular uptake as the explanation 
for the steep decrease in phosphorus concentration in the wastewater. 

The concentration of diclofenac used here (10 µg∙L−1) appeared to have no ef-
fect on algal or fungal growth. This confirms the low toxicity reported for non-
steroidal anti-inflammatory drugs, including diclofenac, in algal tests [22]. Di-
clofenac is used for a broad range of medical treatments and is thus frequently 
detected in wastewater. It is also poorly eliminated in wastewater treatment 
plants, with concentrations of almost 1 µg∙L−1 being reported in treated waste-
water [23]. Advanced oxidation techniques, such as sonolysis, anodic oxidation 
and electro-Fenton treatment, are currently being developed for removal of di-
clofenac from wastewater and promising results have been reported [24]. In the 
present study, no significant effect was observed on diclofenac concentration af-
ter five days of algal growth (Figure 2). Reductions in diclofenac concentrations 
by algal treatment systems have been observed elsewhere, but with a considera-
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bly longer treatment period than applied in this study [25]. After fungal-assisted 
algal harvesting (day 8), a significant decrease in diclofenac concentration was 
observed in the present study. This is in agreement with results reported by Lu-
cas et al. [26], who tested a similar concentration range of the pollutant and ob-
served high sorption of diclofenac to fungal biomass due to its hydrophobic 
character. 

Biosorption is of interest in removal of micropollutants from wastewater due 
to the potential for removal of biomass and thereby of adsorbed pollutants. Cer-
tain fungal species are also of high interest for bioremediation due to their pro-
duction of extracellular enzymes, such as laccases, capable of degrading recalci-
trant xenobiotics [27]. Laccase-mediated degradation of diclofenac, using laccase 
from the white-rot fungi Trametes versicolor, has been demonstrated [28]. De-
creased toxicity was also observed after treatment in that study, which is impor-
tant as biodegradation processes are required not only to remove the target 
compound, but also its potentially toxic metabolites. Aspergillus niger is sug-
gested to be a good source of laccase [29]. However, previous evaluations of the 
strain of A. niger used in the present study for laccase production, under similar 
conditions as applied in the present study, have detected no extracellular pro-
duction of laccase [30]. Further removal of diclofenac could possibly be obtained 
developing laccase-producing fungal strains for algal harvesting. It should also 
be pointed out that wild strains of A. niger have recently been categorised as 
class 2 microorganisms [31], making development of algal harvesting techniques 
using other fungal strains highly relevant. 

Lipid accumulation, in both microalgae and fungi, is dependent on the grow-
ing conditions, with stress conditions being favourable for lipid accumulation by 
microalgae [32] and with the quantity and quality of carbon and nitrogen 
sources suggested to be important factors for A. niger [33]. The lipid content of 
the microalgal biomass harvested on day 5 was 5.9% of dry biomass and that of 
the algal-fungal biomass harvested on day 8 was 3.4% of dry biomass (Table 2). 
These values are low compared with reported values from a similar experimental 
set-up [4], where a lipid concentration of 37.4% was detected in the microalgal 
biomass. For the algal biomass harvested on day 5, both the quantity and quality 
of lipids produced are well in line with results obtained using the same strain of 
C. vulgaris for treatment of real wastewater [16]. This suggests that nutrient 
availability in the synthetic wastewater used in the present study resembles that 
in real wastewater and also that it may be less conducive to lipid production. 
However, inter-strain variation may also explain the difference in total lipid 
concentration. 

In the present study, fungal-assisted algal harvesting resulted in a significant 
decrease in total lipid content in biomass and a significant change in lipid qual-
ity towards saturation. However, because of high biomass production, the 
amount of lipids produced per litre of wastewater increased, from 5.6 ± 0.9 mg 
on day 5 to 20.6 ± 4.9 mg on day 8, when calculated based on the data presented 
in Table 1 and Table 2. In a study using the related fungi A. fumigatus for har-
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vesting different microalgae, increased total lipid yield was reported for certain 
treatments, with the total lipid yield varying between 17.8 and 246.0 mg∙L−1 [34]. 
Furthermore, a fatty acid chain length of between 16 and 18 C and a low con-
centration of unsaturated fatty acids are reported to promote biodiesel produc-
tion [35]. Thus, the significant increase in saturated fatty acids obtained after 
fungal growth in this study represents an advantage for biofuel production. 

Prolonging the algal cultivation period, thereby causing possible exposure to 
nutrient deficiency, might have resulted in increased amounts of lipids in the al-
gal cells [36]. However, the batch reaction time represents a considerable cost 
and prolonged cultivation needs to be balanced against the value of the biomass. 
Considering the reaction time for pelleting microalgae, the use of spores, as in 
the present study, should be weighed against the use of pre-grown fungal pellets. 
It is suggested that direct use of pre-grown fungal pellets is favourable from a 
resource perspective [37]. Moreover, developing a harvesting process using 
pre-grown fungal pellets would allow optimisation of the growing conditions in 
order to achieve maximal lipid content in the mycelium and this would provide 
a benefit from a biofuel perspective. On the other hand, the use of pre-grown 
fungal pellets for algal harvesting would probably decrease the efficiency of nu-
trient removal from wastewater, as the main reduction in nutrient concentra-
tions in the present study was observed during fungal growth. 

5. Conclusion 

Under the conditions applied in the present study, high nutrient removal rates 
from wastewater and a significant decrease in the concentration of the mi-
cropollutant diclofenac were observed after fungal-assisted algal harvesting. 
However, the lipid content in the biomass produced was low. Nevertheless, fun-
gal-assisted algal harvesting has the potential to be developed into a sustainable 
technology for wastewater treatment. Future work could be directed at selection 
and development of fungal strains in which laccase production and potential for 
high lipid accumulation are important factors. 
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